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Abstract— Due to recent technological advances, performance
enhancement of complex networked control systems by edge
modification done according to their importance in the network
is becoming increasingly feasible. Unlike the nodal case, edge
characterization with respect to a given performance metric
is a rather unexplored research area. In this work, we seek to
address this problem by proposing a novel Gramian-based edge
centrality matrix which characterizes all the possible edges in
the network with respect to physically realizable energy-based
performance metrics. We rigorously prove the relationship of
the various edge centrality matrix for different performance
metrics with the gradient of the controllability Gramian with
respect to edge weights. Notable feature of our proposed edge
characterization is that it exhibits the contribution of individual
inputs. We then analyze the edge centrality matrix for directed
ring and line networks. Finally, through numerical examples,
we validate a structural property of proposed edge centrality
matrix and demonstrate its utility in network edge modification.

I. INTRODUCTION

Networked control systems (network) are modern com-
plex dynamical systems which are conglomeration of small
subsystems often geographically separated by large dis-
tances and communicating over wireless channels. Complex
networks find application in numerous domains, including
social networks, biological systems, robotic systems, power
networks, and transportation networks, and have become an
important part of day-to-day human life. Hence, it is nec-
essary that the network functions efficiently and resiliently
in the event of external interference (disturbances, malicious
attacks). As the destabilizing interference (energy) is applied
at nodes and propagated in the network through edges, we
have to understand how each node and edge influences the
network. Influence of nodes and edges in the network based
on topological properties has been quantified by various
centrality measures. However, these topology based central-
ity measures neglect the dynamical (controllability, energy)
effects of nodes and edges in the system. While energy
based nodal centrality measures and its use for improving
network performance are well developed in the literature,
we cannot say the same for edges. In this work we seek
to address this research gap by introducing analytically
grounded energy based edge centrality measures and explore
its various properties and uses.

This work was supported by ARO Award W911NF-18-1-0213.
∗Corresponding author.
The authors are with the Department of Aerospace and Mechanical

Engineering, University of California, San Diego, La Jolla, CA 92093, USA,
{pchanekar, cortes}@ucsd.edu

Literature review: In a complex network, the notion of
centrality quantifies the relative importance of components
(nodes/edges) in a network with respect to an appropriate
performance/influence metric [1], [2]. Different performance
metrics lead to different centrality measures [3]. These
centrality measures are then used to characterize and order
the network nodes/edges. Node based centrality measures
are most commonly used for network characterization [2]
due to its computational feasibility. This is because unlike in
the case of edges, the network node set is relatively smaller
in size. Based on the topological properties of the network
some commonly used nodal centrality measures include
degree [2], [4], closeness [2], betweeness [5], eigenvector [6],
Katz [7], PageRank (Google) [8], percolation [9], cross-
clique [10], Freeman [4], topological [11], Markov [12], hub
and authority [13], routing [14], subgraph [15], and total
communicability [16] centralities. In case of edges, various
notions such as betweeness centrality [17], edge HITS cen-
trality, and edge total communicability centrality [18] have
been proposed. All the discussed centrality measures do not
consider network dynamics and hence fail to capture the
influence of energy propagation in the system.

Energy propagation in the system is related to the con-
trollability of the dynamical system. While classical Kalman
controllability only indicates the mere possibility of steering
a system arbitrarily in the state space, it fails to quantify
the energy required for steering [19], [20]. Works such
as [21]–[23] establish a relationship between the abstract
notion of Kalman controllability and physically realizable
energy-based metrics through the controllability Gramian
[20]. Different functions of the controllability Gramian pro-
duce different energy-based metrics. These Gramian-based
metrics are used to order the nodes in network and then this
ordered set is used to select control nodes by heuristic or
deterministic process. For example, one can use trace of the
controllability Gramian [23], [24], the trace of its inverse
[23], its determinant [21], [25] or its minimum eigenvalue
[22] as an performance metric. In [26], a novel notion of node
centrality called the 2k-communicability is used for time-
varying placement of actuators in network. In contrast to the
above stated works, [27] proposes a novel notion of Gramian-
based edge centrality which explores the importance of edges
in network from the perspective of energy propagation. But
the proposed edge centrality [27] can only be applied to
directed networks with non-negative edge weights. Also, the
edge centrality measure in [27] is independent of the input
locations and is not tightly bounded. This may sometimes
lead to inaccurate ordering of edges.



