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Abstract— In this letter, we provide a detailed characteri-
zation of the equilibria and bifurcations of two-dimensional
linear-threshold models. Using the input to the system as the
bifurcation parameter, we characterize the location of the ad-
missible equilibria, show that bifurcations can arise only when
equilibria lie on the boundary of well-defined regions of the
state space, and prove that (codimension-one) bifurcations can
only be of three different types: persistent, non-smooth fold, and
Hopf. We show how these bifurcations change the qualitative
properties of the system trajectories, and how these behaviors
resemble prototypical patterns of EEG activity observed before,
during, and after seizure events in the human brain. Our
findings suggest that low-dimensional linear threshold models
can effectively be used to model, analyze, predict, and ultimately
regulate the interactions of neuronal populations in the human
brain.

I. INTRODUCTION

Epileptic seizures are characterized by an excessive and
abnormal neuronal activity in the brain. Given the severity
of this condition and its diffusion (10% of people worldwide
experience at least one seizure episode in their lifetime),
there has been a shared effort among different scientific com-
munities to understand and fight this disease. Thanks to the
wide availability of electroencephalogram (EEG) readings of
healthy and epileptic brains, several mathematical models
aiming at characterizing and describing these behaviors have
been proposed. Despite the large variety of waveforms ob-
served in EEG signals, most phenomena can be characterized
by a small number of typical recurring waveforms [1].

Meso-to-macroscopic models reproduce the global activity
of clusters of neurons through their firing rate, as opposed
to reproducing the neuron’s individual spiking as done in
microscopic models. The former approach benefits from a
lower-dimensional system of otherwise complex dynamics
and is referred to as neural mass modeling [2]. In partic-
ular, linear threshold networks (LTNs) are commonly used
in computational neuroscience to model various cognitive
phenomena in the brain, see [3], [4] and references therein.
In this paper we characterize the properties of equilibria and
bifurcations of planar LTNs, and show how the qualitative
behaviors induced by these bifurcations closely maps to the
waveforms observed in EEG signals collected before, during,
and after seizure events.
Related work. The idea of using dynamical models to inter-
pret and understand epileptic events is not new. Prior work
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include the Jansen and Rit model [5], [6], the Epileptor [7],
and the well known Wilson-Cowan model, with a sigmoidal
activation function, in [8]–[11]. Other notable results can
be found, for instance, in [2], [12]–[14] and the references
therein. Differently from these studies, we consider LTNs,
which follow a piecewise-smooth flow [15], [16] and have
been used to model a variety of brain activities [3], [4]. LTNs
are also amenable to analytical study, a feature that sets them
apart from other frameworks.

From a technical perspective, we rely on the rich theory of
bifurcations of dynamical systems, which is well developed
for smooth vector fields, e.g., see [17]. While results also
exist to characterize the bifurcations of piecewise-smooth
vector fields [18]–[20], a comprehensive theory is still lack-
ing. Our results contribute to the development of this field
by providing a characterization of the bifurcations of LTNs.
Paper contribution. The contributions of this paper are
two-fold. First, using the input to the system as bifurcation
parameter, we give a detailed analysis of the bifurcations
occurring in planar LTNs. We derive explicit conditions
on the parameters of the model to draw a set of different
bifurcation diagrams, and study the qualitatively different
behaviors that emerge in their phase diagrams. Second, we
associate the behaviors originating from these bifurcations
to prototypical waveforms observed in EEG signals during
epileptic activities. This creates an effective map to under-
stand epileptic features from the underlying dynamics, and
paves the way to designing remedial controls.
Notation. Throughout the paper we use R, R≥0, and R≤0 to
denote the set of reals, nonnegative reals and nonpositive
reals, respectively. We use bold letters for vectors and
matrices. The identity matrix is denoted by I. Given a vector
x ∈ Rn, we use xi to refer to its ith component. For x ∈ R
and m ∈ R≥0, [x]m0 = min{max{x, 0},m}, which is the
projection of x onto [0,m]. Similarly, when x ∈ Rn and
m ∈ Rn≥0, [x]m0 = [[x1]m1

0 . . . [xn]mn
0 ]T . The open ball in

Rn with radius ε > 0 centered at x ∈ Rn is denoted by
Bε(x) = {y ∈ Rn | ‖y − x‖ < ε}.

