
Fast Identification of Koopman-Invariant Subspaces:
Parallel Symmetric Subspace Decomposition

Masih Haseli and Jorge Cortés

Abstract— This paper presents a parallel data-driven method
to identify finite-dimensional subspaces that are invariant under
the Koopman operator describing a dynamical system. Our
approach builds on Symmetric Subspace Decomposition (SSD),
which is a centralized scheme to find Koopman-invariant
subspaces and Koopman eigenfunctions. Given a dictionary of
functions, a collection of processors communicating through
a strongly connected time-invariant directed graph, and a set
of data snapshots gathered from the dynamical system, our
approach distributes the data snapshots among the processors
and initializes each processor with the original dictionary. Then,
at each iteration, processors prune their dictionary by using the
information received from their neighbors and applying the
SSD method on the pruned dictionary with their local data.
We prove that the algorithm terminates in a finite number
of iterations and that the processors, upon termination, reach
consensus on the maximal Koopman-invariant subspace in the
span of the dictionary (and is therefore equivalent to SSD). A
simulation example shows significant gains in time complexity
by the proposed method over SSD.

I. INTRODUCTION

Advances in data storage, processing, acquisition, and an-
alytics have driven a surge of activity in data-driven learning
and modeling of dynamical phenomena. Neural networks and
state-space models are two mainstream approaches to model
dynamical systems. With enough data, neural networks can
describe the dynamics accurately; however, they are not con-
venient tools to analyze them analytically. On the other hand,
the state-space approach can provide mathematical models
useful for analysis. Such models however are generally
nonlinear and the difficulty of their analysis grows drastically
as the dimension of the state space increases. The Koopman
operator is an alternative approach to simplify the analysis of
dynamical systems. However, its infinite-dimensional nature
prohibits the use of existing efficient numerical methods
developed to work with digital computers. One can resolve
this issue by working in finite-dimensional subspaces that
are invariant under the application of the Koopman operator.
Identifying such subspaces for real-time applications is the
problem considered here.

Literature Review: The Koopman operator [1], [2] is a
linear but generally infinite-dimensional operator that fully
characterizes the behavior of a dynamical system. As a
consequence of its linearity and considering the fact that
its eigenfunctions evolve linearly in time, the Koopman
operator is a powerful tool for analyzing nonlinear dynamical

This work was supported by ONR Award N00014-18-1-2828.
Masih Haseli and Jorge Cortés are with Department of Mechanical and

Aerospace Engineering, University of California, San Diego, CA 92093,
USA, {mhaseli,cortes}@ucsd.edu

systems [3], [4]. This leads to a wide range of applications,
including system identification [5], state estimation [6], and
control of nonlinear dynamical systems [7]–[10]. Despite
these appealing applications, the infinite-dimensional nature
of the Koopman operator has prevented its widespread
use due to the lack of computational methods to identify
and represent it. In recent years, there have been several
breakthroughs to circumvent this issue. Those approaches
generally form two main groups. The first group is comprised
of methods that approximate the action of the operator
on a finite-dimensional subspace such as Dynamic Mode
Decomposition (DMD) [11] and Extended Dynamic Mode
Decomposition (EDMD) [12]. DMD is a method that can
identify temporal evolutions using sequential data gathered
from a linear time-invariant dynamics [11]. The works [13]–
[15] generalize DMD to work with non-sequential and noisy
data. EDMD is an extension of DMD that can approxi-
mate the projection of the action of the Koopman operator
on a finite-dimensional subspace spanned by a predefined
dictionary of functions [12]. The work [16] studies the
convergence of EDMD to the Koopman operator as the
dimension of the predefined subspace and the number of
available data snapshots go to infinity. EDMD has been
extended to work with noisy data [17] and to reduce its
computational complexity using kernel methods [18]. DMD
and EDMD are able to approximate linear evolutions in the
dynamics but they are not useful for long term predictions
due to the error in the approximations. As a result, it is
imperative to develop methods that can identify subspaces
that are invariant under the Koopman operator, which is the
subject of the second group of approaches. The works [19],
[20] provide empirical methods to approximate Koopman
eigenfunctions which span Koopman-invariant subspaces.
The works [21], [22] present methods based on neural
networks to perform this task. However, it is important to
note that these methods do not provide analytical guarantees
for those subspaces to be Koopman invariant. Our recent
works [23], [24] provides necessary and sufficient conditions
for the identification of linear evolutions according to the
dynamics based on the application of EDMD forward and
backward in time. These conditions led us to propose the
Symmetric Subspace Decomposition (SSD) strategy. Under
generic assumptions, this algorithm provably finds the max-
imal Koopman-invariant subspace contained in the span of a
given dictionary. The work [24] also presents the Streaming
Symmetric Subspace Decomposition (SSSD) algorithm, an
equivalent online method to SSD that enables to work with
large and streaming data sets.