Statement of contributions: In the aforementioned liter-
ature, the majority of works explore node/edge centrality
measures only from the network topological perspective and
neglect the dynamical effects. The works which consider the
effect of system dynamics are either limited to the nodal case
or limited to directed network with non-negative weights
or independent of the input locations. In view of this, the
contributions of this work are threefold: (i) We propose a
novel Gramian-based edge centrality matrix which is a map
of edge centrality measures for existing as well as virtual
edges between any two nodes of the network. The edge cen-
trality measures are computed with respect to a given perfor-
mance metric and is derived for network with discrete-time
dynamics. Notable features of our proposed edge centrality
matrix are its independence from the underlying topological
properties (like sign of edge weights, symmetry etc.) of the
network and its additive nature in the input space. This helps
us to quantify the effect of individual inputs of network
with respect to a given performance metric; (ii) We derive
edge centrality matrix for different performance metrics and
rigorously prove their relationship with the gradient of the
Gramian with respect to the edge weights. We also discuss
various interpretations of the edge centrality matrix with
physically realizable energy-based system properties; (iii)
We analyze the edge centrality matrix for special type of
networks namely the directed line network and directed ring
network. We rigorously prove that perturbing ‘only’ existing
edges can cause first-order changes in different performance
metrics. Finally, through a numerical examples we verify and
demonstrate the use of edge centrality matrix for enhancing
performance of network by edge modification. For space
reasons, all proofs are omitted and will appear elsewhere.

Notation: We use R to denote the set of reals. For j ∈
{1, . . . , n}, ej ∈ Rn denotes the jth canonical unit vector.
(·)> represents the transpose of a vector or matrix. For a
vector x, we use ‖x‖ to denote its norm. For a matrix X ,
we denote the element at the (i, j)

th place as X (i, j). For the
same matrix X , we use X = (xij) to denote X (i, j) = xij .
For a matrixW , we use tr (W) for its trace. For a symmetric
matrix X , we use λmin (X) to denote its smallest eigenvalue.
We use I to represent the identity matrix of appropriate
dimension. Let X be an edge set then we denote (i, j) as
its element such that it is an edge directed from node i to
node j i.e., i −→ j. If we have A as the weighted adjacency
matrix of a network graph then it is undirected if A = A>.

II. PROBLEM MOTIVATION

Consider a network of n nodes represented by the triplet
GA = (V, EA, wA), where V = {1, 2, . . . , n} is the node set,
EA = { (i, j) | i ∈ V, j ∈ V } is the edge set, and wA : EA 7→
R is a weight function. The network dynamics is described
by the discrete-time linear system

x (t+ 1) = Ax (t) +Bu (t) , t ∈ {0, . . . , T − 1}, (1)

where T > 0 is a finite time horizon, x ∈ Rn and u ∈ Rm
are state and input vectors respectively. Here, A = (aji) ∈
Rn×n is the weighted adjacency matrix defined by aji =

wA [(i, j)] 6= 0 if the edge (i, j) ∈ EA else aji = 0. The
matrix B =

(
b1 b2 · · · bi · · · bm

)
∈ Rn×m is the

input location matrix. Here bi ∈ {0, 1}n are binary vectors
with 0’s everywhere except at one entry, signifying the
presence of an input at that node. We assume that the input
structure is known and the system (A,B) is controllable for
T = n. The input u can be a known control input or a
unknown disturbance/malicious input.

Controllability is the property that describes the ef-
fect on the network state that is achievable through
the use of inputs. Formally, the controllability of (1) is
the ability to steer the state from an initial condition
x (0) = x0 to any arbitrary final condition x (T ) = xT
in T−steps by appropriately selecting the control input
sequence {u (0) , u (1) , . . . u (T − 1)}. The controllability
of (1) can be assessed in a number of ways: here, we employ
the controllability Gramian,

W (T ) =

T−1∑
t=0

AtBB>At
>
. (2)

The system with matrices (A,B) is controllable if the
matrix W (T ) is symmetric positive definite [20]. This is
a qualitative test that does not capture the input effort
required to actually steer the system state. To address this,
one can instead employ controllability metrics based on the
Gramian, including tr(W), −tr(W−1), det(W), log det(W),
and λmin(W).

