
1

Learning Koopman Eigenfunctions and Invariant
Subspaces from Data: Symmetric Subspace

Decomposition
Masih Haseli and Jorge Cortés

Abstract—This paper develops data-driven methods to iden-
tify eigenfunctions of the Koopman operator associated to a
dynamical system and subspaces that are invariant under the
operator. We build on Extended Dynamic Mode Decomposition
(EDMD), a data-driven method that finds a finite-dimensional
approximation of the Koopman operator on the span of a
predefined dictionary of functions. We propose a necessary and
sufficient condition to identify Koopman eigenfunctions based
on the application of EDMD forward and backward in time.
Moreover, we propose the Symmetric Subspace Decomposition
(SSD) algorithm, an iterative method which provably identifies
the maximal Koopman-invariant subspace and the Koopman
eigenfunctions in the span of the dictionary. We also introduce
the Streaming Symmetric Subspace Decomposition (SSSD) algo-
rithm, an online extension of SSD that only requires a small,
fixed memory and incorporates new data as is received. Finally,
we propose an extension of SSD that approximates Koopman
eigenfunctions and invariant subspaces when the dictionary does
not contain sufficient informative eigenfunctions.

I. INTRODUCTION

Driven by advances in processing, data storage, cloud ser-
vices, and algorithms, the world has witnessed in recent years
a revolution in data-driven learning, analysis, and control of
dynamical phenomena. State-space, probabilistic, and neural
network models are among the most popular methods to
model dynamical systems. With sufficient a priori information
about the dynamics, state-space methods can provide closed-
form analytic models that describe accurately the dynamical
behavior. Such models, however, are generally nonlinear and
their analytical study becomes arduous for moderate to high-
dimensional systems. Probabilistic approaches, on the other
hand, provide an alternative description that is conductive to
dealing with incomplete information about the underlying dy-
namics. However, under such approaches, deriving mathemati-
cal guarantees may be hard, if not impossible. Neural networks
can describe the dynamics with high accuracy given enough
data. The models acquired by neural networks are highly non-
linear and difficult to study analytically. Hence, even though
they can be successful in predicting the behavior of the system,
they often do not provide a deeper understanding into their
dynamics. These reasons have motivated researchers to seek
alternative strategies to capture the dynamics using data with

This work was supported by ONR Award N00014-18-1-2828.
A preliminary version of this work appeared as [1] at the IEEE Conference

on Decision and Control.
Masih Haseli and Jorge Cortés are with Department of Mechanical and

Aerospace Engineering, University of California, San Diego, CA 92093, USA,
{mhaseli,cortes}@ucsd.edu

minimum a priori information in a computationally efficient
way that result in simple yet accurate models. Approximating
the Koopman operator associated with a dynamical system is
one of such strategies. The Koopman operator is a linear but
generally infinite-dimensional operator that fully describes the
behavior of the underlying dynamical system. Even though the
linearity of the Koopman operator makes its spectral properties
a powerful tool for analysis, its infinite-dimensional nature
prevents the use of conventional linear algebraic tools devel-
oped to work with digital computers. One way to circumvent
this issue is to identify finite-dimensional subspaces that are
invariant under the Koopman operator. This paper develops
data-driven methods to identify such subspaces.

Literature Review: The Koopman operator [2], [3] is a
linear but generally infinite-dimensional operator that provides
an alternative view of dynamical systems by describing the
effect of the dynamics on a functional space. Being a linear
operator enables one to use its spectral properties to capture
and predict the behavior of nonlinear dynamical systems [4]–
[6]. This leads to a wide variety of applications including
state estimation [7], [8], system identification [9]–[11], sensor
and actuator placement [12], model reduction [13], [14],
control [15]–[21], and robotics [22], [23]. Moreover, the
eigenfunctions of the Koopman operator play an important
role in stability analysis of nonlinear systems [24]. Due to
the infinite-dimensional nature of the Koopman operator, the
digital implementation of the aforementioned applications is
not possible unless one can find a way to represent the
effect of the operator on finite-dimensional subspaces. The
literature has explored several data-driven methods to find
such finite-dimensional approximations, which can be divided
into two main categories: projection methods and invariant-
subspace methods. Projection methods fit a linear model to
the data acquired from the system. The most popular approach
in this category is Dynamic Mode Decomposition (DMD),
first proposed to capture dynamical information from fluid
flows [25]. DMD uses linear algebraic methods to form a
linear model from time series data. The work [26] explores
the properties of DMD and its connection with the Koopman
operator, and [27] generalizes it to work with non-sequential
data snapshots. Several extensions perform online computa-
tions to work with streaming datasets [28]–[30], account for
the effect of measurement noise on data [31], [32], promote
sparsity [33], and consider time-lagged data snapshots [34].
Extended Dynamic Mode Decomposition (EDMD) [35] is an
important variations of DMD that lifts the states of the system

2

to a (generally higher-dimensional) functional space using a
predefined dictionary of functions and finds the projection of
the Koopman operator on that subspace. The work [36] studies
the convergence properties of EDMD to the Koopman operator
as the number of data snapshots and dictionary elements go
to infinity. EDMD is specifically designed to work with exact
data and experiments and simulations show that it may not
work well with noisy data. Our previous work [37] presented
a noise-resilient extension of EDMD able to work with data
corrupted with measurement noise. The basic lifting idea of
EDMD can also be combined with known information about
the dynamics to increase the accuracy of the model [38]. The
aforementioned methods provide linear higher-dimensional
approximations for the underlying dynamics that are, however,
not suitable for long term predictions, since they are generally
not exact. This issue can be tackled by finding subspaces that
are invariant under the Koopman operator, since the acquired
linear models are exact over them. This is the subject of the
second group of approaches. The works [39]–[42] provide
approaches to find functions that span Koopman-invariant
subspaces using neural networks. Moreover, since Koopman
eigenfunctions span Koopman-invariant subspaces, one can
use the empirical methods provided in [19], [43] to approxi-
mate the Koopman eigenfunctions and consequently the invari-
ant subspaces. Moreover, the work in [44] provides theoretical
and empirical results based on multi-step predictions to find
Koopman eigenfunctions. Interestingly, note that none of the
aforementioned methods provide mathematical guarantees for
the identified functions to be Koopman eigenfunctions.

Statement of Contributions: We present data-driven methods
to identify Koopman eigenfunctions and Koopman-invariant
subspaces associated with a potentially nonlinear dynami-
cal system. First, we study the properties of the standard
EDMD method regarding the identification of Koopman eigen-
functions. We prove that EDMD correctly identifies all the
Koopman eigenfunctions in the span of the predefined dic-
tionary. This necessary condition however is not sufficient,
i.e., the functions identified by the EDMD method are not
necessarily Koopman eigenfunctions. This motivates our next
contribution, which is a necessary and sufficient condition that
characterizes the functions that evolve linearly according to
the available data snapshots. This condition is based on the
application of EDMD forward and backward in time. The
identified functions are not necessarily Koopman eigenfunc-
tions, since one can only guarantee that they evolve linearly
on the available data (but not necessarily starting anywhere
in the state space). However, we prove that under reasonable
assumptions on the density of the sampling, the identified
functions are Koopman eigenfunctions almost surely. Our next
contribution seeks to provide computationally efficient ways of
identifying Koopman eigenfunctions and Koopman-invariant
subspaces. In fact, checking the aforementioned necessary and
sufficient condition requires one to calculate and compare the
eigendecomposition of two potentially large matrices, which
can be computationally cumbersome. Moreover, even though
the subspace spanned by all the eigenfunctions in the span
of the original dictionary is Koopman-invariant, it might not
be maximal. To address these limitations, we propose the

Symmetric Subspace Decomposition (SSD) strategy, which
is an iterative method to find the maximal subspace that
remains invariant under the application of dynamics (and its
associated Koopman operator) according to the available data.
We prove that SSD also finds all the functions that evolve
linearly in time according to the available data. Moreover,
we prove that under the same conditions in the sampling
density, the SSD strategy identifies the maximal Koopman-
invariant subspace in the span of the original dictionary almost
surely. Our next contribution is motivated by applications
where the data becomes available in an online fashion. In
such scenarios, at any given time step, one would need to
perform SSD on all the available data received up to that time.
Performing SSD requires the calculation of several singular
value decompositions for matrices that scale with the size of
the data, in turn requiring significant memory capabilities.
To address these shortcomings, we propose the Streaming
Symmetric Subspace Decomposition (SSSD) strategy, which
refines the calculated Koopman-invariant subspaces each time
it receives new data and deals with matrices of fixed and
relatively small size (independent of the size of the data).
We prove that SSSD and SSD methods are equivalent, in the
sense that for a given dataset, they both identify the same
maximal Koopman-invariant subspace. Our last contribution
is motivated by the fact that, in some cases the predefined
dictionary does not contain sufficient eigenfunctions to capture
important information from the dynamics. To address this
issue, we provide an extension of SSD, termed Approximated-
SSD, enabling us to approximate Koopman eigenfunctions
and invariant subspaces. We show how the accuracy of the
approximation can be tuned using a design parameter.

II. PRELIMINARIES

In this section1, we review basic concepts on the Koopman
operator and Extended Dynamic Mode Decomposition.

A. Koopman Operator
Here, we introduce the (discrete-time) Koopman operator

and its spectral properties following [6]. Consider a nonlinear,

1We denote by N, N0, R, R≥0, and C, the sets of natural, nonnegative
integer, real, positive real, and complex numbers respectively. For a matrix
A ∈ Cm×n, we denote the sets comprised of its rows by rows(A), its
columns by cols(A), the number of its rows by]rows(A), and the number
of its columns by]cols(A), respectively. In addition, we denote its pseudo-
inverse, transpose, complex conjugate, conjugate transpose, Frobenius norm,
and range space by A†, AT , Ā, AH , ‖A‖F , andR(A), respectively. For 1 ≤
i < k ≤ m, we denote by Ai:k the matrix formed with the ith to kth rows of
A. Moreover, Ai,j denotes the ijth element of A. For a square nonsingular
matrix B, we denote its inverse by B−1. Given matrices A ∈ Cm×n and
B ∈ Cm×d, we denote by [A,B] ∈ Cm×(n+d) the matrix created by
concatenating A and B. The angle between vectors v, w ∈ Rn is ∠(v, w).
Given v1, . . . , vk ∈ Cn, span{v1, . . . , vk} represents the set comprised of
all linear combinations c1v1 + · · · + cnvn, with c1, . . . , cn ∈ C. We use
j to denote the imaginary unit (the solution of x2 + 1 = 0). For v ∈ Cn,
we denote its real and imaginary parts by Re(v) and Im(v), and its 2-norm
as ‖v‖2 :=

√
vHv. Given a set A, we denote its complement by Ac. Given

sets A and B, A ⊆ B means that A is a subset of B. We denote by A ∩B
and A∪B the intersection and union of A and B, and set A\B := A∩Bc.
Given a sequence of sets {Ai}∞i=1, we denote its superior and inferior limits
by lim supi→∞ Ai and lim infi→∞ Ai, respectively. We refer to the set
consisting of all continuous strictly increasing functions α : R≥0 → R≥0

with α(0) = 0 by class-K. Given f : B → A and g : C → B, f◦g : C → A
denotes their composition.

3

time-invariant, continuous map T : M → M on M ⊆ Rn,
defining the dynamical system

x+ = T (x). (1)

The dynamics (1) acts on the points in the state spaceM and
generates trajectories of the system. The Koopman operator, on
the other hand, provides an alternative approach to analyze (1)
based on evolution of functions (also known as observables)
defined on M and taking values in C. Formally, let F be a
linear space of functions from M to C which is closed under
composition with T , i.e.,

f ◦ T ∈ F , ∀f ∈ F . (2)

The Koopman operator K : F → F associated with (1) is

K(f) = f ◦ T.

A closer look at the definition of the Koopman operator shows
that it advances the observables in time, i.e., for g = K(f) then

g(x) = f ◦ T (x) = f(x+), ∀x ∈M. (3)

This equation shows how the Koopman operator encodes the
dynamics on the functional space F . The operator is linear as a
direct consequence of linearity in F , i.e., for every f1, f2 ∈ F
and c1, c2 ∈ C,

K(c1f1 + c2f2) = c1K(f1) + c2K(f2). (4)

Assuming F contains the functions describing the states of
the system, gi(x) = xi with i ∈ {1, . . . , n}, the Koopman
operator fully characterizes the global features of the dynamics
in a linear fashion. Moreover, the operator might be (and
generally is) infinite dimensional either by choice of F or
due to closedness requirement in (2).