II. PROBLEM FORMULATION

We model the interactions between populations of neurons
trough a dynamical network with a nonlinear activation
function, cf. [21]. Let x be the vector where each component
represents the firing rate of a population of neurons, and
W ∈ Rn×n be the synaptic weight matrix. The firing rates
evolve according to a linear threshold model:

ẋ = −x(t) + [Wx(t) + u(t)]m0 , 0 ≤ x(0) ≤m, (1)

where m ∈ Rn>0∪{∞}n. The vector u represents an external
input to the system, such as unmodeled background activity.
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Fig. 1. Phase plot, regions of the state space, and nullclines for (2) with W = [2,−2; 5,−2.5] and m = 2 · 12. By changing u, the system exhibits
different behaviors as equilibria may appear, disappear, and relocate in the state space. Higher (lower) values of u1 (u2) translate the x-nullcline N1 in
red (y-nullcline N2 in blue) along the positive direction of x2 (x1).

Epilepsy is often described as an abrupt intermittent
transition between highly ordered and disordered states [1].
In a dynamical systems’ context, this may correspond to
a qualitative change in the behavior of the system, which
is typically linked to the study of bifurcations. Evidence
suggests that, even during highly disruptive events such
as seizures, the underlying connectivity structure between
neurons does not experience a significant change in its
nature, while the inputs to the system may be altered by
exogenous and endogenous events. Following this evidence,
here we study how changes in the input to (1) can generate
qualitative changes in the behavior of the neurons firing rates.

We consider a network of excitatory and inhibitory neu-
rons with all-to-all connectivity. Specifically, we focus on the
dynamics in (1) with n = 2, where the state x1 (x2) is the
lumped activity of the population of excitatory (inhibitory)
neurons, which have positive (negative) feedforward contri-
bution to the network. As our ensuing analysis reveals, the
E-I pair case shows much of the complexity of the general
case and is rich enough to capture a variety of epileptic
behaviors. The dynamics of the E-I pair simplify to the
following piecewise-smooth flow (PWSF):[

ẋ1
ẋ2

]
= −

[
x1
x2

]
+

[[
a −b
c −d

] [
x1
x2

]
+

[
u1
u2

]]m
0

. (2)

We note that (2) resembles the classic Wilson-Cowan
model [22] with, however, a piece-wise activation function
in place of the more common sigmoidal function.

Throughout the paper, we use the notion of nullclines to
characterize the equilibria of (1). In particular, the nullcline
set N1 = {x : ẋ1 = 0} is given by

x1 = 0, x2 ≥
u1
b
, (3a)

x1 ∈ (0,m1), x2 =
a− 1

b
x1 +

u1
b
, (3b)

x1 = m1, x2 ≤
a− 1

b
m1 +

u1
b
. (3c)

Similarly, the nullcline set N2 = {x : ẋ2 = 0} is given by

x1 ≤ −
u2
c
, x2 = 0, (4a)

x1 =
d+ 1

c
x2 −

u2
c
, x2 ∈ (0,m2), (4b)

x1 ≥
d+ 1

c
m2 −

u2
c
, x2 = m2. (4c)

Fig. 1 shows how changes in the input affect the nullclines
on the plane and the resulting system behavior.

Beyond equilibria, limit cycles of (2) also play a key role
in the system experiencing a rich repertoire of bifurcations
and behaviors. The next result establishes conditions for their
existence. The original statement appeared in [4], but here
we provide a novel proof in Appendix A using the nullclines
of (2), which is consistent with the rest of this work.