The aforementioned controllability metrics also have phys-
ically realizable interpretations. The energy to control a dy-
namical system as well as its output response are physically
realizable quantities and are of great practical importance.
The average energy required to take a dynamical system
from 0−state to a desired final state xf over infinite time is
x>fW−1xf [22]. For xi =

xf

‖xf‖ , x>i W−1xi = 1
λi

is called
the eigen-energy [28] i.e., the minimum energy required to
move the system in the direction xi. If (λi, xi) are smallest
eigenvalue-eigenvector pair, then 1

λi
represents the energy

required to steer the system in the most difficult direction xi
[23]. Now if xi = ei, then x>i W−1xi =

[
W−1

]
ii

is called
the nodal-energy of the ith−node. The ith−nodal energy is
defined as the energy required to drive the state of node i
from 0 to 1 while leaving the final states of the other nodes to
the 0−state [29]. If the output y = e>i x = xi, then e>i Wei is
the square of the H2 norm of the system. The square of the
H2 norm is the energy in the output response of the system to
an unit impulse input or it is the expected root mean square
value of the output response to a white noise excitation input
[29], [30]. Thus if the nodal energy is high then the nodal
state is more robust against input disturbances. We refer the
interested reader to [22], [23], [26], [29] for a more detailed
discussion.

Our goal is to study the effect of changes in the network
structure on its controllability properties (while maintaining
intact the input structure). This analysis is motivated by two
complementary types of scenarios, one where we might be
interested in making the network more easily controllable,



to facilitate the action of a defender, and another one where
we seek to make the network more difficult to control, to
obstruct the action of an attacker. It is also possible that
both scenarios occur concurrently, where the input nodes
are a combination of known control (defender) input nodes
and malicious (attacker) input nodes, denoted by matrices
Bd and Ba, respectively. This has application in tackling
practical problems such as mitigating effect of malicious
attacks at input nodes or network edges, suppressing output
response at particular nodes caused due to malicious inputs
etc. In our study, we measure controllability by means of
the Gramian-based performance metrics described above.
By changes in network structure, we mean modifying the
weights in existing edges or adding new edges of suitable
weight.

III. FIRST-ORDER DEPENDENCE OF GRAMIAN-BASED
CONTROLLABILITY METRICS ON EDGE WEIGHTS

To analyze the effect of perturbation of network edge
weights on the performance metrics, we first need to re-
formulate the gradient of Gramian in an appropriate form.
In Theorem 3.1 we rigorously establish a novel expression
for the gradient Gramian with respect to the elements of
matrix A.

Theorem 3.1: (Reformulated gradient of Gramian with
respect to edge weights). Consider A ∈ Rn×n, constant
matrix P = P> ∈ Rn×n and H =

(
h1 . . . hk . . . hm

)
∈

Rn×m. If φ (A) =
∑T−1
t=0 AtHH>At

> then

∂

∂aji
tr (Pφ (A)) = 2

m∑
k=1

T−1∑
t=1

tr
(
C

(t)

k O
(t)

k eie
>
j

)
, (3)

where

C
(t)

k =
(
At−1

>
PAthk · · · A>PAthk PAthk

)
,

O
(t)

k =
(
hk Ahk · · · At−2hk At−1hk

)>
. (4)

Next, in Corollary 3.2, we derive expressions for the
gradient of different functions of the controllability Gramian
using Theorem 3.1.

Corollary 3.2: (Gradient of functions of Gramian). Con-
sider the network dynamics (1) with BB> =

∑m
k=1 bkb

>
k

and the controllability Gramian defined in (2). For P =
P> ∈ Rn×n, let

ΘP =

m∑
k=1

T−1∑
t=1

C
(t)

k O
(t)

k (5)

with C
(t)

k , O
(t)

k as defined in Theorem 3.1 with H = B.
Then for at some A = A0 the following are true:

1) ∂
∂aji

tr (W) = 2ΘI (j, i) for P = I .
2) ∂

∂aji
log det (W) = 2ΘW−1 (j, i) for P =W−1.

3) ∂
∂aji
{−tr

(
W−1

)
} = 2ΘW−2 (j, i) for P =W−2.

4) ∂
∂aji

λmin (W) = 2ΘVmin
(j, i) for P = Vmin. Vmin =

vminv
>
min where vmin is the eigenvector of W corre-

sponding to the eigenvalue λmin (W).

Corollary 3.2 shows us that with appropriate choice of
matrix P = P>, the gradient of various performance can be
expressed in the format (5).

IV. EDGE CENTRALITY AND ITS PROPERTIES

Here, we build on the results of Section III to propose
a novel notion of edge centrality. We discuss some of its
properties and then characterize its structure for directed ring
and line networks.