Being linear, one can naturally define its eigendecomposi-
tion. A function φ ∈ F is an eigenfunction of K associated
with eigenvalue λ ∈ C if

K(φ) = λφ. (5)

The combination of (3) and (5) leads to a significant property
of the Koopman operator: the linear evolution of its eigen-
functions in time. Formally, given an eigenfunction φ,

φ(x+) = (φ ◦ T)(x) = K(φ)(x) = λφ(x). (6)

The linear evolution of eigenfunctions, together with linear-
ity (4), enables us to use spectral properties to analyze the
nonlinear system (1). Given a set of eigenpairs {(λi, φi)}Nk

i=1

such that K(φi) = λiφi, i ∈ {1, . . . , Nk}, one can describe
the evolution of every function f in span({φi}Nk

i=1), i.e.,
f =

∑Nk

i=1 ciφi, for some {ci}Nk
i=1 ⊂ C, as

f(x(k)) =

Nk∑
i=1

ciλ
k
i φi(x(0)), ∀k ∈ N0. (7)

The constants {ci}Nk
i=1 are called Koopman modes. It is im-

portant to note that one might need to use Nk = ∞ to fully
describe the behavior of the dynamical system.

Another important notion in the analysis of the Koopman
operator is the invariance of subspaces under its application.

Formally, a subspace S ⊆ F is Koopman-invariant if for
every f ∈ S we have K(f) ∈ S . Furthermore, S is maximal
Koopman-invariant in L ⊆ F if it contains every Koopman-
invariant subspace in L. Naturally, a set comprised of Koop-
man eigenfunctions spans a Koopman-invariant subspace.

B. Extended Dynamic Mode Decomposition

Our exposition here mainly follows [35]. As mentioned
earlier, despite its linearly, the infinite-dimensional nature of
the Koopman operator obstructs the use of efficient linear
algebraic methods. One natural way to overcome this problem
is finding finite-dimensional approximations for it. Extended
Dynamic Mode Decomposition (EDMD) is a popular data-
driven method to perform this task that lifts data snapshots
acquired from the dynamical system to a higher-dimensional
space using a predefined dictionary of functions. The projec-
tion of the action of the operator on the span of the dictionary
can then be found by solving a least-squares problem.

Formally, let D : Rn → R1×Nd be a dictionary of Nd

functions in F with D(x) = [d1(x), . . . , dNd
(x)]. Moreover,

let X,Y ∈ RN×n be matrices comprised of N data snapshots
such that yi = T (xi) for i ∈ {1, . . . , N}, where xTi and yTi
are ith rows of X and Y , respectively. For convenience, we
define the action of the dictionary on a matrix as

D(X) := [D(x1)T , . . . ,D(xN)T]T .

The EDMD method approximates the projection of the Koop-
man operator by finding the matrix that best explains the data
over the dictionary, i.e.,

minimize
K

‖D(Y)−D(X)K‖2F ,

which yields the closed-form solution

K∗ = EDMD(D, X, Y) := D(X)†D(Y). (8)

Note that the solution depends on the choice of dictionary.
If the dictionary spans a Koopman-invariant subspace, then
‖D(Y)−D(X)K∗‖2F = 0 and K∗ fully captures the evolution
of functions in span(D(x)). Otherwise, EDMD loses some
information about the dynamics.

III. PROBLEM STATEMENT

As described in Section II-B, the EDMD method loses
information about the dynamical system when the employed
dictionary does not span a Koopman-invariant subspace. As
a result, in such cases, the EDMD approximation is not
appropriate for long term prediction of the state evolution.
Motivated by this observation, our goal is to find the maximal
Koopman-invariant subspace and Koopman eigenfunctions in
the span of a given dictionary.

Formally, given the dynamical system (1) defined by T :
M → M, data matrices X and Y comprised of N data
snapshots, and an arbitrary dictionary of functions D, our main
goal is two-fold:

(a) find all the Koopman eigenfunctions in span(D(x));
(b) find a basis for the maximal Koopman-invariant sub-

space in span(D(x)).

4

Note that (a) and (b) are closely related. The eigenfunc-
tions found by solving (a) span Koopman-invariant subspaces.
Those invariant subspaces however might not be maximal.
This mild difference between (a) and (b) requires the use of
different solution approaches. Since we are dealing with finite-
dimensional linear subspaces, we aim to use linear algebra
instead of optimization-based methods, which are widely used
for solving these types of problems. This enables us to directly
use computationally efficient linear algebraic packages that
optimization methods rely on.

Throughout the paper, we use the following assumption
regarding the dictionary snapshots.

Assumption 3.1: (Full Column Rank Dictionary Matrices):
The matrices D(X) and D(Y) have full column rank. �

Assumption 3.1 is reasonable: in order to hold, the dictio-
nary functions must be linearly independent, i.e., the functions
must form a basis for span(D(x)). Moreover, the assumption
requires the set of initial conditions rows(X) to be diverse
enough to capture important characteristics of the dynamics.
Our treatment here relies on EDMD, which is not specifically
designed to work with data corrupted with measurement noise.
Hence, we assume access to data with high signal-to-noise
ratio. In practice, one might need to pre-process the data to
use the algorithms proposed here.

IV. EDMD AND KOOPMAN EIGENFUNCTIONS

Here we investigate the capabilities and limitations of
the EDMD method regarding the identification of Koopman
eigenfunctions. Throughout the paper, we use the following
notations to represent the EDMD matrices applied on data
matrices X and Y forward and backward in time

Kf = EDMD(D,X, Y), Kb = EDMD(D,Y,X).

The next result shows that EDMD is not only able to capture
Koopman eigenfunctions but also all the functions that evolve
linearly according to the available data.

Lemma 4.1: (EDMD Captures the Koopman Eigenfunc-
tions in the Span of the Dictionary): Suppose Assumption 3.1
holds. Let f(x) = D(x)v for some v ∈ CNd \ {0} and all
x ∈M.

(a) Let f evolve linearly according to the available data,
i.e., there exists λ ∈ C such that f(yi) = λf(xi) for
every i ∈ {1, . . . ,]rows(X)}. Then, the vector v is an
eigenvector of Kf with eigenvalue λ;

(b) Let f be an eigenfunction of the Koopman operator with
eigenvalue λ. Then, the vector v is an eigenvector of Kf

with eigenvalue λ.
Proof: (a) Based on the linear evolution of f , we

have D(Y)v = λD(X)v. Moreover, using the closed-form
solution of EDMD, we have Kf v = D(X)†D(Y)v =
λD(X)†D(X)v = λv, where the last equality follows from
Assumption 3.1.

(b) Based on the definition of Koopman eigenfunction, we
have f(x+) = λf(x). Since this linear evolution reflects
in data snapshots, we have f(yi) = λf(xi) for every i ∈
{1, . . . ,]rows(X)} where xTi and yTi are the ith rows of X
and Y respectively. The rest follows from (a).

Despite its simplicity, this result provides significant insight
into the EDMD method. Lemma 4.1 shows that EDMD can
capture eigenfunctions in the span of the dictionary even if
the underlying subspace is not Koopman invariant. In the
literature, it is well known that the (E)DMD method can
capture physical constraints, conservation laws, and other
properties of the underlying system, which actually correspond
to Koopman eigenfunctions, e.g., see [35], [45]. We note
that Lemma 4.1 is a generalization of [27, Theorem 1] to
EDMD when the underlying system is not necessarily linear
(or cannot be approximated by a linear system accurately) and
the underlying subspace is not Koopman invariant. The next
result shows that EDMD accurately predicts the evolution of
functions in the span of Koopman eigenfunctions evaluated on
the system’s trajectories. Its proof relies on Lemma 4.1 and is
presented in the online version [46].

Proposition 4.2: (EDMD Accurately Predicts Evolution of
any Linear Combination of Eigenfunctions on System’s Tra-
jectories): Let f(x) = D(x)v for some v ∈ CNd \{0} and all
x ∈M. Assume f is in the span of eigenfunctions {φi}mi=1 ⊂
span(D) with corresponding eigenvalues {λi}mi=1 ⊂ C. Then,
given any trajectory {x(j)}∞j=0 of (1),

f(x(j)) = D(x(0))Kj
fv, ∀j ∈ N0. (9)

Lemma 4.1 provides a necessary condition for the identifi-
cation of Koopman eigenfunctions. This condition however
is not sufficient, see e.g. [1, Example IV.3] for a counter
example. Interestingly, if a function evolves linearly forward in
time, it also evolves linearly backward in time. The next result
shows that checking this observation provides a necessary and
sufficient condition for identification of functions that evolve
linearly in time according to the available data.

Theorem 4.3: (Identification of Linear Evolutions by For-
ward and Backward EDMD): Suppose Assumption 3.1 holds.
Let f(x) = D(x)v for some v ∈ CNd \ {0}. Then
f(yi) = λf(xi) for some λ ∈ C \ {0} and for all
i ∈ {1, . . . ,]rows(X)} if and only if v is an eigenvector
of Kf with eigenvalue λ, and an eigenvector of Kb with
eigenvalue λ−1.

Proof: (⇐): Using the closed-form solutions of the
EDMD problem and Assumption 3.1, one can write,

Kf = (D(X)TD(X))−1D(X)TD(Y),

Kb = (D(Y)TD(Y))−1D(Y)TD(X).

Using these along with the definition of the eigenpair,

λD(X)TD(X)v = D(X)TD(Y)v, (11a)

λ−1D(Y)TD(Y)v = D(Y)TD(X)v. (11b)

By multiplying (11a) from the left by vH and using (11b),

λ‖D(X)v‖22 = vHD(X)TD(Y)v = λ̄−1‖D(Y)v‖22
which implies

|λ|2‖D(X)v‖22 = ‖D(Y)v‖22. (12)

Now, we decompose D(Y)v orthogonally as

D(Y)v = cD(X)v + w, (13)

5

with vHD(X)Tw = 0. Substituting (13) into (11a) and
multiplying both sides from the left by vH yields

λvHD(X)TD(X)v = cvHD(X)TD(X)v.

Since v 6= 0, and under Assumption 3.1, we deduce that c = λ.
Substituting the value of c in (13), finding the 2-norm, and
using the fact that vHD(X)Tw = 0, one can write

‖D(Y)v‖22 = |λ|2‖D(X)v‖22 + ‖w‖22.

Comparing this with (12), one deduces that w = 0 and
D(Y)v = λD(X)v. The result follows by looking at this
equality in a row-wise manner and noting that f(x) = D(x)v.

(⇒): Based on Lemma 4.1(a), v must be an eigenvector
of Kf with eigenvalue λ. Moreover, since λ 6= 0 one can
write f(xi) = λ−1f(yi) for every i ∈ {1, . . . ,]rows(X)}
and, consequently, using Lemma 4.1(a) once again, we have
Kbv = λ−1v, concluding the proof.

If the function f satisfies the conditions provided by Theo-
rem 4.3, then f(x+) = λf(x) for all x ∈ rows(X). However,
Theorem 4.3 does not guarantee that f is an eigenfunction,
i.e., there is no guarantee that f(x+) = λf(x) for all x ∈M.
To circumvent this issue, we introduce next infinite sampling
and make an assumption about its density.

Assumption 4.4: (Almost sure dense sampling from a com-
pact state space): Assume the state space M is compact.
Suppose we gather infinitely (countably) many data snapshots.
For N ∈ N, the first N data snapshots are represented
by matrices X1:N and Y1:N such that yi = T (xi) for all
i ∈ {1, . . . , N}, where xi and yi are the ith rows of X1:N

and Y1:N , respectively (we refer to the columns of XT
1:N as

the set SN of initial conditions). Assume there exists a class-
K function α and sequence {pN}∞N=1 ⊂ [0, 1] such that, for
every N ∈ N,

∀m ∈M, ∃x ∈ SN such that ‖m− x‖2 ≤ α
(1

N

)
holds with probability pN , and limN→∞ pN = 1. �

Assumption 4.4 is not restrictive as, in most practical cases,
the state space is compact or the analysis is limited to a specific
bounded region. Moreover, the data is usually available on a
bounded region due the limited range of sensors. Regarding
the sampling density, Assumption 4.4 holds for most standard
random samplings.

Noting that our methods presented later require Assump-
tion 3.1 to hold, we provide a definition for dictionary matrices
acquired from infinite sampling.

Definition 4.5: (R-rich Sequence of Dictionary Snapshots):
Let {X1:N}∞N=1 and {Y1:N}∞N=1 be the sequence of data snap-
shot matrices acquired from system (1). Given the dictionary
D :M→ R1×Nd , we say the sequence of dictionary snapshot
matrices is R-rich if R = min{M ∈ N | rank(D(X1:M)) =
rank(D(Y1:M)) = Nd} exists (R is called richness constant).