Theorem 2.1: (Limit cycles in E-I pairs [4]) All solutions
to (2) (except the one originating from the unique unstable
equilibrium in (6)) converge to a limit cycle if and only if

d+ 2 < a, (5a)
(a− 1)(d+ 1) < bc, (5b)

(a− 1)m1 < bm2, (5c)
0 < u1 < bm2 − (a− 1)m1, (5d)

0 < (d+ 1)u1 − bu2 < [bc− (a− 1)(d+ 1)]m1. (5e)

If (5) holds, the system has a unique unstable equilibrium:

x∗ =
1

bc− (1 + d)(a− 1)

[
(1 + d)u1 − bu2
cu1 − (a− 1)u2

]
. (6)

III. BIFURCATION ANALYSIS

In this section we characterize the bifurcations of (2) as a
function of the external input u. We use this characterization
in Section IV to explain empirical epileptic data. In what
follows, we use the terminology and taxonomy of [18].

We begin by characterizing the system equilibria when
the input u is fixed following [3]. The phase plane is
partitioned into nine regions, parameterized by the parameter
σ ∈ {0, `, s}2, where the dynamics are affine. For each σ,
the region is defined by

Ωσ = {x : (Wx + u)i ≤ 0 if σi = 0,

0 ≤(Wx + u)i ≤ mi if σi = `,

(Wx + u)i ≥ mi if σi = s}.
Let Σ`σ and Σsσ be the diagonal matrices where (Σ`σ)ii = 1
if σi = `, and (Σsσ)ii = 1 if σi = s. The dynamics can be
written as ẋ = fσ(x,u) for x ∈ Ωσ , where

fσ(x,u) = (−I + Σ`σW)x + Σ`σu + Σsσm.



(A) a < 1 (B)
a > 1

(a− 1)(d+ 1) > bc
(C)

a > 1

(a− 1)(d+ 1) < bc

a < d+ 2

(D)
a > 1

(a− 1)(d+ 1) < bc

a > d+ 2

TABLE I
DIFFERENT TYPES OF BIFURCATION DIAGRAMS AS DISCUSSED IN THEOREM 3.1. THIN DASHED LINES SHOW FAMILIES OF VIRTUAL EQUILIBRIA.
THICK LINES SHOW EQUILIBRIA: THICK SOLID LINES SHOW STABLE FIXED POINTS, WHILE THICK DASHED LINES SHOW UNSTABLE FIXED POINTS.

BLACK (WHITE) SQUARE MARKERS SHOW P-BEB (NSF-BEB), WHILE CIRCLES SHOW NON-ADMISSIBLE BIFURCATION CANDIDATES. IN CASE (D)
THE MAXIMUM AND MINIMUM VALUES OF THE LIMIT CYCLE ARE SHOWN IN COLOR.

Assumption 1: We assume that
(i) det(W) 6= 0,

(ii) det(−I + Σ`σW) 6= 0 for all σ ∈ {0, `, s}2.
Note that this assumption is not restrictive since the set
of matrices which fail to satisfy these conditions has zero
Lebesgue measure. Under these assumptions, for each u
there is a unique equilibrium candidate x∗

σ(u), such that
fσ(x∗

σ(u),u) = 0. The equilibrium candidate x∗
σ is a smooth

function of u. When x∗
σ(u) ∈ Ωσ , we call the candidate

admissible and x∗
σ(u) is an equilibrium of the system.

A bifurcation can occur only when x∗
σ(u) is on the

boundary of Ωσ . In this case, the equilibrium candidate x∗
σ

overlaps with the equilibrium candidate of another region.
This observation motivates the following definitions:

Definition 1: (Boundary equilibrium bifurcation (BEB))
We call u a bifurcation candidate if there exist distinct σ1,
σ2 such that x∗