Statement of Contributions: We present a parallel data-
driven method to identify the Koopman-invariant subspaces
associated with a potentially nonlinear discrete-time dynam-
ics. Moreover, the proposed algorithm is able to identify
the functions that evolve linearly in time (also known as
Koopman eigenfunctions) according to the dynamics. The
presented approach is parallel in nature and can be imple-
mented on parallel processing hardware, ensuring fast com-
putations for real-time applications. The starting point of our
iterative strategy are a dictionary of functions, a collection
of processors communicating through a strongly connected
time-invariant directed graph, and a set comprised of data
snapshots gathered from the dynamical system. The proposed
procedure introduces a rule to distribute the available data
snapshots among the processors and uploads the original dic-
tionary to every processor. At each iteration, each processor
receives the dictionary of its neighbors and calculates the
intersection of the subspaces spanned by those dictionaries
and its own dictionary. Then the processor applies SSD on
that subspace using its local data snapshots and prunes its
dictionary using the basis of the Koopman-invariant sub-
space. We study the evolution of the processors’ dictionaries
to characterize the algorithm properties. We prove that the
algorithm terminates in a finite number of iterations, where
all processors reach consensus on the largest Koopman-
invariant subspace in the span of the original dictionary. This
establishes the equivalence of the proposed strategy with the
centralized SSD strategy. Finally, we illustrate the superior
performance of our method versus SSD using a simulation
example of a nonlinear polynomial vector field. All proofs
are omitted for space reasons and will appear elsewhere1.

II. PRELIMINARIES

In this section, we gather basic definitions on the Koopman
operator and graph theory.

Koopman Operator Theory: Our exposition here fol-
lows [4]. Let T : M → M be a time-invariant mapping
defined over M⊆ Rn. Consider the discrete-time dynamics

x+ = T (x). (1)

Note that the dynamics acts on the points of M, generating
trajectories. Instead, the Koopman operator is an alternative
description of the dynamics that acts on functions (also

1Throughout the paper, we use the following notation. We denote by N,
N0, R, and C, the sets of natural, nonnegative integer, real, and complex
numbers respectively. For a matrix A ∈ Cm×n, we denote the sets
comprised of its rows, the set comprised of its columns, the number of its
rows, and the number of its columns by rows(A), cols(A), ]rows(A), and
]cols(A) respectively. We denote its transpose and range space by AT and
R(A) respectively. Moreover, if n = m we use A−1 to denote the inverse
of A. For a1, . . . , an ∈ C, we denote by diag(a1, . . . , an), the diagonal
matrix with a1, . . . , an on the main diagonal. Given matrices A ∈ Cm×n

and B ∈ Cm×d, we denote by [A,B] ∈ Cm×(n+d) the matrix created
by concatenating A and B. Given v1, . . . , vk ∈ Cn, span{v1, . . . , vk}
represents the set comprised of all vectors in the form of c1v1+· · ·+cnvn,
with c1, . . . , cn ∈ C. Given sets A and B, A ⊆ B means that A is a subset
of B. Moreover, we denote by A∩B and A∪B, the union and intersection
of A and B. Given functions f : B → A and g : C → B, f ◦ g : C → A
denotes their composition. Given integers a, b we denote by a mod b, the
remainder of division of a by b. Given a directed graph, we denote by
Nin(i), the set comprised of the in-neighbors of node i.

known as observables). Formally, let F be a linear space
of functions defined on M and taking values in C. Let F
be closed under composition with T , i.e.,

f ◦ T ∈ F , ∀f ∈ F . (2)

The Koopman operator K : F → F associated with (1) is

K(f) = f ◦ T.