In Definition 4.5, if

{M ∈ N | rank(D(X1:M)) = rank(D(Y1:M)) = Nd} 6= ∅

then based on the well-ordering principle, see e.g. [47, Chapter
0], the minimum of the set exists and the sequence of the

dictionary snapshot matrices is R-rich. Moreover, given an R-
rich sequence of dictionary snapshots matrices D(X1:N) and
D(Y1:N), Assumption 3.1 holds for every N ≥ R.

We are now ready to identify the Koopman eigenfunctions
in the span of the dictionary using forward-backward EDMD.

Theorem 4.6: (Identification of Koopman Eigenfunctions by
Forward and Backward EDMD): Given an infinite sampling,
suppose that the sequence of dictionary snapshot matrices
is R-rich. Let KN

f = EDMD(D,X1:N , Y1:N), KN
b =

EDMD(D,Y1:N , X1:N). Given v ∈ CNd\{0} and λ ∈ C\{0},
let f(x) = D(x)v. Then,

(a) If f is an eigenfunction of the Koopman operator with
eigenvalue λ, then KN

f v = λv and KN
b v = λ−1v for

every N ≥ R;
(b) Conversely, and assuming the dictionary functions are

continuous and Assumption 4.4 holds, if KN
f v = λv

and KN
b v = λ−1v for every N ≥ R, then f is an eigen-

function of the Koopman operator with probability 1.
Proof: (a) Since f is a Koopman eigenfunction, for every

i ∈ N we have f(yi) = λf(xi). Moreover, for every N ≥ R,
D(X1:N) and D(Y1:N) have full column rank. Therefore, the
result follows from Theorem 4.3.

(b) Based on Theorem 4.3, we deduce that, for every N ≥ R

f(yi) = λf(xi)v, ∀i ∈ {1, . . . , N}, (14)

where xTi and yTi are the ith rows of X1:N and Y1:N

respectively. Now, define h(x) := f ◦ T (x) − λf(x). The
function h is continuous since f is a linear combination of
continuous functions and T is also continuous. By inspect-
ing h on the data points and using (14) and the fact that
yi = T (xi), for all i ∈ {1, . . . , N}, one can show that
h(xi) = f ◦ T (xi)− λf(xi) = f(yi)− λf(xi) = 0 for every
i ∈ {1, . . . , N}. Moreover, note that based on Assumption 4.4,
the set S∞ =

⋃∞
i=1 Si is dense in M with probability 1 and

h(x) = 0 for every x ∈ S∞. As a result, h(x) = 0 onM with
probability 1. This implies that f ◦ T (x) = λf(x) for every
x ∈ M almost surely. Consequently, we have K(f) = λf
almost surely, and the result follows.

We note that the technique of considering the evolution
forward and backward in time has also been used in the
literature for other purposes, e.g., to alleviate the effect of
measurement noise on the data when performing DMD [31],
[32]. To our knowledge, the use of this technique here for
the identification of Koopman eigenfunctions and invariant
subspaces is novel. Moreover, unlike [48, Algorithm 1], the
methods proposed here do not require access to the system’s
multi-step trajectories. Theorems 4.3 and 4.6 provide con-
ditions to identify Koopman eigenfunctions. The identified
eigenfunctions then can span Koopman-invariant subspaces.
However, one still needs to compare Nd potentially com-
plex eigenvectors and their corresponding eigenvalues. This
procedure can be impractical for large Nd. Moreover, since
M ⊆ Rn, the eigenfunctions of the Koopman operator form
complex-conjugate pairs. Such pairs can be fully characterized
using their real and imaginary parts, which allows to use in-
stead real-valued functions. This motivates the development of
algorithms to directly identify Koopman-invariant subspaces.

6

V. IDENTIFICATION OF KOOPMAN-INVARIANT SUBSPACES
VIA SYMMETRIC SUBSPACE DECOMPOSITION (SSD)

Here we provide an algorithmic method to identify
Koopman-invariant subspaces in the span of a predefined
dictionary and later show how it can be used to find Koop-
man eigenfunctions. With the setup of Section III, given the
original dictionary D : M → R1×Nd comprised of Nd

linearly independent functions, we aim to find a dictionary
D̃ : M → R1×Ñd with Ñd linearly independent functions
such that the elements of D̃ span the maximal Koopman-
invariant subspace in span(D). Since span(D̃) is invariant,
we have R(D̃ ◦ T) = R(D̃). This equality gets reflected in
the data, i.e., given snapshot matrices X and Y ,

R(D̃(Y)) = R(D̃(X)). (15)

Moreover, since the elements of D̃ are in the span of D, there
exists a full column rank matrix C such that D̃(x) = D(x)C,
for all x ∈M. Thus from (15),

R(D(Y)C) = R(D(X)C). (16)

Hence, we can reformulate the problem as a purely linear-
algebraic problem consisting of finding the full column rank
matrix C with maximum number of columns such that (16)
holds. To solve this problem, we propose the Symmetric
Subspace Decomposition (SSD) method. The SSD algorithm
relies on the fact, from (15), that

R(D̃(Y)) = R(D̃(X)) ⊆ R(D(X)) ∩R(D(Y)).

This fact can alternatively be expressed using the null space
of the concatenation [D(X), D(Y)]. SSD uses the null space
to prune the dictionary and remove functions that do not
evolve linearly in time according to the available data to
identify a potentially smaller dictionary. At each iteration,
SSD repeats the aforementioned procedure of (i) concatenation
of current dictionary matrices, (ii) null space identification,
and (iii) dictionary reduction, until the desired dictionary is
identified. Algorithm 1 presents the pseudocode2.

A. Convergence Analysis of the SSD Algorithm

Here we characterize the convergence properties of the
SSD algorithm. The next result characterizes the dimension,
maximality, and symmetry of the subspace defined by its
output.

Theorem 5.1: (Properties of SSD Output): Suppose As-
sumption 3.1 holds. For matrices D(X), D(Y), let CSSD =
SSD(D(X), D(Y)). The SSD algorithm has the following
properties:

(a) it stops after at most Nd iterations;
(b) the matrix CSSD is either 0 or has full column rank, and

satisfies R(D(X)CSSD) = R(D(Y)CSSD);
(c) the subspace R(D(X)CSSD) is maximal, in the sense

that, for any matrix E with R(D(X)E) = R(D(Y)E),
we have R(D(X)E) ⊆ R(D(X)CSSD) and R(E) ⊆
R(CSSD);

2The function null([Ai, Bi]) returns a basis for the null space of [Ai, Bi],
and ZA

i and ZB
i in Step 4 have the same size.

Algorithm 1 Symmetric Subspace Decomposition

1: Initialization
2: i← 1, A1 ← D(X), B1 ← D(Y), CSSD ← INd

3: while 1 do

4:

[
ZA
i

ZB
i

]
← null([Ai, Bi]) . Basis for the null space

5: if null([Ai, Bi]) = ∅ then
6: return 0 . The basis does not exist
7: break
8: end if
9: if]rows(ZA

i) ≤]cols(ZA
i) then

10: return CSSD . The procedure is complete
11: break
12: end if
13: CSSD ← CSSDZA

i . Reducing the subspace
14: Ai+1 ← AiZ

A
i , Bi+1 ← BiZ

A
i , i← i+ 1

15: end while

(d) R
(
SSD(D(X), D(Y))

)
= R

(
SSD(D(Y), D(X))

)
.

Proof: (a) First, we use (strong) induction to prove that at
each iteration ZA

i , Z
B
i are matrices with full column rank upon

existence. By Assumption 3.1, A1 and B1 have full column
rank. Now, by using Lemma A.1 one can derive that ZA

1 and
ZB

1 have full column rank. Now, suppose that the matrices
ZA

1 , . . . , Z
A
k and ZB

1 , . . . , Z
B
k have full column rank. Using

Assumption 3.1 one can deduce that Ak+1 = A1Z
A
1 . . . ZA

k ,
Bk+1 = B1Z

A
1 . . . ZA

k have full column rank since they are
product of matrices with full column rank. Using Lemma A.1,
one can conclude that ZA

k+1 and ZB
k+1 have full column rank.

Consequently, we have]rows(ZA
i) ≥]cols(ZA

i). Hence,
Step 9 of the SSD algorithm implies that the algorithm can
only move to the next iteration if]rows(ZA

i) >]cols(ZA
i),

which means the number of columns in Ai+1 and Bi+1

decreases with respect to Ai and Bi. Hence, the algorithm
terminates after at most Nd iterations since A1 and B1 have
Nd columns.

(b) The CSSD = 0 case is trivial. Suppose that the
algorithm stops after k iterations with nonzero CSSD. This
means that ZA

k and ZB
k are square full rank matrices. Also,

by definition we have AkZ
A
k = −BkZ

B
k which means that

Ak = −BkZ
B
k (ZA

k)−1. Noting that ZB
k (ZA

k)−1 is a full rank
square matrix, one can derive R(Ak) = R(Bk). A closer look
at the definitions shows that Ak = D(X)CSSD and Bk =
D(Y)CSSD. Hence, R(D(X)CSSD) = R(D(Y)CSSD).
Moreover, CSSD = ZA

1 · · ·ZA
k−1 and considering the fact that

ZA
1 , . . . , Z

A
k−1 have full column rank, one can deduce that

CSSD has full column rank.
(c) Suppose that the matrix E satisfies R(D(X)E) =

R(D(Y)E). First, we use induction to prove that
R(D(X)E) ⊆ R(Ai) ∩ R(Bi) for each iteration i that
the algorithm goes through. Let i = 1, then A1 = D(X)
and B1 = D(Y). Consequently, R(D(X)E) ⊆ R(A1) and
R(D(X)E) = R(D(Y)E) ⊆ R(B1) based on the definition
of E. Hence, R(D(X)E) ⊆ R(A1) ∩R(B1). Now, suppose

R(D(X)E) ⊆ R(Ai) ∩R(Bi). (17)

7

Using Lemma A.1, one can derive R(AiZ
A
i) = R(Ai) ∩

R(Bi). Combining this with (17), we get

R(D(X)E) ⊆ R(AiZ
A
i) = R

(
D(X)ZA

1 · · ·ZA
i

)
. (18)

Using (18) with Lemma A.2 one can derive R(E) ⊆
R(ZA

1 · · ·ZA
i). Using Lemma A.2 once again, we get

R(D(X)E) = R(D(Y)E) ⊆ R
(
D(Y)ZA

1 · · ·ZA
i

)
. (19)

Definition of Ai+1, Bi+1 along with (18) and (19) lead to
conclusion that R(D(X)E) ⊆ R(Ai+1) ∩ R(Bi+1) and the
induction is complete.

Now, suppose that the algorithm terminates at iteration k.
In the case that CSSD = 0, we have R(Ak) ∩ R(Bk) =
{0}, which means that E = 0 and R(D(X)E) ⊆
R(D(X)CSSD). In the case that CSSD 6= 0, using the fact
that R(D(X)E) ⊆ R(Ak) ∩ R(Bk), CSSD = ZA

1 · · ·ZA
k−1,

and R(D(X)CSSD) = R(D(Y)CSSD), one can deduce that
R(D(X)E) ⊆ R(D(X)CSSD). Moreover, using Assump-
tion 3.1 and Lemma A.2 one can write R(E) ⊆ R(CSSD).

(d) For convenience, let ESSD = SSD(D(Y), D(X)).
Based on the definition of CSSD and ESSD, one can write

R(D(X)CSSD) = R(D(Y)CSSD)

R(D(X)ESSD) = R(D(Y)ESSD)

These equations in conjunction with the maximality of
R(CSSD) from part (c) imply R(ESSD) ⊆ R(CSSD). Using
a similar argument, invoking the maximality of R(ESSD), we
have R(CSSD) ⊆ R(ESSD), concluding the proof.

Remark 5.2: (Time and Space Complexity of the SSD Al-
gorithm): Given N data snapshots and a dictionary with
Nd elements, where usually N � Nd, and assuming that
operations on scalar elements require time and memory of
order O(1), the most time and memory consuming operation
in the SSD algorithm is Step 4. This step can be done by
truncated Singular Value Decomposition (SVD) and finding
the perpendicular space to the span of the right singular vec-
tors, with time complexity O(NN2

d) and memory complexity
O(NNd), see e.g., [49]. Since, based on Theorem 5.1(a), the
SSD algorithm terminates in at most Nd iterations, the total
time complexity is O(NN3

d). However, since at each iteration
we can reuse the memory for Step 4, the space complexity of
SSD is O(NNd). �

Note that SSD removes the functions that do not evolve
linearly in time according to the available data snapshots.
Therefore, as we gather more data, the identified subspace
either remains the same or gets smaller, as stated next.

Lemma 5.3: (Monotonicity of SSD Output with Respect to
Data Addition): Let D(X), D(Y) and D(X̂), D(Ŷ) be two
pairs of data snapshots such that

rows
(
[D(X), D(Y)]

)
⊆ rows

(
[D(X̂), D(Ŷ)]

)
, (20)

and for which Assumption 3.1 holds. Then

R(SSD([D(X̂), D(Ŷ)])) ⊆ R(SSD(D(X), D(Y))).