A. The Edge Centrality Matrix

The performance metrics are the functions of controlla-
bility Gramian. In Section III, we derived expressions for
the first-order change in different performances metrics with
respect to edge weight perturbation. The quantity ΘP in (5)
is a matrix whose (j, i)

th element represents the change in a
given performance metric when the weight of the edge i −→
j is perturbed. We call ΘP (j, i) as the centrality of edge
i −→ j in the network and matrix ΘP as the edge centrality
matrix with respect to a given performance metric. From (5),
ΘP is additive in the input space as ΘP =

∑m
k=1 Θk

P , where
Θk
P =

∑T−1
t=1 C

(t)

k O
(t)

k . We call Θk
P as the kth−input edge

centrality matrix for a given performance metric. So, using
Corollary 3.2, we can construct edge centrality matrices for
the complete input set (ΘP ) as well as individual inputs (Θk

P )
for different performance metrics, cf. Section II. Given the
energy interpretations associated to these notions, the edge
centrality matrices encode first-order changes in physically
realizable quantities whenever we perturb the network.

To compute the gradients of the performance metrics
directly, one would need to compute ∂W

∂aji
. Now, if the

discrete-time Lyapunov equation, cf. [20],

AWA> −W +BB> = 0

is used then ∂W
∂aji

is the solution to

A
∂W
∂aji

A> − ∂W
∂aji

+
∂A

∂aji
WA> +AW

(
∂A

∂aji

)>
= 0.

For a n−node network, to construct the edge centrality
matrix for any performance metric, the discrete-time Lya-
punov equation needs to be solved n2 times. Moreover,
the Lyapunov equation has a valid solution only if the
matrix A is stable [20]. In contrast, Corollary 3.2 computes
complete edge centrality matrices for various performance
metrics using simple matrix multiplications. Thus, Corollary
3.2 offers us a computationally efficient way to determine
the importance of each edge in the network with respect to
a given Gramian-based performance metric.

Remark 4.1: (Significance of proposed edge centrality
matrices). Our proposed edge centrality matrices encode the
first-order effect of edge perturbation on a given performance
metric. A notable fact regarding our proposed edge centrality
matrices is that they offer the system designer additional
flexibility to examine the effects of edge perturbation due
to individual inputs, or a subset of inputs, or the complete
set of inputs. This may lead to better and efficient network



modifications, resulting in energy and resources savings.
Also, we can compute these edge centrality matrices for
different performance metrics in a computationally cheap
manner, which is an additional advantage. •

B. Directed Line and Ring Networks

In general, given a network and a set of actuator nodes, it
is difficult to characterize the structure of the edge centrality
matrices a priori. Here, we show that this can however be
achieved for particular classes of directed networks, specif-
ically, line and ring networks. Formally, given n nodes, the
weighted adjacency matrix for the directed line network is

ai,i−1 6= 0 for i = 2, 3, . . . , n; (6a)

and aij = 0 otherwise, and the weighted adjacency matrix
for the directed ring network is

ai,i−1 6= 0 for i = 2, 3, . . . , n; a1n 6= 0; (6b)

and aij = 0 otherwise.
It should be noted that the directed line network is control-

lable with a single input at node 1. If multiple inputs are used
for actuation then the directed line network is controllable
only if node 1 is one of the input locations. However the
directed ring network is controllable with a single or multiple
inputs at any node. The feature of the directed line/ring net-
works is that they admit a diagonal controllability Gramian.
In [29], the expression of the Gramian is given for the case
B = e1. In Proposition 4.2 next, we give expression of
Gramian for single or multiple inputs applied at any arbitrary
nodes.

Proposition 4.2: (Controllability Gramian of directed line
and ring networks). Consider directed line/ring networks
without self-loops as in (6) with any arbitrary input b = ek
and Gramian Wk. Then for a given time horizon T , Wk is
a diagonal matrix.

It should be noted that the Gramian is diagonal but positive
semi-definite matrix for T < n. Also for the case T > n,
we have given only the logical pathway of the proof as the
expressions for vt are more complicated and irrelevant in our
current discourse.

Observe that from Proposition 4.2, for directed line net-
works the controllability Gramian is positive definite if and
only if node−1 is one of the input nodes else it is positive
semi-definite. Thus, directed line networks are controllable
if and only if e1 is one of the inputs. For ring networks, the
controllability Gramian is always positive definite for any
number of inputs applied at any arbitrary nodes.