The linearity of F results in the linearity of K, i.e., for every
f1, f2 ∈ F and c1, c2 ∈ C, we have

K(c1f1 + c2f2) = c1K(f1) + c2K(f2). (3)

Despite its linearity, the Koopman operator completely cap-
tures the global characteristics of (1) if F contains the
functions describing the states of the system. Formally, given
fi(x) := xi, we must have fi ∈ F for every i ∈ {1, . . . , n}.
This condition together with (2) may force F to be infinite
dimensional.

The function φ ∈ F is an eigenfunction of K with
eigenvalue λ if

K(φ) = λφ. (4)

A notable property of the Koopman eigenfunctions is their
linear evolution in time, i.e., φ(x+) = (φ ◦ T )(x) =
K(φ)(x) = λφ(x). The linear evolution of Koopman eigen-
functions in conjunction with (3) simplifies the analysis of
the nonlinear system (1), since one can use the spectral
properties of the Koopman operator. Formally, given a set
of eigenfunctions {φi}Nk

i=1 with corresponding eigenvalues
{λi}Nk

i=1, consider a function f in span({φi}Nk
i=1), i.e.,

f =

Nk∑
i=1

ciφi, (5)

for some {ci}Nk
i=1 ⊂ C. Then,

f(x(k)) =

Nk∑
i=1

ciλ
k
i φi(x(0)), ∀k ∈ N. (6)

The elements {ci}Nk
i=1 are called Koopman modes associated

with f and {φi}Nk
i=1. Since the Koopman operator is generally

infinite dimensional, one might need to use Nk =∞ in order
to fully describe the action of the operator.

The subspace S ⊆ F is Koopman-invariant under the
application of the Koopman operator if for every f ∈ S ,
we have K(f) ∈ S . Moreover, S is the maximal Koopman-
invariant subspace of L ⊆ F if it contains all the invariant
subspaces in L. Trivially, a set of eigenfunctions spans a
Koopman-invariant subspace.

Graph Theory: We follow the exposition in [25, Chapter
1]. The pair G = (V,E) is a directed graph of order m,
where V is a set comprised of m nodes and E ⊆ V ×V is a
set comprised of ordered pairs of nodes called edges. Given
an edge from node i to node j, (i, j) ∈ E, we say that i is an
in-neighbor of j and j is an out-neighbor of i. A path in the
graph G with length p is a sequence of p+1 nodes such that
the ordered pair comprised of every two consecutive nodes



is an edge of the graph. We say a path is closed if it starts
and finishes with the same node. A node in a direct graph
is called globally reachable if there exists a path from every
other node to it. A directed graph is strongly connected if
every node is globally reachable.

III. PROBLEM STATEMENT

Our objective is to develop fast data-driven methods
to identify finite-dimensional Koopman invariant subspaces
associated with a dynamical system. To achieve this goal, we
seek to take advantage of parallel computation to ensure a
high computational efficiency and compatibility with embed-
ded systems hardware such as graphics processing units. In
this section we describe in detail the elements of the problem
setup leading to the problem statement.

We start by specifying the data collected from the un-
known dynamical system (1). Consider N data snapshots

yi = T (xi), ∀i ∈ {1, . . . , N}

are available. These data form matrices X,Y ∈ RN×n,
where xTi and yTi are ith rows of X and Y , respectively.
Consistent with the Koopman approach, the second ingredi-
ent of the problem setup is a dictionary D :M→ R1×Nd ,

D(x) = [d1(x), . . . , dNd
(x)],

of Nd functions d1, . . . , dNd
defined from M to R.

Note that every dictionary D̃ whose functions belong to
span{d1, . . . , dNd

} can be completely characterized by a
matrix C with Nd rows and D as D̃(x) = D(x)C. The
effect of dictionary D on data matrices is

D(X) = [D(x1)T , . . . , D(xN )T ]T .

Throughout the paper, we consider the following assumption.
Assumption III.1: (Full Column Rank Dictionary Matri-

ces): The matrices D(X) and D(Y ) have full column rank.
�

This assumption requires the functions of the dictionary to
be linearly independent. Also, it requires the data snapshots
to be diverse enough to encapsulate the behavior of the
dynamics.

The final ingredient of the problem setup is a group of M
processors (agents) communicating according to a strongly
connected time-invariant directed graph G. The dictionary
snapshots are distributed among the agents

D(Xi), D(Yi), i ∈ {1, . . . ,M},

such that
M⋃
i=1

rows([D(Xi), D(Yi)]) = rows([D(X), D(Y )]).