Proof: We use the shorthand notation Ĉ =
SSD([D(X̂), D(Ŷ)]) and C = SSD(D(X), D(Y)).

From (20), we deduce that there exists a matrix E with
rows(E) ⊆ rows(I]rows(X̂)) such that

ED(X̂) = D(X), ED(Ŷ) = D(Y). (21)

Moreover, based on the definition of Ĉ and Theorem 5.1(b),
we have R(D(X̂)Ĉ) = R(D(Ŷ)Ĉ). Hence, there exists a full
rank square matrix K̂ such that

D(Ŷ)Ĉ = D(X̂)ĈK̂.

Multiplying both sides from the left by E and using (21) gives
D(Y)Ĉ = D(X)ĈK̂. Consequently, we have R(D(Y)Ĉ) =
R(D(X)Ĉ). Now, the maximality of C (Theorem 5.1(c))
implies R(Ĉ) ⊆ R(C).

Remark 5.4: (Implementing SSD on Finite-Precision Ma-
chines): Since SSD is iterative, its implementation using finite
precision leads to small errors that can affect the rank and
null space of [Ai, Bi] in Step 4. To circumvent this issue, one
can approximate [Ai, Bi] at each iteration by a close (in the
Frobenius norm) low-rank matrix. Let σ1 ≥ . . . ≥ σli be the
singular values of [Ai, Bi] ∈ RN×li . Given a design parameter
ε > 0, let ki be the minimum integer such that

li∑
j=ki

σ2
j ≤ ε

(li∑
j=1

σ2
j

)
. (22)

One can then construct the matrix [Âi, B̂i] by setting σki =
· · · = σli = 0 in the singular value decomposition of [Ai, Bi].
The resulting matrix has lower rank and

‖[Ai, Bi]− [Âi, B̂i]‖2F ≤ ε‖[Ai, Bi]‖2F . (23)

Hence, ε tunes the accuracy of the approximation. It is
important to note that similar error bounds can be found for
other unitarily invariant norms, see e.g. [50]. �

B. Identification of Linear Evolutions and Koopman Eigen-
functions with the SSD Algorithm

Here we study the properties of the output of the SSD
algorithm in what concerns the identification of the maximal
Koopman-invariant subspace and the Koopman eigenfunc-
tions. If CSSD 6= 0, we define the invariant dictionary as

D̃(x) := D(x)CSSD. (24)

To find the action of the Koopman operator on the subspace
spanned by D̃, we apply EDMD on D̃(X) and D̃(Y) to find

KSSD = EDMD(D̃,X, Y) = D̃(X)†D̃(Y)

=
(
D(X)CSSD

)†(
D(Y)CSSD). (25)

Based on Theorem 5.1(b), we have

R(D̃(X)) = R(D̃(Y)). (26)

Moreover, D̃(X) and D̃(Y) have full column rank as a result
of Assumption 3.1 and Theorem 5.1(b). Consequently, KSSD

is a (unique) nonsingular matrix satisfying

D̃(Y) = D̃(X)KSSD. (27)

8

Interestingly, equation (27) implies that the residual error of
EDMD, ‖D̃(Y) − D̃(X)KSSD‖F , is equal to zero. Based
on (26), one can find KSSD more efficiently and only based
on partial data instead of calculating the pseudo-inverse of
D(X)CSSD. Formally, consider full column rank data matrices
D(X̂), D(Ŷ) such that

rows[D(X̂), D(Ŷ)] ⊆ rows[D(X), D(Y)].

Then, KSSD = EDMD(D̃, X̂, Ŷ). Next, we show that the
eigenvectors of KSSD fully characterize the functions that
evolve linearly in time according to the available data.

Theorem 5.5: (Identification of Linear Evolutions using
the SSD Algorithm): Suppose that Assumption 3.1 holds.
Let CSSD = SSD(D(X), D(Y)) 6= 0, KSSD =(
D(X)CSSD

)†(
D(Y)CSSD

)
, and f(x) ∈ span(D(x)) de-

noted as f(x) = D(x)v with v ∈ CNd \ {0}. Then
f(yi) = λf(xi) for some λ ∈ C \ {0} and for all
i ∈ {1, . . . ,]rows(X)} if and only if v = CSSDw with
KSSDw = λw.

Proof: (⇐): Based on definition of KSSD, Assump-
tion 3.1, and considering the fact that CSSD has full column
rank (Theorem 5.1(b)), one can use (24)-(27) and the fact
that KSSDw = λw to write D(Y)CSSDw = λD(X)CSSDw.
Consequently, using v = CSSDw we have

D(Y)v = λD(X)v.

By inspecting the equation above in a row-wise manner, one
can deduce that f(yi) = λf(xi) for some λ ∈ C \ {0} and
for all i ∈ {1, . . . ,]rows(X)}, as claimed.

(⇒): Based on the hypotheses, we have

D(Y)v = λD(X)v. (28)

Consider first the case when v ∈ RNd . Then using (28),
we deduce R(D(X)v) = R(D(Y)v). The maximality of
CSSD (Theorem 5.1(c)) implies that R(v) ⊆ R(CSSD) and
consequently v = CSSDw for some w. Replacing v by
CSSDw in (28) and using the definition of KSSD, one deduces
KSSDw = λw.

Now, suppose that v = vR + jvI with vI 6= 0. Since
D(X) and D(Y) are real matrices, one can use (28) and write
D(Y)v̄ = λ̄D(X)v̄. This, together with (28), implies

D(Y)E = D(X)EΛ, (29)

where E = [vR, vI] and

Λ =

[
Re(λ) Im(λ)
− Im(λ) Re(λ)

]
.

Since Λ is full rank, we have R(D(X)E) = R(D(Y)E) and
using Theorem 5.1(c), one can conclude R(E) ⊆ R(CSSD).
Consequently, there exists a real vector z such that E =
CSSDz. By replacing this in (29) and multiplying both sides
from the right by r = [1, j]T and defining w = zr, one
can conclude that v = Er = CSSDw and D(Y)CSSDw =
λD(X)CSSDw. This in conjunction with the definition of
KSSD implies that KSSDw = λw, concluding the proof.

Using Theorem 5.5, one can identify all the linear evolutions
in the span of the original dictionary, thereby establishing an

equivalence with the forward-backward EDMD characteriza-
tion of Section IV.

Corollary 5.6: (Equivalence of Forward-Backward EDMD
and SSD in the Identification of Linear Evolutions): Suppose
that Assumption 3.1 holds. Let Kf = EDMD(D,X, Y),
Kb = EDMD(D,Y,X), CSSD = SSD(D(X), D(Y)) 6= 0

and KSSD =
(
D(X)CSSD

)†(
D(Y)CSSD

)
. Then, Kfv = λv

and Kbv = λ−1v for some v ∈ CNd \ {0} and λ ∈ C \ {0}
if and only if there exists vector w such that v = CSSDw and
KSSDw = λw.

The proof of this result is a consequence of Theorems 4.3
and 5.5. Note that the linear evolutions identified by SSD
might not be Koopman eigenfunctions, since we can only
guarantee that they evolve linearly according to the available
data snapshots, not starting everywhere in the state space M.
The following result uses the equivalence between SSD and
the Forward-Backward EDMD method to provide a guarantee
for the identification of Koopman eigenfunctions.

Theorem 5.7: (Identification of Koopman Eigenfunctions by
the SSD Algorithm): Given an infinite sampling, suppose
that the sequence of dictionary snapshot matrices is R-rich.
For N ≥ R, let CSSD

N = SSD(D(X1:N), D(Y1:N)) 6= 0,
and KSSD

N =
(
D(X1:N)CSSD

N

)†(
D(Y1:N)CSSD

N). Given v ∈
CNd \ {0} and λ ∈ C \ {0}, let f(x) = D(x)v. Then,

(a) If f is an eigenfunction of the Koopman operator with
eigenvalue λ, then for every N ≥ R, there exists wN

such that v = CSSD
N wN and KSSD

N wN = λwN ;
(b) Conversely, and assuming the dictionary functions are

continuous and Assumption 4.4 holds, if v ∈ R(CSSD
N)

and there exists wN such that v = CSSD
N wN and

KSSD
N wN = λwN for every N ≥ R, then f is an eigen-

function of the Koopman operator with probability 1.
This result is a consequence of Theorem 4.6 and Corol-

lary 5.6. Theorem 5.7 shows that the SSD algorithm finds
all the eigenfunctions in the span of the original dictionary
almost surely. The identified eigenfunctions span a Koopman-
invariant subspace. This subspace however is not necessarily
the maximal Koopman-invariant subspace in the span of the
original dictionary. Next, we show that the SSD method
actually identifies the maximal Koopman-invariant subspace
in the span of the dictionary.

Theorem 5.8: (SSD Finds the Maximal Koopman-Invariant
Subspace as N → ∞): Given an infinite sampling and a
dictionary composed of continuous functions, suppose that
the sequence of dictionary snapshot matrices is R-rich and
Assumption 4.4 holds. Let the columns of CSSD

∞ form a basis
for limN→∞R(CSSD

N), i.e.,

R(CSSD
∞) = lim

N→∞
R(CSSD

N) =

∞⋂
N=R

R(CSSD
N). (30)

(note that the sequence {R(CSSD
N)}∞N=1 is monotonic, and

hence convergent). Then span(D(x)CSSD
∞) is the maximal

Koopman-invariant subspace in the span of the dictionary D
with probability 1.

Proof: If CSSD
∞ = 0, considering the fact that for all

N ≥ R, R(CSSD
N+1) ⊆ R(CSSD

N) (Lemma 5.3), one deduces
that there exists m ∈ N such that for all i ≥ m, CSSD

i = 0.

9

Hence based on Theorem 5.1(c), the maximal Koopman-
invariant subspace acquired from the data is {0}. Noting
that the subspace identified by SSD contains the maximal
Koopman-invariant subspace, we deduce that the latter is the
zero subspace, which is indeed spanned by D(x)CSSD

∞ .
Now, suppose that CSSD

∞ 6= 0 and has full column rank.
First, we show that

R(D(X1:N)CSSD
∞) = R(D(Y1:N)CSSD

∞), ∀N ≥ R. (31)

Considering (30) and the fact that for all N ≥ R, R(CSSD
N+1) ⊆

R(CSSD
N), we can write for all N ≥ R

R(CSSD
∞) =

∞⋂
i=N

R(CSSD
i).

Invoking Lemma A.4, we have for all N ≥ R,

R(D(X1:N)CSSD
∞) =

∞⋂
i=N

R(D(X1:N)CSSD
i), (32a)

R(D(Y1:N)CSSD
∞) =

∞⋂
i=N

R(D(Y1:N)CSSD
i). (32b)

Moreover, for all i ≥ N we have R(D(X1:i)C
SSD
i) =

R(D(Y1:i)C
SSD
i) and hence by looking at this equality in a

row-wise manner, one can write

R(D(X1:N)CSSD
i) = R(D(Y1:N)CSSD

i), ∀i ≥ N. (33)

The combination of (32) and (33) yields (31). Based on the
latter, the fact that D(X1:N) and D(Y1:N) have full column
rank for every N ≥ R and the fact that CSSD

∞ has full column
rank, there exists a unique nonsingular square matrix KSSD

∞ ∈
R]cols(CSSD

∞)×]cols(CSSD
∞) such that

D(X1:N)CSSD
∞ KSSD

∞ = D(Y1:N)CSSD
∞ , ∀N ≥ R. (34)

Note that KSSD
∞ does not depend on N . Next, we aim to prove

that for every function f ∈ span(D(x)CSSD
∞), K(f) is also

in span(D(x)CSSD
∞) almost surely. Let v ∈ R]cols(CSSD

∞) such
that f(x) = D(x)CSSD

∞ v and define

g(x) := D(x)CSSD
∞ KSSD

∞ v. (35)

We show that g = f ◦ T = K(f) almost surely. Define the
function h := g− f ◦T . Also, let S∞ =

⋃∞
N=R SN be the set

of initial conditions. Based on (34), (35), and definition of h,

h(x) = 0, ∀x ∈ S∞.