σ1
(u) = x∗

σ2
(u). A boundary equilibrium

bifurcation occurs when u is a bifurcation candidate and x∗
σ

is admissible in both Ωσ1 and Ωσ2 , i.e., when x∗
σ1

(u) ∈ Ωσ1

and x∗
σ(u) ∈ Ωσ2

. �
Definition 2: (Types of BEBs) Suppose a boundary equi-

librium bifurcation occurs at u. Then, u is
(i) a Persistent BEB (P-BEB) if the number of equilibria

is constant in a neighborhood of u;
(ii) a Non-smooth fold BEB (NSF-BEB) if the number if

equilibria is not constant in a neighborhood of u;
(iii) a Hopf bifurcation1 if it is an NSF-BEB such that a

limit cycle emerges.
�

We focus on codimension-one bifurcations, since they
arise more frequently in biological systems than higher-
dimensional bifurcations [12]. In particular, we choose u1
as the bifurcation parameter, and leave u2 constant. An
equivalent analysis can be carried out using u2 as the
bifurcation parameter and keeping u1 constant. We next state

1As highlighted in [18], the definition of Hopf bifurcation does not
generalize well to PWSF since there is no sense in which eigenvalues
cross the imaginary axis at the bifurcation onset. However, with a slight
but common abuse of terminology, we refer to a Hopf bifurcation if the
only attractor in the system is a limit cycle.

our main theoretical result (a proof is given in Appendix B),
which characterizes explicitly the bifurcation diagram of (2).
Because u2 is constant, we abuse notation slightly by writing
the equilibrium candidates as a function of u1 only.

Theorem 3.1: (Bifurcation diagram) Let u1 be the bifur-
cation parameter of the system (2), and let

−m1c < u2 < (1 + d)m2. (7)

Then, there exist at most eight bifurcation candidates. Fur-
ther, there exist four qualitatively different bifurcation dia-
grams induced by the following inequalities:

a < 1, (8a)
(a− 1)(d+ 1) < bc, (8b)

a < d+ 2, (8c)

In particular, the possible bifurcation diagrams are defined
as follows (see Table I for an illustration):
(A) If (8a) is satisfied, then there exists a unique equilib-

rium for every u and all bifurcations are P-BEB.
(B) If inequalities (8a) and (8b) are not satisfied, then the

system has one equilibrium (for small and big values
of u1) or three equilibria. Then, bifurcations involving
the Ω`` region and only one other region are P-BEB.
Otherwise, bifurcations are NSF-BEB.

(C) If (8b)-(8c) are satisfied and (8a) is not satisfied, then
the bifurcation candidates involving either the region
Ω00 or Ωss and only one other region are P-BEB.
Otherwise, bifurcations are NSF-BEB.

(D) If (8b) is the only satisfied inequality, then the analysis
of BEB is equivalent to that of Case C. However, con-
dition (8c) makes x∗

`` an unstable fixed point resulting
in a Hopf bifurcation at u`000 and at u`sss.

Some comments are in order. First, the condition bounding
u2 limits the number of admissible equilibria to five (down
from nine). For u2 < −m1c, (resp. u2 > (1 + d)m2), we
have x2 = 0, (resp. x2 = m2), for all u1, which are of
little interest and we therefore exclude to keep the problem
tractable. When (7) holds, the 5 equilibrium candidates are:

x∗
00(u1) = 0, (9a)



Waveform Description Dynamical Behavior Clinical Setting
Normal background Stable Fixed Point Preictal activity
High-frequency Osc Stable Limit Cycle Interictal activity
Low-frequency Osc Multistability Interictal activity

Spikes Multistability of (0, 0)
and another fixed point

Seizure onset

TABLE II
EEG ACTIVITY AND FEATURES IN THE PHASE-SPACE [5].

x∗
`0(u1) =

(
1

1− au1, 0
)
, (9b)

x∗
`s(u1) =

(
1

1− au1 −
bm2

1− a,m2

)
(9c)

x∗
``(u1) =

(
(1 + d)u1 − bu2

(1 + d)(1− a) + bc
,
cu1 + (1− a)u2

(1 + d)(1− a) + bc

)
(9d)

x∗
ss(u1) = m. (9e)