Moreover, the agents share full rank signature data matrices
D(Xs) and D(Ys) such that for every i ∈ {1, . . . ,M}

rows([D(Xs), D(Ys)]) ⊆ rows([D(Xi), D(Yi)]).

Such partitioning can be done in a number of alternative
ways (e.g., by uploading the signature data snapshots to

agents and evenly dividing the rest of the data among the
processors). We are finally ready to formulate the problem
statement.

Problem Statement: Given the dictionary D =
[d1, . . . , dNd

], the data snapshots X,Y ∈ RN×n, and
the group of M processors, we seek to design a provably
correct parallel algorithm to ensure that the processors
find a dictionary D̃ ⊂ span{d1, . . . , dNd

} spanning
the largest Koopman-invariant subspace contained in
span{d1, . . . , dNd

}. The processors can only use local data
and rely on communication with neighbors to achieve this
objective.

Throughout the paper, we rely on data-driven methods
that are not specifically designed to work with noisy data.
Consequently, one might need to preprocess the data before
using the proposed algorithms.

IV. BACKGROUND: SYMMETRIC SUBSPACE
DECOMPOSITION

Here, we review [23], [24] a centralized algorithmic solu-
tion to identify the maximal Koopman-invariant subspace in
the span of a dictionary. The algorithm, termed Symmetric
Subspace Decomposition (SSD), will be useful in devising
a solution for the problem stated in Section III.

Algorithm 1 Symmetric Subspace Decomposition [23, Al-
gorithm 1]

1: Initialization
2: i← 1, A1 ← D(X), B1 ← D(Y ), CSSD ← INd

3: while 1 do

4:

[
ZA
i

ZB
i

]
← null([Ai, Bi]) . Basis for the null space

5: if null([Ai, Bi]) = ∅ then
6: return 0 . The basis does not exist
7: break
8: end if
9: nAi ← number of rows of ZA

i

10: mA
i ← number of columns of ZA

i

11: if nAi ≤ mA
i then

12: return CSSD . The procedure is complete
13: break
14: end if
15: CSSD ← CSSDZ

A
i . Reducing the subspace

16: Ai+1 ← AiZ
A
i , Bi+1 ← BiZ

A
i , i← i+ 1

17: end while

For convenience, we define the action of the SSD algo-
rithm on matrices D(X), D(Y ) by

CSSD = SSD(D(X), D(Y )). (7)

The output of the SSD algorithm has the following property.
Theorem IV.1: (Symmetric Subspace Decomposition [23,

Theorem V.4]): Given Assumption III.1, the SSD algorithm
has the following properties:

(a) The matrix CSSD is either 0 or has full column rank
and satisfies R(D(X)CSSD) = R(D(Y )CSSD);



(b) The subspace R(D(X)CSSD) is maximal, in the
sense that, for any matrix E with R(D(X)E) =
R(D(Y )E), we have R(D(X)E) ⊆ R(D(X)CSSD)
and R(E) ⊆ R(CSSD).

If CSSD 6= 0, one can define a new dictionary as

D̃(x) = D(x)CSSD, ∀x ∈M. (8)

According to Theorem IV.1(a) and Assumption III.1, there
exists a nonsingular square matrix K that satisfies

D̃(Y ) = D̃(X)K. (9)

The eigendecomposition of K fully characterizes the func-
tions in the span of D̃(x) that evolve linearly in time, i.e.,
given λ ∈ C and w ∈ CÑd \ {0} with Kw = λw, we have

D̃(Y )w = λD̃(X)w. (10)

Hence, the function φ(x) := D̃(x)w satisfies φ(T (x)) =
λφ(x) for every x ∈ rows(X). It is important to note that,
φ(x) is not necessarily an eigenfunction of the Koopman
operator since we only know that it evolves linearly on
rows(X), not M (we refer the reader to [24] regarding
necessary and almost sure sufficient conditions for φ to be a
Koopman eigenfunction).

The next result shows that (10) and the eigendecomposi-
tion of K can also fully characterize the linear evolutions in
the original dictionary matrices D(X) and D(Y ).