Moreover, h is continuous since D and T are continuous.
This, together with the fact that S∞ is dense in M almost
surely (Assumption 4.4), we deduce h ≡ 0 on M almost
surely. Therefore, g = K(f) = f ◦ T with probability 1.
Noting that g(x) ∈ span(D(x)CSSD

∞), we have proven that
span(D(x)CSSD

∞) is Koopman invariant almost surely.
Finally, we prove the maximality of span(D(x)CSSD

∞). Let
L be a Koopman-invariant subspace in span(D(x)). Then
there exists a full column rank matrix E such that L =
span(D(x)E). Moreover, since the invariance of L reflects in
data, R(D(X1:N)E) = R(D(Y1:N)E), for all N ≥ R. As a
result, based on Theorem 5.1(c), we have R(E) ⊆ R(CSSD

N),
for all N ≥ R, and hence R(E) ⊆ R(CSSD

∞). Therefore,

by Lemma A.2, we have L = R(D(x)E) ⊆ R(D(x)CSSD
∞),

which completes the proof.
Remark 5.9: (Generalized Koopman Eigenfunctions): One

can also extend the above discussion for generalized Koopman
eigenfunctions (see e.g. [6, Remark 11]). Given a generalized
eigenvector w of KSSD, the corresponding generalized Koop-
man eigenfunction is φ(x) = D(x)CSSDw. �

VI. STREAMING SYMMETRIC SUBSPACE DECOMPOSITION

In this section, we consider the setup where data becomes
available in a streaming fashion. A straightforward algorithmic
solution for this scenario would be to re-run, at each timestep,
the SSD algorithm with all the data available up to then.
However, this approach does not take advantage of the answers
computed in previous timesteps, and maybe become inefficient
when the size of the data is large. Instead, here we pursue the
design of an online algorithm, termed Streaming Symmetric
Subspace Decomposition (SSSD), cf. Algorithm 2, that up-
dates the identified subspaces using the previously computed
ones. Note that the SSSD algorithm is not only useful for
streaming data sets but also for the case of non-streaming large
data sets for which the execution of SSD requires a significant
amount of memory.

Algorithm 2 Streaming Symmetric Subspace Decomposition

1: Initialization

2: DX
S (1)←

[
D(X1:S)
D(xS+1)

]
, DY

S (1)←
[
D(Y1:S)
D(yS+1)

]
3: i← 1, A1 ← DX

S (1), B1 ← DY
S (1), C0 ← INd

4: while 1 do
5: if Ci−1 = 0 then
6: Ci ← 0 . The basis does not exist
7: return Ci

8: break
9: end if

10: Fi ← SSD(Ai, Bi)
11: if Fi = 0 then
12: Ci ← 0 . The basis does not exist
13: return Ci

14: break
15: end if
16: if]rows(Fi) >]cols(Fi) then
17: Ci ← basis(R(Ci−1Fi)) . Subspace reduction
18: else
19: Ci ← Ci−1 . No change
20: end if
21: return Ci

22: i← i+ 1
O Replacing the last data snapshot with the new one

23: DX
S (i) =

[
D(X1:S)
D(xS+i)

]
, DY

S (i) =

[
D(Y1:S)
D(yS+i)

]
O Calculating the reduced dictionary snapshots

24: Ai ← DX
S (i)Ci−1, Bi ← DY

S (i)Ci−1

25: end while

Given the signature snapshot matrices X1:S and Y1:S , for
some S ∈ N, and a dictionary of functions D, the SSSD

10

algorithm proceeds as follows: at each iteration, the algo-
rithm receives a new pair of data snapshots, combines them
with signature data matrices, and applies the latest available
dictionary on them. Then, it uses SSD on those dictionary
matrices and further prunes the dictionary. The basic idea of
the SSSD algorithm stems from the monotonicity of SSD’s
output dictionary versus the data (cf. Lemma 5.3), i.e., by
adding more data the dimension of the dictionary does not
increase. Since the SSD algorithm relies on Assumption 3.1,
we make the following assumption on the signature snapshots
and the original dictionary.

Assumption 6.1: (Full Rank Signature Dictionary Matri-
ces): We assume that there exists S ∈ N such that the matrices
D(X1:S) and D(Y1:S) have full column rank. �

For a finite number of data snapshots, Assumption 6.1
is equivalent to Assumption 3.1. For an infinite sampling,
Assumption 6.1 holds for a R-rich sequence of snapshot
matrices. The next result discusses the basic properties of the
SSSD output at each iteration.

Proposition 6.2: (Properties of SSSD Output): Suppose As-
sumption 6.1 holds. For i ∈ N, let Ci denote the output of the
SSSD algorithm at the ith iteration. Then, for all i ∈ N,

(a) Ci has full column rank or is equal to zero;
(b) R(Ci) ⊆ R(Ci−1);
(c) R(DX

S (i)Ci) = R(DY
S (i)Ci).

Proof: (a) We prove the claim by induction. C0 = INd

and has full column rank. Now, suppose that Ck has full
column rank or is zero. We show the same fact for Ck+1. If
Ck = 0, then SSSD executes Step 6 and we have Ck+1 = 0.
Now, suppose that Ck has full column rank. Considering the
fact that DX

S (k + 1) and DY
S (k + 1) have full column rank,

one can deduce that Ak+1 and Bk+1 have full column rank.
Consequently, based on Theorem 5.1(b), Fk+1 has full column
rank or is equal to zero. In the former case, the algorithm
executes Step 17 or Step 19, and based on definition of basis
function and the fact that Ck has full column rank, one deduces
that Ck+1 has full column rank. In the latter case, the algorithm
executes Step 12, and Ck+1 = 0, as claimed.

Now we prove (b). Note that at iteration i, Ci will be
determined by either Step 6, 12, 19, or 17. The proof for the
first three cases is trivial. We only need to prove the result for
the case when the SSSD algorithm executes Step 17. Based
on Theorem 5.1(b), one can deduce that Fi has full column
rank. Also, we have R(Fi) ⊆ R(I]cols(Ci−1)). Hence using
Step 17 and Lemma A.2, one can write

R(Ci) = R(Ci−1Fi) ⊆ R(Ci−1I]cols(Ci−1)) = R(Ci−1),

as claimed.
Next, we prove part (c). If the SSSD algorithm executes

Step 6 or Step 12, then the result follows directly. Now,
suppose that the algorithm executes Step 17 or Step 19. Note
that if the algorithm executes one of these two steps, then
Fi 6= 0, Ci−1 6= 0 and they have full column rank (Theo-
rem 5.1(b)). Hence,]rows(Fi) ≥]cols(Fi). As a result, if the
algorithm executes Step 19, we have]rows(Fi) =]cols(Fi)
and consequently R(Fi) = R(I]cols(Ci−1)). Therefore,

R(Ci) = R(Ci−1) = R(Ci−1I]cols(Ci−1)) = R(Ci−1Fi).
(36)

Moreover, if the SSSD algorithm executes Step 17, then using
the definition of basis function, we have

R(Ci) = R(Ci−1Fi). (37)

Also, based on definition of Fi at Step 10, Theorem 5.1(b),
and the fact that Ai = DX

S (i)Ci−1 and Bi = DY
S (i)Ci−1,

R(DX
S (i)Ci−1Fi) = R(DY

S (i)Ci−1Fi).

Using this together with (36) upon execution of Step 19
and (37) upon execution of Step 17, one deduces
R(DX

S (i)Ci) = R(DY
S (i)Ci), concluding the proof.

Next, we show that the SSSD algorithm at each iteration
identifies exactly the same subspace as the SSD algorithm
given all the data up to that iteration.

Theorem 6.3: (Equivalence of SSD and SSSD): Suppose
Assumption 6.1 holds. For i ∈ N, let Ci denote the output
of the SSSD algorithm at the ith iteration and let CSSD

i =
SSD

(
D(X1:S+i), D(Y1:S+i)

)
. Then,

R(Ci) = R(CSSD
i), ∀i ∈ N.

Proof: Inclusion R(CSSD
i) ⊆ R(Ci) for all i ∈ N: We

reason by induction. Note that in the SSSD algorithm, for
i = 1 we have F1 = CSSD

1 . As a result, if F1 = 0 then
based on Step 12, C1 = CSSD

1 = 0. If the SSSD algorithm
executes Step 17, then using the fact that C0 = INd

, one can
write R(C1) = R(CSSD

1). Moreover, if the SSSD algorithm
executes Step 19, based on Step 16 and Theorem 5.1(b), one
can deduce that R(CSSD

1) = R(C1) = R(F1) = R(INd
).

Consequently, in all cases

R(CSSD
1) = R(C1). (38)

Hence, R(CSSD
1) ⊆ R(C1). Now, suppose that

R(CSSD
k) ⊆ R(Ck). (39)

We need to show that R(CSSD
k+1) ⊆ R(Ck+1). If CSSD

k+1 = 0
then the proof follows. Now assume that CSSD

k+1 6= 0 and has
full column rank based on Theorem 5.1(b). By Lemma 5.3,
we have

R(CSSD
k+1) ⊆ R(CSSD

k). (40)

Using (39) and (40), one can deduce R(CSSD
k+1) ⊆ R(Ck).

Consequently, based on the fact that CSSD
k+1 6= 0, we have Ck 6=

0 and hence has full column rank based on Proposition 6.2(a).
Moreover, there exists a full column-rank matrix Ek such that

CSSD
k+1 = CkEk. (41)

Two cases are possible. In case 1, the SSSD algorithm executes
Step 19. In case 2, the algorithm executes Step 12 or Step 17.
For case 1, we have Ck+1 = Ck. Consequently, using (41)
and considering the fact that R(Ek) ⊆ R(I]cols(Ck)) and the
fact that Ck has full column rank, one can use Lemma A.2
and conclude

R(CSSD
k+1) = R(CkEk) ⊆ R(Ck) = R(Ck+1). (42)

Now, consider case 2. In this case, we have

R(Ck+1) = R(CkFk+1). (43)

11

Also, based on definition of CSSD
k+1 and Theorem 5.1(b), one

can write

R(D(X1:k+1C
SSD
k+1)) = R(D(Y1:k+1C

SSD
k+1)).

Looking at this equation in a row-wise manner and con-
sidering the fact that rows

(
[DX

S (k + 1), DY
S (k + 1)]

)
⊆

rows
(
[D(X1:k+1), D(Y1:k+1)]

)
, one can write

R(DX
S (k + 1)CSSD

k+1) = R(DY
S (k + 1)CSSD

k+1).

Now, using (41) we have R(DX
S (k+ 1)CkEk) = R(DY

S (k+
1)CkEk). Also, noting the definition of Fk+1 and the fact
that Ak = DX

S (k + 1)Ck, Bk = DY
S (k + 1)Ck, one can use

Theorem 5.1(c) to write R(Ek) ⊆ R(Fk+1). Since Ck has
full column rank, we use (41), (43), and Lemma A.2 to write

R(CSSD
k+1) = R(CkEk) ⊆ R(CkFk+1) = R(Ck+1). (44)

In both cases, equations (42) and (44) conclude the induction.
Inclusion R(Ci) ⊆ R(CSSD

i) for all i ∈ N: We reason by
induction too. Using (38), we have R(C1) ⊆ R(CSSD

1). Now,
suppose that

R(Ck) ⊆ R(CSSD
k). (45)

We prove the same result for k+1. If Ck+1 = 0 then the result
directly follows. Now, assume that Ck+1 6= 0. Consequently,
based on (45), Proposition 6.2(a), and Theorem 5.1(b), we
deduce that Ck+1 and CSSD

k+1 have full column rank.
The first part of the proof and (45) imply that R(Ck) =
R(CSSD

k). Consequently, noting the fact that CSSD
k is the

output of the SSD algorithm with D(X1:S+k) and D(Y1:S+k),
one can use Theorem 5.1(b) to write

R
(
D(X1:S+k)Ck

)
= R

(
D(Y1:S+k)Ck

)
. (46)

Moreover, based on Proposition 6.2(b), we have R(Ck+1) ⊆
R(Ck). Hence, since Ck and Ck+1 have full column rank,
there exists a matrix Gk with full column rank such that

Ck+1 = CkGk. (47)

Also, based on Proposition 6.2(c) at iteration k + 1 of the
SSSD algorithm

R(DX
S (k + 1)Ck+1) = R(DY

S (k + 1)Ck+1). (48)

Consequently, based on (47) and (48), we have

R(D(X1:S)CkGk) = R(D(Y1:S)CkGk).

Using this equation together with (46) and Lemma A.3,

R
(
D(X1:S+k)CkGk

)
= R

(
D(Y1:S+k)CkGk

)
.

Moreover, using (47) one can write

R
(
D(X1:S+k)Ck+1

)
= R

(
D(Y1:S+k)Ck+1

)
.

Hence, there exists a nonsingular square matrix K∗ such that

D(X1:S+k)Ck+1K
∗ = D(Y1:S+k)Ck+1. (49)

Also, based on (48) and noting that DX
S (k+1), DX

S (k+1),
and Ck+1 have full column rank, there exists a nonsingular
square matrix K such that

DX
S (k + 1)Ck+1K = DY

S (k + 1)Ck+1. (50)

Using the first S rows of (49) and (50), one can write

D(X1:S)Ck+1K
∗ = D(Y1:S)Ck+1,

D(X1:S)Ck+1K = D(Y1:S)Ck+1.