We plot the five equilibria in (9) in Table I as a function of
u1 (thin-dashed lines). To make things easier to visualize, we
only show the first coordinate of the equilibrium candidates.
The first coordinate of (9a), which corresponds to the equi-
librium candidate of the region Ω00, is zero for every value
of u1 and is referenced as 00 in Case A of Table I. Similarly,
the first coordinate of the equilibrium candidate (9d), which
corresponds to the equilibrium candidate of the region Ω``,
varies linearly as a function of u1 and is referenced as `` in
Case A of Table I. A bifurcation candidate arises whenever
two of these lines intersect. Bifurcation candidates are shown
as black dots in Table I. When the equilibrium candidates are
admissible, then a BEB occurs, which is shown with a square
in Table I. Further, when the number of equilibria remains
constant on both sides of a bifurcation, a P-BEB occurs: this
can be seen, for instance, in Case A, where all bifurcations
are P-BEB (black squares). On the other hand, in Case B, the
number of admissible equilibria to the left of the bifurcation
occurring at u1 = 0 are three (x∗

00, x∗
`0 and x∗

ss), while there
is just one admissible equilibrium (x∗

ss) to its right. This is an
example of NSF-BEB, which is denoted with white squares.

IV. REPRODUCING EPILEPTIC PATTERNS

Here, we apply the results from Section III to show how
linear threshold pairs can be used to model epileptic seizures.
To obtain EEG-like waveforms from the linear threshold
model, we simulate the dynamics in (2) by adding noise
w in the linear threshold function:

ẋ = −x + [Wx + u + w]m0 .

The noise w is obtained by filtering Gaussian white-noise,
with variance 1.4, through a filter with 1Hz cut-off frequency.

Although EEG measurements of the epileptic brain can
exhibit a variety of behaviors, the EEG response can typically
be constructed from a small number of prototypical wave-
forms [1]. The transition from healthy activity to a seizure is
marked by a sudden dramatic change in the qualitative nature
of the EEG signal. A seizure may contain several further
changes before normal neurological activity is restored [23].
For example, the EEG recording of the seizure in Fig. 2

System Bifurcations Seizure behavior
A P-BEB

P-BEB No change
P-BEB
P-BEB

B NSF Normal → Spikes
P-BEB No change
NSF Spikes → Normal

C NSF Normal → Spikes
NSF Spikes → Normal

D NSF Normal → Spikes
Hopf Spikes → High frequency Oscillations
Hopf High Frequency Oscillations → Slow waves
NSF Slow waves → Normal

TABLE III
RELATIONSHIP BETWEEN ALL BIFURCATIONS EACH SYSTEM EXHIBITS

(CF. DEFINITION 2 AND THEOREM 3.1), AND TRANSITION IN TYPE OF

EEG ACTIVITY AS OUTLINED IN TABLE II.

.

can be divided into four segments based on the qualitative
nature of the waveform, labeled S1, S2, S3, and S4. The
healthy background activity, S1, is characterized by small
fluctuations about a steady state. The presence of spikes in S2
indicates the onset of a seizure, with irregular low-frequency
oscillations in S3, and quasi-sinusoidal oscillations in S4.

In [5], the authors introduce a “dictionary” relating pro-
totypical waveforms to attractors of a nonlinear dynamical
system. Here, we introduce a similar dictionary to associate
prototypical waveforms to features in the phase-plane of
the linear threshold model. This dictionary, along with the
bifurcation analysis in Section III, can be used to systemat-
ically determine conditions on the connectivity matrix W
so that the desired waveform can be replicated and the
desired transitions can be obtained by varying the input to
the excitatory and inhibitory populations.

In Table II, we relate the characteristic waveforms to
features in the phase plane, and in Table III we use the
bifurcation analysis from Section III to show which tran-
sitions between these waveforms each system is capable of
exhibiting. These two tables can be used to explain epileptic
patterns through the dynamical properties of linear-threshold
pairs, to characterize possible seizures each pair can create,
and to synthesize a system that can recreate an EEG pattern
associated with a seizure event.