Theorem IV.2: (Identification of Linear Evolutions using
the SSD Algorithm [23, Theorem V.5]): Under Assump-
tion III.1, let D̃ :M→ R1×Ñd be the dictionary defined by
D̃(x) = D(x)CSSD, x ∈ M. Then D̃(Y )w = λD̃(X)w for
some λ ∈ C and w ∈ CÑd if and only if there exists v ∈ CNd

such that D(Y )v = λD(X)v. In addition v = CSSDw.

V. PARALLEL SYMMETRIC SUBSPACE DECOMPOSITION

The SSD algorithm does not solve the problem stated
in Section III because it is centralized. Here, we propose
the Parallel Symmetric Subspace Decomposition (P-SSD)
strategy which can be executed over a group of processors
that use local data and communication. We analyze the
properties of the P-SSD algorithm, showing that it achieves
the same solution as SSD while running more efficiently.

A. The P-SSD algorithm

We provide pseudocode for the steps of the P-SSD
algorithm in Algorithm 2. Here we describe the various
steps. Given M processors communicating according to a
time-invariant strongly connected direct graph and given
the dictionary snapshots D(X), D(Y ), the P-SSD algorithm
first forms the signature snapshot matrices D(Xs), D(Ys)
with full column rank from D(X), D(Y ) and uploads
them to every processor (one always can find a set of
signature data snapshots with the size at most 2Nd based
on Assumption III.1). Then, the rest of the available data
snapshots are distributed to the processors. This can be
done in a number of ways taking into account the impact
on the algorithm execution. For instance, in the case of
homogeneous processors, one could distribute the data as

evenly as possible to minimize the maximum number of
data snapshots available to processors and, consequently,
the time that takes for agents to complete one iteration
of their procedure. After distributing the data snapshots
among the processors, each agent runs the procedure in
Steps 4-18 of Algorithm 2. In that procedure, each agent
receives the dictionary of its neighbors, and uses the SSD
algorithm to find the largest Koopman invariant subspace in
the intersection of the subspaces spanned by its dictionary
and its neighbor’s dictionaries. Finally, the agent updates its
dictionary by a basis for the computed subspace and transmit
that basis to its neighbors. The function basis(S) returns a
full column rank matrix whose columns provide a basis for
S. If S only contains the zero vector, then basis(S) returns
0 (we define ]cols(0) := 0).

Algorithm 2 Parallel Symmetric Subspace Decomposition

Initialization
1: Create full column rank signature snapshots:
D(Xs), D(Ys)

2: Distribute the rest of data among agents and form:
D(Xi), D(Yi),∀i ∈ {1, . . . ,M}

3: Upload the signature snapshots to the agents:
D(Xi)← [D(Xs)

T , D(Xi)
T ]T

D(Yi)← [D(Ys)
T , D(Yi)

T ]T

End Initialization
Procedure for agent i:

4: k ← 0, Ci
0 ← INd

, flagi
0 ← 0

5: while 1 do
6: k ← k + 1
7: flagi

k ← 0
8: Receive Cj

k−1, ∀j ∈ Nin(i)

9: Di
k ← basis

(⋂
j∈{i}∪Nin(i)

R(Cj
k−1)

)
10: Ei

k ← SSD(D(Xi)D
i
k, D(Yi)D

i
k)

11: if ]cols(Di
kE

i
k) < ]cols(Ci

k−1) then
12: Ci

k ← Di
kE

i
k . The subspace gets smaller.

13: else
14: Ci

k ← Ci
k−1 . The subspace does not change.

15: flagi
k ← 1

16: end if
17: Transmit Ci

k to out-neighbors
18: end while

B. Convergence of P-SSD and Equivalence with SSD

Here, we characterize the properties of the P-SSD algo-
rithm. Since the algorithm runs in parallel, it is imperative
to introduce a way to detect if the algorithm has reached
an equilibrium, meaning that the agents do not change their
outputs anymore. The next result shows that the flag variables
take care of this task.

Proposition V.1: (Equilibrium and Flags): In the P-SSD
algorithm, flagi

l = 1 for some l ∈ N and for every i ∈
{1, . . . ,M} if and only if Ci

k = Ci
l and flagi

k = 1 for every
i ∈ {1, . . . ,M} and every k ≥ l.



The next result shows the monotonicity of the matrix of
each agent with respect to the matrices maintained by its
in-neighbors in the previous iteration.