By subtracting the second equation from the first one, we get

D(X1:S)Ck+1(K∗ −K) = 0.

Moreover, since D(X1:S)Ck+1 has full column rank, we
deduce K∗ = K. Using this together with (49) and (50) yields

R
(
D(X1:S+k+1)Ck+1

)
= R

(
D(Y1:S+k+1)Ck+1

)
. (51)

From (51), the definition of CSSD
k+1 and Theorem 5.1(c), we

deduce R(Ck+1) ⊆ R(CSSD
k+1), concluding the proof.

Theorem 6.3 establishes the equivalence between the SSSD
and SSD algorithms. As a consequence, all results regarding
the identification of Koopman-invariant subspaces and eigen-
functions presented in Section V are also valid for the output
of the SSSD algorithm.

Remark 6.4: (Time and Space Complexity of the SSSD
Algorithm): Given the first N data snapshots and a dictionary
with Nd elements, with N > S ≥ Nd, and assuming that
operations on scalar elements require time and space of order
O(1), the most time and memory consuming operation in
the SSSD algorithm is Step 10 invoking SSD. In this step,
the most time consuming operation is performing SVD, with
time complexity O(SN2

d) and space complexity of O(SNd),
see e.g., [49]. After having performed the first SVD, the
ensuing ones result in a reduction of the dimension of the
subspace. Therefore, the SSSD algorithm performs at most
N − S SVDs with no subspace reduction with overall time
complexity O(NSN2

d) and at most Nd SVD operations with
subspace reductions with overall time complexity O(SN3

d).
Considering the fact that N ≥ Nd, the complexity of the
SSSD algorithm is O(NSN2

d). Moreover, in many real world
applications S = O(Nd) (in fact usually S = Nd), which
reduces the time complexity of SSSD to O(NN3

d), which is
the same complexity as SSD. Moreover, since we can reuse
the space used in Step 10 at each iteration, and considering
the fact that the space complexity of this step is O(SNd),
we deduce that the space complexity of SSSD is O(SNd).
This usually reduces to O(N2

d) since S = O(Nd) in many
real-world applications. �

Remark 6.5: (SSSD is More Stable and Runs Faster than
SSD): The SSSD algorithm is more computationally stable
than SSD, since it always works with matrices of size at
most (S + 1) × Nd while SSD works with matrices of size
N × Nd. Moreover, even though SSD and SSSD have the
same time complexity, the SSSD algorithm run faster for two
reasons. First, at each iteration of the SSSD algorithm, the
dictionary gets smaller, which reduces the cost of computation
for the remaining data snapshots. Second, the characterizations
in Remarks 5.2 and 6.4 only consider the number of floating
point operations for the time complexity and ignore the amount
of time used for loading the data. SSSD needs to load signif-
icantly smaller data matrices, which leads to a considerable
reduction in run time compared to SSD. �

12

VII. APPROXIMATING KOOPMAN-INVARIANT SUBSPACES

We note that, if the span of the original dictionary D
does not contain any Koopman-invariant subspace, then the
SSD algorithm returns the trivial solution, which does not
result in any information about the behavior of the dynamical
system. To circumvent this issue, here we propose a method
to approximate Koopman-invariant subspaces. Noting the fact
that the existence of a Koopman-invariant subspace translates
into the rank deficiency of the concatenated matrix [Ai, Bi] in
Step 4 of the SSD algorithm, we propose to replace the null
function in SSD with the approx-null routine presented in
Algorithm 3 below. This routine constructs an approximated
null space by selecting a set of small singular values. The
parameter ε > 0 in Algorithm 3 is a design choice that tunes
the accuracy of the approximation3.

Algorithm 3 approx-null(A,B, ε)

O Singular value decomposition of [A,B]
1: {U, S, V } ← svd([A,B]) . USV T = [A,B]

2: m←]cols(V) . # of columns of V

3: kmin ←
{

mink s. t.
(∑m

i=k S2
i,i

‖S‖2F
≤ ε2 ∧ k >]cols(A)

)}
O Choosing the right singular vectors corresponding to
small singular values as the approximated null space

4: if kmin = ∅ then
5: return ∅
6: break
7: else
8: Z ← (V T

kmin:m)T

9: end if
O Make sure Assumption 3.1 holds for the output

10: while 1 do

11:

[
ZA

ZB

]
← Z .]rows(ZA) =]rows(ZB)

12: if rank(ZA) = rank(ZB) =]cols(Z) then
13: return Z . Basis for approximated null space
14: break
15: end if

O Reducing the space
16: if]cols(Z) = 1 then
17: return ∅
18: break
19: else
20: Z ← (ZT

2:]cols(Z))
T . Removing the 1st column

21: end if
22: end while

The next result studies the basic properties of Algorithm 3.
Proposition 7.1: (Properties of Algorithm 3): Let A and

B be matrices of equal size, ε > 0, and Z =
approx-null(A,B, ε). Then,

(a) Algorithm 3 terminates in finite iterations;
(b) Z is either ∅ or has full column rank;

3In Algorithm 3, A and B have equal size and both have full column rank.

(c) if Z 6= ∅, let Z = [(ZA)T , (ZB)T]T with ZA, ZB of
equal size. Then ZA and ZB have full column rank.

Proof: (a) We prove it by contradiction, i.e., suppose the
algorithm does not terminate in finite iterations. Let Zi be the
internal matrix in Step 8 at iteration i. Since by construction
kmin >]cols(A) and m =]cols(V) =]cols(A) +]cols(B)
(cf. Step 2), we deduce

]cols(Z1) = m− kmin ≤]cols(B). (52)

Moreover, since we assumed the algorithm never termi-
nates, it executes Step 20 at each iteration and consequently,
]cols(Zi+1) =]cols(Zi) − 1 for i ∈ N. As a result, one can
use (52) to write

]cols(Zj) =]cols(Z1)− j + 1 ≤]cols(B)− j + 1,

which leads to]cols(Zj) < 0 for j >]cols(B) + 1,
contradicting]cols(Zj) ≥ 0.

(b) There are three ways for Algorithm 3 to terminate: either
Steps 13-14, Steps 5-6, or Steps 17-18. The latter two cases
imply Z = ∅. In the other case, since the columns of Z are
selected from the right singular vectors of [A,B], they are
nonzero and mutually orthogonal. Consequently, Z has full
column rank.

(c) Since Z 6= ∅, the algorithm executes Steps 13-14
upon termination. Hence, the condition in Step 12 holds, and
consequently ZA and ZB have full column rank.

We next characterize the quality of Algorithm 3’s output.
Proposition 7.2: (Quality of Low-Rank Approximation of

[A,B] Constructed with Output of Algorithm 3): Let ε > 0,
A and B full column rank matrices with equal size, and
assume Z = null-approx(A,B, ε) 6= ∅. Denote W = [A,B]
and let W = USV T be its singular value decomposition.
Let S̄ be defined by setting in S the entries S̄i,i = 0
for i ∈ {]cols(V) −]cols(Z) + 1, . . . ,]cols(V)}. Define
W̄ = US̄V T and express it as the concatenation W̄ = [Ā, B̄],
where Ā and B̄ have the same size. Then,

(a) ‖W − W̄‖F ≤ ε‖W‖F ;
(b) the columns of Z form a basis for the null space of W̄ ;
(c) ĀZA = −B̄ZB , where Z = [(ZA)T , (ZB)T]T and

ZA, ZB have the same size.
Proof: (a) By construction we have Z =

V T
(]cols(V)−]cols(Z)+1):]cols(V), i.e., the columns of Z are

the last]cols(Z) columns of V , corresponding to the
smallest singular values of W . Moreover, based on Step 3
of the algorithm, the fact that the singular values are
ordered in a decreasing manner in S, and noting that
kmin ≤]cols(V)−]cols(Z) + 1, one can write

]cols(V)∑
i=]cols(V)−]cols(Z)+1

S2
i,i ≤ ε2

]cols(V)∑
i=1

S2
i,i = ε2‖W‖2F .

The proof concludes by noting that the left hand side term in
the previous equation is equal to ‖W − W̄‖2F .

(b) The proof directly follows from the fact that W̄ =
US̄V T is the singular value decomposition of W̄ and the
columns of Z are the right singular vectors corresponding to
zero singular values of W̄ .

13

(c) Based on (b), W̄Z = 0. Hence, ĀZA = −B̄ZB .
We formally define the Approximated-SSD algorithm as the

modification of SSD that replaces Step 4 of Algorithm 1 by[
ZA
i

ZB
i

]
← approx-null(Ai, Bi, ε).

Since all other steps of Approximated-SSD are identical to
SSD, we omit presenting it for space reasons.

For convenience, we denote the output of the Approximated
SSD algorithm by CSSD

aprx. Proposition 7.1 completely preserves
the logical structure for the proof of Theorem 5.1(a) and, as
a result, we deduce that the Approximated-SSD algorithm
terminates in at most Nd iterations. Moreover, the CSSD

aprx

matrix is zero or has full column rank, since the second part
of the proof for Theorem 5.1(b) also holds for Approximated-
SSD. If CSSD

aprx 6= 0, one can define the reduced dictionary with
Ñd =]cols(CSSD

aprx) elements as

D̃aprx(x) = D(x)CSSD
aprx, ∀x ∈M. (53)

We propose calculating the linear prediction matrix KSSD
aprx by

solving the following total least squares (TLS) problem (see
e.g. [51] for more information on TLS)

minimize
K,∆1,∆2

‖[∆1,∆2]‖F (54a)

subject to D̃aprx(Y) + ∆2 = (D̃aprx(X) + ∆1)K. (54b)

Even though TLS problems do not always have a solution, the
next result shows that (54) does. We also provide its closed-
form solution and a bound on the accuracy of the prediction
on the available data based on the parameter ε.

Theorem 7.3: (Solution and Prediction Accuracy of (54)):
Let [D̃aprx(X), D̃aprx(Y)] = USV T be the singular value
decomposition of [D̃aprx(X), D̃aprx(Y)]. Let S̄ be defined by
setting in S the entries S̄i,i = 0 for i ∈ {Ñd + 1, . . . , 2Ñd}.
Let US̄V T = [Ā, B̄], with Ā, B̄ of the same size. Define

KSSD
aprx = Ā†B̄, (55a)

[∆∗1,∆
∗
2] = [Ā, B̄]− [D̃aprx(X), D̃aprx(Y)]. (55b)

Then, KSSD
aprx, ∆∗1, ∆∗2 are the global solution of (54) and

‖[∆∗1,∆∗2]‖F ≤ ε‖[D̃aprx(X), D̃aprx(Y)]‖F . (56)

Proof: One can rewrite (54b) as(
[D̃aprx(X), D̃aprx(Y)] + [∆1,∆2]

) [K
−IÑd

]
= 0,

which implies that rank([D̃aprx(X), D̃aprx(Y)]+[∆1,∆2]) ≤
Ñd. Using Eckart-Young theorem [52], one deduces that
[Ā, B̄] is the closest matrix (in Frobenius norm) to
[D̃aprx(X), D̃aprx(Y)] of rank smaller than or equal to Ñd. In
other words, ∆∗1 and ∆∗2 in (55b) minimize the cost function
in (54a). Next, we need to show that they also satisfy (54b)
with KSSD

aprx defined in (55a).
Let t be the termination iteration of the Approximated-SSD

algorithm. Since CSSD
aprx 6= 0, the algorithm executes Step 10.

Therefore, the condition in Step 9 holds and]rows(ZA
t) ≤

]cols(ZA
t), where [(ZA

t)T , (ZB
t)T] = approx-null(At, Bt, ε).

In addition, based on Proposition 7.1(c), ZA
t and ZB

t are

nonsingular square matrices. Noting that by definition in
the Approximated-SSD algorithm, At = D(X)CSSD

aprx =

D̃aprx(X) and Bt = D(Y)CSSD
aprx = D̃aprx(Y), one can use

Proposition 7.2(c) with W = [D̃aprx(X), D̃aprx(Y)] and W̄ =
[Ā, B̄] to write ĀZA

t = −B̄ZB
t . Since ZA

t and ZB
t are nonsin-

gular square matrices, the previous equation leads to R(Ā) =
R(B̄) and ĀKSSD

aprx = B̄, where KSSD
aprx is defined in (55a). As a

result, ∆∗1,∆
∗
2,K

SSD
aprx satisfy the constraint (54b). Finally, the

accuracy bound defined in (56) follows from Proposition 7.2(a)
with W = [D̃aprx(X), D̃aprx(Y)] and W̄ = [Ā, B̄].