As we show next, with the correct values of parameters,
the linear threshold model can have solutions sharing qual-
itative characteristics with EEG waveforms during epileptic
seizures. In Fig. 3(a) we replicate the seizure in Fig. 2(b)
having the characteristic waveforms S1-S4. Fig. 3(b) shows
the input u1 + w1 as a function of time. To replicate the
normal background activity in S1, we initialize system (D)
choosing u1 so that (0, 0) is the unique (stable) fixed point.
The system then fluctuates around the equilibrium and there
will be minimal activity in both the excitatory and inhibitory
populations with sporadic firings caused by the system noise.

To obtain spikes in S2, we increase u1 so that it is near
the first NSF-BEB bifurcation. When w1 + u1 < 0, x00 is a
stable fixed point. However, when u1 + w1 > 0, the system
has a unique limit cycle and x00 is unstable. In this case,



(a) Healthy background activity [23]. (b) Seizure onset and termination [23]. (c) Slow wave [1].

Fig. 2. EEG recordings showing prototypical epileptic waveforms.
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Fig. 3. Recreating epileptic dynamics using the LTN in Case D. Simulation
of EEG recording (top) and input u1 + w1 as a function of time.

the state x will initially oscillate until the noise restores the
stability of x00, at which point the state will be attracted
toward the origin. As u1 is increased, the stable limit cycle
persists even with noise. The state oscillates about x`` with
small amplitude as in S3. Increasing u1 further increases both
components of x`` (see (9d)) as well as the amplitude of the
oscillations, resulting in behavior similar to S4. We notice
that, instead of increasing u1, a similar behavior can be
achieved by decreasing u2 since it has a negative contribution
on the value of x∗

`` in (9d). This is to be expected, since u2
is the input to the inhibitory population. In fact, a higher
input to a population translates in a higher firing rate for the
population itself. This, in return, increases oscillations when
increasing the input to an excitatory population, or decreases
oscillations in the case of an inhibitory population.

An additional behavior typical of epileptic seizures is a
slow wave, consisting of a low-frequency high amplitude
oscillation with intermittent spikes. Fig. 2(c) shows an EEG
recording of a seizure initially with high frequency oscilla-
tions in S5, then with slow waves with intermittent spikes
in S6. To recreate slow waves in the linear threshold model,
we initialize system (D) with u1 near the second NSF-BEB
bifurcation. When w1 > 0, xss is a stable fixed point and
system fluctuates around (m1,m2). When w1 < 0, xss is
unstable and the system has a limit cycle, resulting in a high
frequency spiking which is halted once the stability of xss is
restored. A simulation showing this behavior is in Fig. 4(a),
with the corresponding input in Fig. 4(b)

V. CONCLUSIONS

We have shown how LTNs can be used to model a variety
of prototypical brain waves measured in both healthy and
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Fig. 4. Recreating slow waves using Case D. Simulation of EEG recording
(top) and input u1 + w1 as a function of time.

epileptic brains. Focusing on a two-dimensional network,
we provide an exhaustive analysis of the equilibria and
bifurcations occurring as a function of the input to the
system. We also provide a map and numerical evidence
to associate these bifurcations to patterns of EEG signals
observed before, during, and after seizure events. Directions
of future research include a formal analysis of the results
suggested in Section IV to relate the behavior of this model
with real life EEG data, the study of higher-dimensional
linear threshold models, and the design of control algorithms
to detect and regulate seizure behaviors.

APPENDIX

A. Proof of Theorem 2.1

We first show how the conditions in the statement are
necessary and sufficient for (2) to have a unique fixed point
x∗ which, furthermore, is unstable. For x∗ to be the unique
equilibrium, the nullclines N1 and N2 must intersect exactly
once. This condition is satisfied when (i) the slope of the
nullcline N1 in the linear region is less than the ratio m1/m2,
cf (5c); (ii) the slope of the nullcline N1 is smaller than that
of N2 in the same region, cf. (5b); (iii) and 0 < x1(m1) <
m2, cf. (5d). Using the equations defining the nullclines, we
obtain the coordinates of x∗ in (6). Finally, since x∗ needs
to belong to the linear region, we have 0 < x∗