Lemma V.2: (Subspace Monotonicity of Agents’ Matri-
ces): In the P-SSD algorithm, for each iteration k ∈ N,
every i ∈ {1, . . . ,M} and every j ∈ {i} ∪ Nin(i), we have
R(Ci

k) ⊆ R(Cj
k−1).

The following result shows that the algorithm reaches an
equilibrium in a finite number of iterations where all agents
agree on the same range space.

Theorem V.3: (Reaching Consensus Equilibrium after fi-
nite iterations): For a strongly connected graph and under
Assumption III.1, the P-SSD algorithm reaches a consensus
equilibrium after a finite number of iterations, i.e., there
exists l ∈ N such that, for all k ≥ l, flagi

k = 1,∀i ∈
{1, . . . ,M} and R(C1

k) = R(C2
k) = · · · = R(CM

k ).
Theorem V.3 in combination with Proposition V.1 show

that the agents reach an equilibrium consensus after finite
iterations, i.e., the range space, on which the agents agree
on, stays the same along time.

Next, we show that the range space on which agents agree
under P-SSD is the same as the one found by SSD, thereby
establishing the equivalence between both algorithms.

Theorem V.4: (Equivalence of P-SSD and SSD): Let
CSSD = SSD(D(X), D(Y )). For a strongly connected graph
and under Assumption III.1, let l be the iteration at which
the P-SSD algorithm reaches consensus. Then, for all k ≥ l
and all i ∈ {1, . . . ,M}, we have R(Ci

k) = R(CSSD) and
R(D(X)Ci

k) = R(D(Y )Ci
k).

After reaching the consensus at iteration l, one can use
the matrices Ci

l , i ∈ {1, . . . ,M} instead of CSSD in (8)
to form the new dictionary that satisfies (9) for some K.
The eigendecomposition of K fully characterizes the linear
evolutions in D(X) and D(Y ) according to Theorem IV.2.

VI. SIMULATION RESULTS

Here, we illustrate the effectiveness of the P-SSD algo-
rithm and compare it against the SSD algorithm. Let

x+1 = 0.8x1 (11a)

x+2 = 0.5x2 + 0.7x21 + 0.1, (11b)

with x = [x1, x2]T . This system is actually a discrete-
time Polyflow [26] and has a Koopman-invariant subspace
comprised of polynomial functions. We use the dictionary
D(x) = [1, x1, x2, x

2
1, x1x2, x

2
2, x

3
1, x

2
1x2, x1x

2
2, x

3
2] with

Nd = 10. We use N = 5×105 data points randomly selected
from [−2, 2]× [−2, 2]. We use the first 10 data snapshots in
our data set to form the signature dictionary snapshots.

To identify the maximal Koopman-invariant subspace in
the span of D associated with system (11), we use the
SSD and P-SSD strategies with M ∈ {5, 10, 100} agents
communicating according to a directed ring graph. The
implementation of P-SSD is done on a single computer in
MATLAB R©. We calculate the time taken to complete an
iteration as the maximum time taken among all agents to
complete the iteration. Moreover, we use the tic and toc
commands to calculate the elapsed time for each agent.

For all M ∈ {5, 10, 100} the P-SSD algorithm reaches
the consensus equilibrium after two iterations. More-
over, both SSD and P-SSD methods find the maxi-
mal 6-dimensional Koopman-invariant subspace spanned by
{1, x1, x2, x21, x1x2, x31}. Using the output matrix of any
agent instead of CSSD in (8), one can define the new
dictionary D̃(x). Now, by finding the matrix K using (9) and
calculating its eigendecomposition, one can find the eigen-
functions associated with system (11) and verify analytically
that they are evolving linearly in time. Table I shows the
eigenfunctions and their corresponding eigenvalues. Since
x1, x2 ∈ span(D̃(x)), the eigenfunctions completely de-
scribe the evolution of system (11) in a linear manner, i.e.,
one can use (6) to predict the behavior of functions in form
of (5) or one simply can create the linear dynamical system

φ(x+) = Λφ(x),∀x ∈ R2,

with φ(x) = [φ1(x), . . . , φ6(x)]T and Λ = diag(λ1, . . . , λ6)
to describe the behavior of (11).

TABLE I: Identified eigenfunctions and eigenvalues of the
Koopman operator associated with system (11).