We rely on Proposition 4.2 to show next that, for directed
line and ring networks, the structure of the edge centrality
matrices ΘP and Θk

P is same as that of the corresponding
adjacency matrix. By this we meant that, if A (j, i) = 0 then
ΘP (j, i) = 0 and if A (j, i) 6= 0 then ΘP (j, i) may or may
not be 0 (i.e., ΘP may have non-zero entries only at places
where the matrix A has non-zero entries).

Theorem 4.3: (Structural property of edge centrality ma-
trices for directed line and ring networks). Consider a con-
trollable n−node directed line/ring network A with dynamics

(1) and a single input bk = ek or multiple inputs. If ΘP is
as defined in (5) and P is a constant diagonal matrix, then
ΘP , Θk

P and A have the same structure.
It should be noted that in Theorem 4.3, for the directed line
network case if we use single input then it should be placed
at e1 and if we use multiple inputs then e1 should be one of
the inputs. From Theorem 4.3, it is clear that in the case of di-
rected line/ring networks, only the existing edges contribute
to the various edge centrality matrices. Thus adding a new
edge to directed line/ring networks will not cause any first-
order change in the performance metrics, and can therefore
be ruled out as a significant way of impacting the Gramian-
based controllability metrics described in Section II.

V. NUMERICAL EXAMPLES

In this section, through numerical examples we show how
the derived edge centrality matrices can be used for network
modification. In the first example we consider line and ring
networks which have a special structure and demonstrate
validity of Theorem 4.3. In the second example, we consider
a general 10−node network and exhibit usage of edge
centrality matrices for network modification for two different
Gramian-based performance metrics.

A. Analysis of Line and Ring Networks

Consider a 5−node line/ring network with its parameters
as in Figure 1. The network is a directed line network if
a15 = 0 and a directed ring network if a15 = 0.5. In both
cases, we take T = n and illustrate the result obtained in
Theorem 4.3.

1 2 3 4 5
0.2
a21

0.1
a32

0.5
a43

0.7
a54

0/0.5

a15

Fig. 1: Example of a 5−node directed line/ring network. For line
network a15 = 0 and for ring network a15 = 0.5.

1) Directed line network: The system has only one input
at node 1 i.e., b = e1. The Gramian for the system is
W = diagonal{1, 0.04, 0.0004, 0.0001, 0.00005}. As per the
Corollary 3.2, different edge centrality matrices for different
performance metrics are stated in Table I. The eigenvector
corresponding to the smallest eigenvalue is vmin = e5.

PPPPPPMt
Edge

a21 a32 a43 a54

tr (W) 0.4055 0.0011 0.0006 0.0001

log det(W) 40 60 8 2.9

−tr
(
W−1

)
329330 658160 121630 58310

λmin (W) 0.0005 0.00098 0.000196 0.00014

TABLE I: Different edge centrality matrices for directed line
network and input b = e1. Mt = Metric.

From Table I, we see that the change in tr (W) is more if
the weights of edges closer to the input are changed. Interest-



ingly, the largest change in log det(W)/tr(W−1)/λmin(W)
is caused by the change in edge weight between nodes
2 −→ 3 which is one edge away from the input.

2) Directed ring network: In case of the directed
ring network, we consider input at node 3 i.e.,
b = e3. The Gramian for the system is W =
diagonal{0.0306, 0.0012, 1, 0.25, 0.1225}. The different
edge centrality matrices for different P are stated in Table
II. The eigenvector corresponding to the smallest eigenvalue
is vmin = e2.

PPPPPPMt
Edge

a21 a32 a43 a54 a15

tr (W) 0.12 0 1.6174 0.441 0.1274

log det(W) 10 0 16 8.57 8

−tr
(
W−1

)
8163 0 3445 2449 3396

λmin (W) 0.0122 0 0.0049 0.0035 0.0049

TABLE II: Different edge centrality matrices for directed ring
network and input b = e3.

Interestingly, the edge incoming in the input node−3 has
no first order influence in the network i.e., change in the
edge 2 −→ 3 has no first-order effect on the any of the
controllability metrics.

If multiple inputs are used in the directed ring net-
work say B =

(
e2 e4

)
then the result is as tabu-

lated in Table III. The Gramian for the system is W =
diagonal{0.123, 0.005, 0.01, 1.002, 0.491}. The eigenvector
corresponding to the smallest eigenvalue is vmin = e3.

PPPPPPMt
Edge

a21 a32 a43 a54 a15

tr (W) 0.050 0.282 0.016 1.77 0.511

log det(W) 0.098 20.15 0.03 5.74 4.04

−tr
(
W−1

)
4.9 1990 1 30.5 34.5

λmin (W) 0.0005 0.201 0 0.0001 0.0002

TABLE III: Different edge centrality matrices for directed ring
network and multiple inputs B = (e2 e4).