Note that, unlike in the exact case (cf. Theorem 5.8),
Theorem 7.3 does not provide an out-of-sample bound on
prediction accuracy. According to this result, a small pertur-
bation [∆∗1,∆

∗
2] to the matrix [D̃aprx(X), D̃aprx(Y)] allows

us to describe the evolution of the dictionary matrices lin-
early through KSSD

aprx. Moreover, the Frobenius norm of the
perturbation is upper bounded by ε‖[D̃aprx(X), D̃aprx(Y)]‖F ,
which implies that a smaller ε leads to better accuracy on the
observed samples.

VIII. SIMULATION RESULTS

We illustrate the efficacy of the proposed methods in two
examples.4

Example 8.1: (Unstable Discrete-time Polynomial System):
Consider the nonlinear system

x+
1 = 1.1x1

x+
2 = 1.2x2 + 0.1x2

1 + 0.1, (57)

with state xT = [x1, x2]T . System (57) is actually an unsta-
ble Polyflow [53] which has a finite-dimensional Koopman-
invariant subspace comprised of polynomials. We use the
dictionary D(x) = [1, x1, x2, x

2
1, x1x2, x

2
2, x

3
1, x1x

2
2, x

2
1x2, x

3
2]

with Nd = 10. Moreover, we gather 2 × 104 data snap-
shots uniformly sampled from [−2, 2] × [−2, 2]. We use the
SSD and SSSD strategies to identify the maximal Koopman-
invariant subspaces in span(D(x)). In the SSSD method, we
use the first 10 data snapshots as signature snapshots and
feed the rest of the data to the algorithm according to the
order they appear in the data set. Similarly to the previous
example, we use the strategy explained in Remark 5.4 with
ε = 10−12 to overcome error due to the use of finite-precision
machines. Both methods find bases for the 6-dimensional
subspace spanned by {1, x1, x2, x1x2, x

2
1, x

3
1}, which is the

maximal Koopman-invariant subspace in span(D(x)). The
SSSD method, however, performs the calculations 96% faster
than SSD. One can find KSSD by applying EDMD on either of
the identified dictionaries according to (25). Moreover, based
on Theorems 5.5 and 5.7, we use the eigendecomposition of
KSSD to find all the Koopman eigenfunctions associated with
the system (57) in span(D(x)). Table I shows the identified
eigenfunctions. One can use direct calculation to verify that
the identified functions are the Koopman eigenfunctions asso-
ciated with system (57). Note that since x1 and x2 are both

4We have chosen on purpose low-dimensional examples to be able to fully
detail the identified Koopman eigenvalues and associated subspaces. However,
it is worth pointing out that the results presented here are applicable without
any restriction on the type of dynamical system, its dimension, or the sparsity
of the model in the dictionary.

14

in the span of the identified Koopman-invariant subspace, one
can fully characterize the behavior of the system using the
eigenfunctions and (7) linearly or directly using the identified
dictionary and KSSD.

TABLE I: Identified eigenfunctions and eigenvalues of the Koopman operator
associated with system (57).

Eigenfunction Eigenvalue

φ1(x) = 1 λ1 = 1

φ2(x) = x1 λ2 = 1.1

φ3(x) = x21 λ3 = 1.21

φ4(x) = 20x21 − 2x2 − 1 λ4 = 1.2

φ5(x) = x31 λ5 = 1.331

φ6(x) = 20x31 − 2x1x2 − x1 λ6 = 1.32

Next, we evaluate the effectiveness of the original dictionary
D and the dictionary D̃ identified by SSD (equivalently, by
SSSD) for long-term prediction. To do this, we consider error
functions defined as follows. Given an arbitrary dictionary D,
consider its associated matrix K = EDMD(D, X, Y). For
a trajectory {x(k)}Mk=0 of (57) with length M and initial
condition x0, let

Erelative(k) =

∥∥D(x(k))−D(x0)Kk
∥∥

2

‖D(x(k))‖2
× 100, (58a)

Eangle(k) = ∠
(
D(x(k)),D(x0)Kk

)
, (58b)

where D(x0)Kk is the predicted dictionary vector at time k
calculated using the dictionary D. Erelative corresponds to the
relative error in magnitude between the predicted and exact
dictionary vectors and Eangle corresponds to the error in the
angle of the vectors.

We compute the errors associated to the original dictio-
nary D, denoted EOrig

relative and EOrig
angle, and the errors associated

to the SSD dictionary D̃, denoted ESSD
relative and ESSD

angle. Figure 1
illustrates these errors along a trajectory starting from a ran-
dom initial condition in [−2, 2]×[−2, 2] for 20 time steps. The
plot shows the importance of the dictionary selection when
performing EDMD. Unlike the prediction on span(D(x)),
the prediction on the SSD subspace span(D̃(x)) matches
the behavior of the system exactly. This is a direct conse-
quence of the fact that span(D̃(x)) is a Koopman-invariant
subspace, on which EDMD fully captures the behavior of the
operator through KSSD. It is worth mentioning that based
on Proposition 4.2, EDMD with dictionary D also predicts
the functions in span(D̃) exactly. However, its prediction for
functions outside of span(D̃) leads to large errors.

Example 8.2: (Duffing Equation): Here, we investigate the
efficacy of the proposed methods in approximating Koopman
eigenfunctions and invariant subspaces. Consider the Duffing
equation [35, Section 4.2]

ẋ1 = x2

ẋ2 = −0.5x2 + x1 − x3
1, (59)

with state xT = [x1, x2]T . The system has one unstable
equilibrium at the origin and two locally stable equilibria at
[±1, 0]T . We consider the discretized version of (59) with

0 5 10 15 20

time step

0

200

400

600

800

1000

re
la

ti
v

e
er

ro
r

(%
)

E
relative

SSD

E
relative

Orig

0 5 10 15 20

time step

0

1

2

3

4

an
g
le

 (
ra

d
)

E
angle

SSD

E
angle

Orig

Fig. 1: Relative (left) and angle (right) prediction errors on the original and
SSD subspaces for system (57) on a trajectory of length M = 20.

timestep ∆t = 0.01s and gather N = 5000 data snapshots
uniformly sampled fromM = [−2, 2]×[−2, 2]. Moreover, we
use the dictionary D comprised of all Nd = 36 monomials up
to degree 7 in the form of

∏7
i=1 yi, where yi ∈ {1, x1, x2}.

The maximal Koopman-invariant subspace in the span of
the dictionary is one dimensional, spanned by the trivial
eigenfunction φ(x) ≡ 1. Hence, applying the SSD and SSSD
algorithms would result in a trivial solution. Instead, we apply
the Approximated-SSD algorithm on the available dictionary
snapshots with the accuracy parameter ε = 10−3. The outcome
is the dictionary D̃aprx with Ñd = 15 elements. We calculate
the linear prediction matrix KSSD

aprx using Theorem 7.3. The
norm of the perturbation ‖[∆∗1,∆∗2]‖F satisfies

‖[∆∗1,∆∗2]‖F ≈ 9.6× 10−4‖[D̃aprx(X), D̃aprx(Y)]‖F ,

agreeing with the upper bound provided in Theorem 7.3.
We approximate the eigenfunctions of the Koopman operator
using the eigendecomposition of KSSD

aprx. For space reasons, we
only illustrate the leading nontrivial approximated Koopman
eigenfunctions with eigenvalue closest to the unit circle. Fig-
ure 2(left) shows the real-valued approximated eigenfunction
corresponding to the eigenvalue λ = 0.9919. Despite being an
approximation, the eigenfunction captures the behavior of the
vector field accurately and correctly identifies the attractive-
ness of the two locally stable equilibria. Given that |λ| < 1,
Figure 2(left) predicts that the trajectories eventually converge
to one of the stable equilibria. Figure 2(right) shows the
absolute value of the approximated Koopman eigenfunctions
corresponding to the eigenvalues λ = 0.9989 ± 0.0037j.
Similarly to the other plot, it captures information about the
shape of the vector field such as the attractive equilibria and
their regions of attraction.

-2 -1 0 1 2

x
1

-2

-1

0

1

2

x
2

0

2

4

6

8

-2 -1 0 1 2

x
1

-2

-1

0

1

2

x
2

0.2

0.4

0.6

0.8

Fig. 2: The approximated eigenfunction corresponding to the eigenvalue
λ = 0.9919 (left) and the absolute value of the approximated eigenfunctions
corresponding to the eigenvalues λ = 0.9989 ± 0.0037j (right) for the
Koopman operator associated with (59), as identified by the Approximated-
SSD algorithm.

We use the relative and angle errors defined in (58) to
compare the prediction accuracy of the original dictionary D

15

and the Approximated-SSD dictionary D̃aprx (for which we
use KSSD

aprx). Figure 3 illustrates the relative and angle errors
along a trajectory starting from a random initial condition in
[−2, 2]×[−2, 2] for 30 timesteps. The plot shows the superior-
ity of EDMD over the subspace identified by Approximated-
SSD in long-term prediction of dynamical behavior.

0 10 20 30

time step

0

20

40

60

80

re
la

ti
v

e
er

ro
r

(%
)

E
relative

Approx-SSD

E
relative

Orig

0 10 20 30

time step

0

0.1

0.2

0.3

0.4

an
g

le
 (

ra
d

)

E
angle

Approx-SSD

E
angle

Orig

Fig. 3: Relative (left) and angle (right) prediction errors on Approximated-SSD
and original subspaces for system (59) on a trajectory of length M = 30.

IX. CONCLUSIONS

We have studied the characterization of Koopman-invariant
subspaces and Koopman eigenfunctions associated to a dy-
namical system by means of data-driven methods. We have
shown that the application of EDMD over a given dictionary
forward and backward in time fully characterizes whether a
function evolves linearly in time according to the available
data. Building on this result, and under dense sampling, we
have established that functions satisfying this condition are
Koopman eigenfunctions almost surely. We have developed
the SSD algorithm to identify the maximal Koopman-invariant
subspace in the span of the given dictionary and formally char-
acterized its correctness. Finally, we have developed exten-
sions to scenarios with large and streaming data sets, where the
algorithm refines its output as new data becomes available, and
to scenarios where the original dictionary does not contain suf-
ficient informative eigenfunctions, in which case the algorithm
obtains instead approximations of the Koopman eigenfunctions
and invariant subspaces. Future work will develop parallel and
distributed counterparts of the algorithms proposed here over
network systems, obtain out-of-sample bounds on prediction
accuracy for the output of the Approximated-SSD algorithm,
investigate the design of noise-resilient methods to identify
Koopman eigenfunctions and invariant subspaces, and explore
methods to expand the original dictionary to ensure the exis-
tence of non-trivial invariant subspaces.

REFERENCES

[1] M. Haseli and J. Cortés, “Efficient identification of linear evolutions in
nonlinear vector fields: Koopman invariant subspaces,” in IEEE Conf.
on Decision and Control, Nice, France, Dec. 2019, pp. 1746–1751.

[2] B. O. Koopman, “Hamiltonian systems and transformation in Hilbert
space,” Proceedings of the National Academy of Sciences, vol. 17, no. 5,
pp. 315–318, 1931.

[3] B. O. Koopman and J. V. Neumann, “Dynamical systems of continuous
spectra,” Proceedings of the National Academy of Sciences, vol. 18,
no. 3, pp. 255–263, 1932.

[4] I. Mezić, “Spectral properties of dynamical systems, model reduction
and decompositions,” Nonlinear Dynamics, vol. 41, no. 1-3, pp. 309–
325, 2005.

[5] C. W. Rowley, I. Mezić, S. Bagheri, P. Schlatter, and D. S. Henningson,
“Spectral analysis of nonlinear flows,” Journal of Fluid Mechanics, vol.
641, pp. 115–127, 2009.

[6] M. Budišić, R. Mohr, and I. Mezić, “Applied Koopmanism,” Chaos,
vol. 22, no. 4, p. 047510, 2012.

[7] A. Surana, M. O. Williams, M. Morari, and A. Banaszuk, “Koopman
operator framework for constrained state estimation,” in IEEE Conf. on
Decision and Control, Melbourne, Australia, 2017, pp. 94–101.

[8] M. Netto and L. Mili, “A robust data-driven Koopman Kalman filter for
power systems dynamic state estimation,” IEEE Transactions on Power
Systems, vol. 33, no. 6, pp. 7228–7237, 2018.

[9] A. Mauroy and J. Goncalves, “Koopman-based lifting techniques for
nonlinear systems identification,” IEEE Transactions on Automatic Con-
trol, vol. 65, no. 6, pp. 2550–2565, 2020.

[10] D. Bruder, C. D. Remy, and R. Vasudevan, “Nonlinear system identifi-
cation of soft robot dynamics using Koopman operator theory,” in IEEE
Int. Conf. on Robotics and Automation, Montreal, Canada, May 2019,
pp. 6244–6250.