Eigenfunction Eigenvalue

φ1(x) = 1 λ1 = 1

φ2(x) = x1 λ2 = 0.8

φ3(x) = x21 λ3 = 0.64

φ4(x) = 25x21 − 5x2 + 1 λ4 = 0.5

φ5(x) = x31 λ5 = 0.512

φ6(x) = 25x31 − 5x1x2 + x1 λ6 = 0.4

Figure 1 illustrates the time taken by the P-SSD and SSD
strategies. The P-SSD algorithm for M = 5, M = 10, and
M = 100, is 78%, 90%, and 98% faster, respectively, than
the SSD algorithm.

SSD P-SSD (M=5) P-SSD (M=10) P-SSD (M=100)
0

20

40

60

80

100

120

140

ti
m

e
 (

m
s)

Fig. 1: Elapsed time to identify the maximal Koopman-
invariant subspace in the span of the dictionary D for
system (11).

To show the superiority of our method to the existing
algorithms, we compare the prediction error of P-SSD with
the prediction error associated with EDMD [12] on the orig-
inal dictionary. The EDMD prediction matrix is defined as
KEDMD = argminK ‖D(Y )−D(X)K‖2F = D(X)†D(Y ).



Given the initial state x0, we define the following relative
and angle prediction error at time step k ∈ N0 to compare
the accuracy P-SSD and EDMD in long term prediction.

EEDMD
relative(k) =

∥∥D(x(k))−D(x(0))
(
KEDMD

)k∥∥
2

‖D(x(k))‖2
× 100,

EP-SSD
relative(k) =

∥∥D̃(x(k))− D̃(x(0))
(
K
)k∥∥

2

‖D̃(x(k))‖2
× 100,

EEDMD
angle (k) = ∠

(
D(x(k)), D(x(0))

(
KEDMD

)k)
,

EP-SSD
angle (k) = ∠

(
D̃(x(k)), D̃(x(0))

(
K
)k)

.

Figure 2 shows the effectiveness of P-SSD compared to
EDMD in accurate multi-step prediction of the trajectories
starting from a random initial condition. This superiority is
a direct consequence of P-SSD identifying and operating on
a Koopman-invariant subspace.

0 5 10 15 20

time step

0

200

400

600

800

1000

re
la

ti
v

e 
er

ro
r 

(%
)

E
relative

P-SSD

E
relative

EDMD

0 5 10 15 20

time step

0

0.5

1

1.5

an
g

le
 (

ra
d

)

E
angle

P-SSD

E
angle

EDMD

Fig. 2: Relative (left) and angle (right) prediction errors for
EDMD and SSD for system (11) on a trajectory of length
L = 20.

VII. CONCLUSIONS

We have presented a parallel algorithm to identify from
data, the functions that evolve linearly in time according
to unknown nonlinear dynamics. We have shown that the
proposed strategy, termed P-SSD, is equivalent to the SSD
algorithm, which is a centralized method that identifies
the maximal Koopman-invariant subspace in the span of a
predefined dictionary. However, the P-SSD strategy can be
implemented on parallel computing hardware and, as we
have observed in simulations, is much faster than SSD. For
future work, we plan on characterizing analytically the time
and computational complexity of the proposed algorithm and
on extending it to work with streaming data sets. In addition,
we plan on analyzing its robustness against addition and
deletion of nodes in the graph and packet losses due to
imperfect communication between the processors.

REFERENCES

[1] B. O. Koopman, “Hamiltonian systems and transformation in Hilbert
space,” Proceedings of the National Academy of Sciences, vol. 17,
no. 5, pp. 315–318, 1931.

[2] B. O. Koopman and J. V. Neumann, “Dynamical systems of continuous
spectra,” Proceedings of the National Academy of Sciences, vol. 18,
no. 3, pp. 255–263, 1932.

[3] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson,
“Spectral analysis of nonlinear flows,” Journal of Fluid Mechanics,
vol. 641, pp. 115–127, 2009.

[4] M. Budišić, R. Mohr, and I. Mezić, “Applied Koopmanism,” Chaos,
vol. 22, no. 4, p. 047510, 2012.

[5] A. Mauroy and J. Goncalves, “Linear identification of nonlinear
systems: A lifting technique based on the Koopman operator,” in IEEE
Conf. on Decision and Control, Las Vegas, NV, Dec. 2016, pp. 6500–
6505.