1 < m1, which
reduces to (5e). Furthermore, the equilibrium is unstable
since the Jacobian at this fixed point is A = −I+W and, by
(5a) and (5b), trace(A)2−4det(A) < 0. Thus, the eigenvalues
of A are conjugate roots with real part (−d−1)+(a−1)

2 > 0.
Next, let R = {x | x ∈ [0,m1]× [0,m2] \Bε(x∗) } for ε

small enough so that Bε(x∗) ⊂ Ω``. Note that R is compact



by definition, and that [0,m1]× [0,m2] is forward invariant
with respect to the dynamics (2). Furthermore, since x∗ is
the unique fixed point, is in the interior of the region Ω``,
and both eigenvalues of the Jacobian have a positive real
component, we deduce that R is forward invariant. By the
Poincaré-Bendixon Theorem [17, Chapter 7.3], since R is
compact, forward invariant, and contains no fixed points, the
system has a stable limit cycle in R, concluding the proof.
�

B. Proof of Theorem 3.1
Recall that u is a bifurcation candidate if and only if

there exist distinct σ1 and σ2 such that x∗
σ1

(u) = x∗
σ2

(u).
Examining only the x1 component in equations (9a)-(9e), we
see that these are affine in u1. Moreover, the affine functions
(9a) and (9e) are parallel and never intersect, so there is
no bifurcation candidate when σ1 = 00 and σ2 = ss. By
a similar line of reasoning, we conclude that there is no
bifurcation candidate when σ1 = l0 and σ2 = ls. Hence
there are only eight possible bifurcation candidates.

Let Ωσ1
and Ωσ2

be neighboring regions. Note that we can
define h such that the dynamics (1), on Ωσ1 ∪Ωσ2 , become

ẋ =

{
fσ1(x, u1), h(x, u1) ≤ 0,

fσ2
(x, u1), h(x, u1) ≥ 0,

(10)

where h(x, u1) = 0 on Ωσ1 ∩ Ωσ2 . Let uσ1,σ2 be the
bifurcation candidate, i.e., x∗

σ1
(uσ1,σ2

) = x∗
σ2

(uσ1,σ2
) = x∗.

Then, a BEB occurs if h(x∗, uσ1,σ2
) = 0. Further, a P-BEB

occurs if there exists a neighborhood of uσ1,σ2 such that, for
all u1 in such neighborhood, the following inequality holds:

h(x∗
σ1

(u1), u1)h(x∗
σ2

(u1), u1) > 0.

A NSF-BEB occurs instead when the inequality is not
satisfied in any neighborhood of uσ1,σ2

.
We will now show explicitly how to compute the type of

bifurcation when σ1 = 00 and σ2 = `0. Let Ω1 = Ω00 and
Ω2 = Ω`0. Then, (10) becomes

ẋ1 =

{
−x1, h(x, u1) < 0,

(a− 1)x1 − bx2 + u1, h(x, u1) > 0,

with h(x, u1) = ax1 − bx2 + u1. From (9) we have
(x∗00(u1))1 = 0 and (x∗`0(u1))1 = 1/(1 − a)u1. Hence,
h(x∗

00(u1), u1) = u1 and h(x∗
0`(u1), u1) = u1/(1 − a),

which identifies a P-BEB at u1 = 0 if and only if a < 1.
This result is confirmed in Table I: in Case A, i.e., for a < 1,
the bifurcation candidate involving regions Ω00 and Ω`0 is
a P-BEB, while it is a NSF-BEB in cases B, C, and D. An
equivalent analysis involving the remaining seven bifurcation
candidates can be performed, leading to the conditions of the
theorem and the four scenarios highlighted in Table I. In the
interest of space, the explicit computations are here omitted.

Finally, cases C and D exhibit equivalent conditions for the
boundary equilibrium bifurcations. However, when condition
(8c) is met, the equilibrium in Ω`` is unstable (both eigen-
values of the I−W are positive), and a limit cycle arises
when the conditions in Theorem 2.1 are are also satisfied.
This gives rise to a discontinuity-induced Hopf bifurcation,
which differentiates case D from case C. �
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