[11] B. Kramer, P. Grover, P. Boufounos, S. Nabi, and M. Benosman,
“Sparse sensing and DMD-based identification of flow regimes and
bifurcations in complex flows,” SIAM Journal on Applied Dynamical
Systems, vol. 16, no. 2, pp. 1164–1196, 2017.

[12] S. Sinha, U. Vaidya, and R. Rajaram, “Operator theoretic framework for
optimal placement of sensors and actuators for control of nonequilibrium
dynamics,” Journal of Mathematical Analysis and Applications, vol. 440,
no. 2, pp. 750–772, 2016.

[13] S. Klus, F. Nüske, P. Koltai, H. Wu, I. Kevrekidis, C. Schütte, and F. Noé,
“Data-driven model reduction and transfer operator approximation,”
Journal of Nonlinear Science, vol. 28, no. 3, pp. 985–1010, 2018.

[14] A. Alla and J. N. Kutz, “Nonlinear model order reduction via dynamic
mode decomposition,” SIAM Journal on Scientific Computing, vol. 39,
no. 5, pp. B778–B796, 2017.

[15] M. Korda and I. Mezić, “Linear predictors for nonlinear dynamical sys-
tems: Koopman operator meets model predictive control,” Automatica,
vol. 93, pp. 149–160, 2018.

[16] H. Arbabi, M. Korda, and I. Mezic, “A data-driven Koopman model
predictive control framework for nonlinear flows,” arXiv preprint
arXiv:1804.05291, 2018.

[17] S. Peitz and S. Klus, “Koopman operator-based model reduction for
switched-system control of PDEs,” Automatica, vol. 106, pp. 184–191,
2019.

[18] B. Huang, X. Ma, and U. Vaidya, “Feedback stabilization using Koop-
man operator,” in IEEE Conf. on Decision and Control, Miami Beach,
FL, Dec. 2018, pp. 6434–6439.

[19] E. Kaiser, J. N. Kutz, and S. L. Brunton, “Data-driven discovery of
Koopman eigenfunctions for control,” arXiv preprint arXiv:1707.01146,
2017.

[20] A. Sootla and D. Ernst, “Pulse-based control using Koopman operator
under parametric uncertainty,” IEEE Transactions on Automatic Control,
vol. 63, no. 3, pp. 791–796, 2017.

[21] A. Narasingam and J. S. Kwon, “Data-driven feedback stabilization
of nonlinear systems: Koopman-based model predictive control,” arXiv
preprint arXiv:2005.09741, 2020.

[22] G. Mamakoukas, M. Castano, X. Tan, and T. Murphey, “Local Koopman
operators for data-driven control of robotic systems,” in Robotics:
Science and Systems, Freiburg, Germany, June 2019.

[23] M. L. Castaño, A. Hess, G. Mamakoukas, T. Gao, T. Murphey, and
X. Tan, “Control-oriented modeling of soft robotic swimmer with Koop-
man operators,” in IEEE/ASME International Conference on Advanced
Intelligent Mechatronics (AIM), 2020, pp. 1679–1685.

[24] A. Mauroy and I. Mezić, “Global stability analysis using the eigen-
functions of the Koopman operator,” IEEE Transactions on Automatic
Control, vol. 61, no. 11, pp. 3356–3369, 2016.

[25] P. J. Schmid, “Dynamic mode decomposition of numerical and experi-
mental data,” Journal of Fluid Mechanics, vol. 656, pp. 5–28, 2010.

[26] K. K. Chen, J. H. Tu, and C. W. Rowley, “Variants of dynamic mode
decomposition: boundary condition, Koopman, and Fourier analyses,”
Journal of Nonlinear Science, vol. 22, no. 6, pp. 887–915, 2012.

[27] J. H. Tu, C. W. Rowley, D. M. Luchtenburg, S. L. Brunton, and
J. N. Kutz, “On dynamic mode decomposition: theory and applications,”
Journal of Computational Dynamics, vol. 1, no. 2, pp. 391–421, 2014.

[28] M. S. Hemati, M. O. Williams, and C. W. Rowley, “Dynamic mode
decomposition for large and streaming datasets,” Physics of Fluids,
vol. 26, no. 11, p. 111701, 2014.

[29] H. Zhang, C. W. Rowley, E. A. Deem, and L. N. Cattafesta, “Online
dynamic mode decomposition for time-varying systems,” SIAM Journal
on Applied Dynamical Systems, vol. 18, no. 3, pp. 1586–1609, 2019.

[30] S. Anantharamu and K. Mahesh, “A parallel and streaming dynamic
mode decomposition algorithm with finite precision error analysis for

16

large data,” Journal of Computational Physics, vol. 380, pp. 355–377,
2019.

[31] S. T. M. Dawson, M. S. Hemati, M. O. Williams, and C. W. Rowley,
“Characterizing and correcting for the effect of sensor noise in the
dynamic mode decomposition,” Experiments in Fluids, vol. 57, no. 3,
p. 42, 2016.

[32] M. S. Hemati, C. W. Rowley, E. A. Deem, and L. N. Cattafesta,
“De-biasing the dynamic mode decomposition for applied Koopman
spectral analysis of noisy datasets,” Theoretical and Computational Fluid
Dynamics, vol. 31, no. 4, pp. 349–368, 2017.

[33] M. R. Jovanović, P. J. Schmid, and J. W. Nichols, “Sparsity-promoting
dynamic mode decomposition,” Physics of Fluids, vol. 26, no. 2, p.
024103, 2014.

[34] S. L. Clainche and J. M. Vega, “Higher-order dynamic mode decom-
position,” SIAM Journal on Applied Dynamical Systems, vol. 16, no. 2,
pp. 882–925, 2017.

[35] M. O. Williams, I. G. Kevrekidis, and C. W. Rowley, “A data-driven
approximation of the Koopman operator: Extending dynamic mode
decomposition,” Journal of Nonlinear Science, vol. 25, no. 6, pp. 1307–
1346, 2015.

[36] M. Korda and I. Mezić, “On convergence of extended dynamic mode
decomposition to the Koopman operator,” Journal of Nonlinear Science,
vol. 28, no. 2, pp. 687–710, 2018.

[37] M. Haseli and J. Cortés, “Approximating the Koopman operator using
noisy data: noise-resilient extended dynamic mode decomposition,” in
American Control Conference, Philadelphia, PA, July 2019, pp. 5499–
5504.

[38] E. Qian, B. Kramer, B. Peherstorfer, and K. Willcox, “Lift & learn:
Physics-informed machine learning for large-scale nonlinear dynamical
systems,” Physica D: Nonlinear Phenomena, vol. 406, p. 132401, 2020.

[39] Q. Li, F. Dietrich, E. M. Bollt, and I. G. Kevrekidis, “Extended dynamic
mode decomposition with dictionary learning: A data-driven adaptive
spectral decomposition of the Koopman operator,” Chaos, vol. 27,
no. 10, p. 103111, 2017.

[40] N. Takeishi, Y. Kawahara, and T. Yairi, “Learning Koopman invariant
subspaces for dynamic mode decomposition,” in Conference on Neural
Information Processing Systems, 2017, pp. 1130–1140.

[41] E. Yeung, S. Kundu, and N. Hodas, “Learning deep neural network
representations for Koopman operators of nonlinear dynamical systems,”
in American Control Conference, Philadelphia, PA, July 2019, pp. 4832–
4839.

[42] S. E. Otto and C. W. Rowley, “Linearly recurrent autoencoder networks
for learning dynamics,” SIAM Journal on Applied Dynamical Systems,
vol. 18, no. 1, pp. 558–593, 2019.

[43] S. L. Brunton, B. W. Brunton, J. L. Proctor, and J. N. Kutz, “Koop-
man invariant subspaces and finite linear representations of nonlinear
dynamical systems for control,” PLOS One, vol. 11, no. 2, pp. 1–19,
2016.

[44] M. Korda and I. Mezic, “Optimal construction of Koopman eigen-
functions for prediction and control,” IEEE Transactions on Automatic
Control, 2020, to appear.

[45] S. Klus, F. Nüske, S. Peitz, J. H. Niemann, C. Clementi, and
C. Schütte, “Data-driven approximation of the Koopman generator:
Model reduction, system identification, and control,” arXiv preprint
arXiv:1909.10638, 2019.

[46] M. Haseli and J. Cortés, “Learning Koopman eigenfunctions and
invariant subspaces from data: Symmetric Subspace Decomposition,”
https://arxiv.org/abs/1909.01419, 2020.

[47] G. B. Folland, Real Analysis: Modern Techniques and Their Applica-
tions, 2nd ed. New York: Wiley, 1999.

[48] M. Korda and I. Mezić, “Optimal construction of Koopman
eigenfunctions for prediction and control,” 2019. [Online]. Available:
https://hal.archives-ouvertes.fr/hal-02278835

[49] X. Li, S. Wang, and Y. Cai, “Tutorial: Complexity analysis of singular
value decomposition and its variants,” arXiv preprint arXiv:1906.12085,
2019.

[50] L. Mirsky, “Symmetric gauge functions and unitarily invariant norms,”
The Quarterly Journal of Mathematics, vol. 11, no. 1, pp. 50–59, 1960.

[51] I. Markovsky and S. V. Huffel, “Overview of total least-squares meth-
ods,” Signal processing, vol. 87, no. 10, pp. 2283–2302, 2007.

[52] C. Eckart and G. Young, “The approximation of one matrix by another
of lower rank,” Psychometrika, vol. 1, no. 3, pp. 211–218, 1936.

[53] R. M. Jungers and P. Tabuada, “Non-local linearization of nonlinear
differential equations via polyflows,” in American Control Conference,
Philadelphia, PA, 2019, pp. 1906–1911.

APPENDIX

Here we gather some linear algebraic results. The proofs
are presented in the online version [46].

Lemma A.1: (Intersection of Linear Spaces): Let A,B ∈
Rm×n be matrices with full column rank. Suppose that the
columns of Z = [(ZA)T , (ZB)T]T ∈ R2n×l form a basis for
the null space of [A,B], where ZA, ZB ∈ Rn×l. Then,

(a) R(AZA) = R(A) ∩R(B);
(b) ZA and ZB have full column rank.
Lemma A.2: Let A,C,D be matrices of appropriate sizes,

with A having full column rank. Then R(AC) ⊆ R(AD) if
and only if R(C) ⊆ R(D).

Lemma A.3: Let A1, B1 ∈ Rm×n, A2, B2 ∈ Rl×n, and
C ∈ Rn×k with A1, B1, C having full column rank. If

R

([
A1

A2

])
= R

([
B1

B2

])
, R(A1C) = R(B1C),

then

R

([
A1

A2

]
C

)
= R

([
B1

B2

]
C

)
.

Lemma A.4: Let A, {Ci}∞i=1, and Ĉ be matrices of ap-
propriate sizes. Assume that A has full column rank and
R(Ĉ) =

⋂∞
i=1R(Ci). Then R(AĈ) =

⋂∞
i=1R(ACi).

Masih Haseli was born in Kermanshah, Iran in
1991. He received the B.Sc. degree, in 2013, and
M.Sc. degree, in 2015, both in Electrical Engi-
neering from Amirkabir University of Technology
(Tehran Polytechnic), Tehran, Iran. In 2017, he
joined the University of California, San Diego
to pursue the Ph.D. degree in Mechanical and
Aerospace Engineering. His research interests in-
clude system identification, nonlinear systems, net-
work systems, data-driven modeling and control, and
distributed and parallel computing. Mr. Haseli was

the recipient of the bronze medal in Iran’s national mathematics competition
in 2014.

Jorge Cortés (M’02, SM’06, F’14) received the
Licenciatura degree in mathematics from Univer-
sidad de Zaragoza, Zaragoza, Spain, in 1997, and
the Ph.D. degree in engineering mathematics from
Universidad Carlos III de Madrid, Madrid, Spain, in
2001. He held postdoctoral positions with the Uni-
versity of Twente, Twente, The Netherlands, and the
University of Illinois at Urbana-Champaign, Urbana,
IL, USA. He was an Assistant Professor with the
Department of Applied Mathematics and Statistics,
University of California, Santa Cruz, CA, USA, from

2004 to 2007. He is currently a Professor in the Department of Mechanical and
Aerospace Engineering, University of California, San Diego, CA, USA. He
is the author of Geometric, Control and Numerical Aspects of Nonholonomic
Systems (Springer-Verlag, 2002) and co-author (together with F. Bullo and S.
Martı́nez) of Distributed Control of Robotic Networks (Princeton University
Press, 2009). He is a Fellow of IEEE and SIAM. His current research interests
include distributed control and optimization, network science, resource-aware
control, nonsmooth analysis, reasoning and decision making under uncertainty,
network neuroscience, and multi-agent coordination in robotic, power, and
transportation networks.