[6] A. Surana, M. O. Williams, M. Morari, and A. Banaszuk, “Koopman
operator framework for constrained state estimation,” in IEEE Conf.
on Decision and Control, Melbourne, Australia, 2017, pp. 94–101.

[7] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical
systems: Koopman operator meets model predictive control,” Auto-
matica, vol. 93, pp. 149–160, 2018.

[8] S. Peitz and S. Klus, “Koopman operator-based model reduction for
switched-system control of PDEs,” Automatica, vol. 106, pp. 184–191,
2019.

[9] B. Huang, X. Ma, and U. Vaidya, “Feedback stabilization using
Koopman operator,” in IEEE Conf. on Decision and Control, Miami
Beach, FL, Dec. 2018, pp. 6434–6439.

[10] H. Arbabi, M. Korda, and I. Mezic, “A data-driven Koopman model
predictive control framework for nonlinear flows,” arXiv preprint
arXiv:1804.05291, 2018.

[11] P. J. Schmid, “Dynamic mode decomposition of numerical and exper-
imental data,” Journal of Fluid Mechanics, vol. 656, pp. 5–28, 2010.

[12] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data-driven
approximation of the Koopman operator: Extending dynamic mode
decomposition,” Journal of Nonlinear Science, vol. 25, no. 6, pp.
1307–1346, 2015.

[13] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and J. N.
Kutz, “On dynamic mode decomposition: theory and applications,”
Journal of Computational Dynamics, vol. 1, no. 2, pp. 391–421, 2014.

[14] S. T. M. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley,
“Characterizing and correcting for the effect of sensor noise in the
dynamic mode decomposition,” Experiments in Fluids, vol. 57, no. 3,
p. 42, 2016.

[15] M. S. Hemati, C. W. Rowley, E. A. Deem, and L. N. Cattafesta,
“De-biasing the dynamic mode decomposition for applied Koopman
spectral analysis of noisy datasets,” Theoretical and Computational
Fluid Dynamics, vol. 31, no. 4, pp. 349–368, 2017.

[16] M. Korda and I. Mezić, “On convergence of extended dynamic
mode decomposition to the Koopman operator,” Journal of Nonlinear
Science, vol. 28, no. 2, pp. 687–710, 2018.

[17] M. Haseli and J. Cortés, “Approximating the Koopman operator using
noisy data: noise-resilient extended dynamic mode decomposition,” in
American Control Conference, Philadelphia, PA, July 2019, pp. 5499–
5504.

[18] M. O. Williams, C. W. Rowley, and I. G. Kevrekidis, “A kernel-
based method for data-driven Koopman spectral analysis,” Journal of
Computational Dynamics, vol. 2, no. 2, pp. 247–265, 2015.

[19] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Data-driven dis-
covery of Koopman eigenfunctions for control,” arXiv preprint
arXiv:1707.01146, 2017.

[20] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koop-
man invariant subspaces and finite linear representations of nonlinear
dynamical systems for control,” PLOS One, vol. 11, no. 2, pp. 1–19,
2016.

[21] N. Takeishi, Y. Kawahara, and T. Yairi, “Learning Koopman invariant
subspaces for dynamic mode decomposition,” in Conference on Neural
Information Processing Systems, 2017, pp. 1130–1140.

[22] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis, “Extended
dynamic mode decomposition with dictionary learning: A data-driven
adaptive spectral decomposition of the Koopman operator,” Chaos,
vol. 27, no. 10, p. 103111, 2017.

[23] M. Haseli and J. Cortés, “Efficient identification of linear evolutions in
nonlinear vector fields: Koopman invariant subspaces,” in IEEE Conf.
on Decision and Control, Nice, France, Dec. 2019, pp. 1746–1751.

[24] ——, “Learning Koopman eigenfunctions and invariant subspaces
from data: symmetric subspace decomposition,” IEEE Trans-
actions on Automatic Control, 2020, submitted. Available at
https://arxiv.org/abs/1909.01419.

[25] F. Bullo, J. Cortés, and S. Martinez, Distributed Control of Robotic
Networks, ser. Applied Mathematics Series. Princeton University
Press, 2009.

[26] R. M. Jungers and P. Tabuada, “Non-local linearization of nonlinear
differential equations via polyflows,” in American Control Conference,
Philadelphia, PA, 2019, pp. 1906–1911.