3) Undirected line/ring networks: In case of undirected
line/ring networks, numerical experiments show that the
result of Theorem 4.3 does not hold.

B. Edge Modification in a 10−node Directed Network

Consider a 10−network with its parameters as shown in
Figure 2. The network has 4 input at nodes {4, 5, 6, 8}. The
system (A,B) is controllable. We show how the influence
matrices can be used for network modification for different
types of performance metrics.

1) In this case, we divide the input nodes as defender
input nodes {4, 5, 6} represented by Bd = (e4 e5 e6)
and attacker input node 8 represented by Ba = e8. Our
objective is to increase the influence of the defender input Bd
and decrease influence of attacker input Ba simultaneously.
We take trace of Gramian as the performance metric. So,
we have to increase fd = tr (Wd) and decrease fa =
tr (Wa). Now, initially f0d = 7.335 and f0a = 1.305. For

1

2

3

4

5

6

7

89

10 0.66

−0.52

−0.69

0.2

0.5

0.02

0.87

−0.76

0.99

−0.64

0.3

−0.36

0.74
1.24

Fig. 2: A 10−node directed network. The blue and red arrows are
the input nodes of the system

T = n, constructing Θ
{4,5,6}
I and Θ8

I . From the influence
matrix for the defender inputs, the highest edge centrality
of 3.68 is for the edge 6 −→ 2. For the attacker input
case the lowest edge centrality is of −1.69 for the edge
8 −→ 1. Both edges 6 −→ 2, 8 −→ 1 already exists in the
network and their strengthening will result in improvement
of performance. Choosing weight of 0.2 for each edge gives
the new performance metrics, fd = 8.214 and fa = 1.06
which demonstrates improvement in performance. It should
be noted that here we have computed the edge centrality
matrices for a subset of inputs.

2) In this case, we consider that the system has 4 inputs at
{4, 5, 6, 8} described by B = (e4 e5 e6 e8). The objective
is to decrease output response at node 2 due to the input at
node 6. So, f = e>2W6e2 where W6 is the controllability
Gramian for the input at node 6. For T = n, f0 = 1.162.
With P = e2e

>
2 , we construct the edge centrality matrix for

node 6. From the 6th−node influence matrix, we have the
complete edge centrality map of all the possible edges in
the network. We see that the edge 6 −→ 2 has an influence
of +1.74 and the edge 7 −→ 2 has an influence of −1.256.
Thus we have two options either we decrease weight of edge
6 −→ 2 or increase 7 −→ 2 or do both simultaneously. We
modify edges 6 −→ 2 and 7 −→ 2 simultaneously with
weight 0.2. The new performance is f = 0.643 showing an
improvement. A white noise input at node 6 is shown in
Figure 3 and the corresponding response comparison for a
time period of 50 seconds is shown in Figure 4. It should
be noted that this example shows how our proposed edge
centrality matrix captures the effects of individual inputs.
Here we may select edges different from those used above for
modification depending upon their edge centrality measures
and constraints. Thus, the edge centrality matrix for complete
or individual or subset of inputs offers a plethora of choices
for edge selection. Developing an algorithmic method for
edge modification using edge centrality matrices is part of
our future work.

VI. CONCLUSIONS

We have proposed a novel method to characterize edges
in a network using the edge centrality matrix. For a given



Fig. 3: Input at node 6.

Fig. 4: Performance comparison between original and modified
network.

performance metric, this concept provides a measure of edge
centrality measure for all possible edges in the network. With
rigorous analysis, we prove that edge centrality matrix for a
given performance metric can be derived from the gradient of
the controllability Gramian with respect to the edge weights.
The analysis also led to an edge characterization scheme
with respect to individual inputs. Next, we relate the edge
centrality matrix with energy based physically realizable
performance metrics. We also show that for special types
of networks namely the directed line and ring networks the
edge centrality matrix has the same structure as the weighted
network adjacency matrix. Finally, through numerical exam-
ples we validate the structural property of edge centrality
matrices for directed line/ring networks and demonstrate
its usage in heuristic edge modification. Future work will
study the development of an algorithmic approach to modify
edges in the network using the edge centrality matrices with
guarantees on convergence and optimality, along with the
design of distributed schemes for the computation of the
proposed centrality measures.
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