
Exploiting bias for cooperative planning in multi-agent tree search

Aaron Ma Michael Ouimet Jorge Cortés

Abstract— Graph search over states and actions is a valuable
tool for robotic planning and navigation. However, the required
computation is sensitive to the size of the state and action spaces,
a fact which is further exacerbated in multi-agent planning
by the number of agents and the presence of sparse reward
signals dependent on the cooperation of agents. To tackle these
problems, we introduce an algorithm that is pre-trained in a
centralized fashion but implemented on robots in a distributed
way at runtime. The centralized portion uses imitation learning
to iteratively construct policies that help guide an individual
agent’s own runtime search as well as predict other agents’
future actions by exploiting previously discovered joint actions.
Our algorithm includes a novel method of tree search based
on a mixture of the individual and joint action space, which
can be interpreted as a cascading effect where agents are
biased by exploration of new actions, exploitation of previously
profitable ones, and recommendation provided by deep neural
nets. Simulations show the efficacy of the proposed method in
cooperative scenarios with sparse rewards.

I. INTRODUCTION

Multi-agent planning is critical across robotic applications
in disaster relief scenarios, exploration, navigation, surveil-
lance, and production. Handling these scenarios is difficult
due to the large number of possible states and actions that
agents can take. This complexity grows when meeting objec-
tives requires coordination among the agents. To tackle this,
our approach leverages model-based reinforcement learning
to develop efficient algorithms which scale with the number
of agents and incorporate the need to plan cooperatively. We
rely on training deep neural networks to predict promising
actions for the purpose of improving the tree search in
the future. During runtime, agents use tree search in a
distributed fashion, guided by the previously-trained policy
to complete an objective under time constraints. Figure 1
shows illustrative examples of environments motivating our
algorithm design.

Literature review: To structure the multi-agent planning
algorithm, we draw motivation from coordination strategies
in swarm robotics where the goal is to satisfy some global
objective [1]–[6]. These algorithms utilize interaction and
communication between neighboring agents to act cooper-
atively. Inspired by the particular case where homogeneous
agents know each other’s states but cannot communicate their
intentions, we rely on model-based reinforcement learning.
Monte-Carlo tree search (MCTS) can be used in reinforce-
ment learning for decision making when a model is available
to predict the next state of the agents and environment given

This work was supported by ONR Award N00014-16-1-2836.
A. Ma and J. Cortés are with the Department of Mechani-

cal and Aerospace Engineering, University of California, San Diego.
{aam021,cortes}@ucsd.edu. M. Ouimet is with the Naval In-
formation Warfare Center Pacific. ouimet@spawar.navy.mil

(a) Ecomm (b) Ecov (c) Eres

Fig. 1. 2D multi-agent environments. In (a), agents must form a chain of
communication from an operator to a point of interest. Agents are able to
communicate if they are within a certain range of each other and agents are
rewarded if a communication link between the target and operator exists. In
(b), agents are able to detect in a cone-shaped region in front of them. The
agents are tasked to jointly maximize their detection in an area of interest
which is specified by an operator who is tasked to seek the target. In (c),
static resources are scattered in the environment. Agents receive a reward
for collecting a resource based on resource type, and some resources require
two or more agents for collection.

the set of actions taken. This model may be learned or
assumed given and can take the form of a Markov decision
process. A variation on MCTS called upper confidence
bound tree search (UCT) [7] chooses actions based on their
upper confidence. UCT is heavily influential in model-based
reinforcement learning as many variations of the tree search
exist [8]. The process of training a policy to mimic the
actions of another policy is called imitation learning [9].
The policy can also be trained to mimic the value of taking
actions at a given state [10]. These techniques have been
applied to tree searches in various ways. UCT has been
used to generate data for a final policy constructed through
imitation learning and deployed on Atari games [11]. Tree
search actions are sometimes used to construct a default
policy which helps simulate rollouts in UCT [12]. A variation
on this is to train a policy to reflect values of certain
actions at a given state in UCT, which are used instead of
rollouts [13]. Recently policies have been trained to reflect
the distribution of actions selected during a state in the tree
search. These policies are then used to influence the selection
of actions in future tree searches in both AlphaZero [14]
and Expert Iteration (ExIt) [15]. This improves planning in
large action spaces because agents focus on more promising
choices based on previous experiences. In both AlphaZero
and ExIt, agents play against a version of themselves to
improve without human intervention.

In multi-agent scenarios, tree search can be used to choose
actions in both a centralized and decentralized fashion. Deep
learning can be utilized to create trained policies which can
predict the actions of other agents and to aid an individual
agent’s own search [16]. Multi-agent Markov decision pro-
cesses (MMDPs) [17] are used to describe Markov decision
processes using joint actions from multiple agents. Another
approach to multi-agent tree search is DEC-MCTS [18],

where agents communicate compressed forms of their tree
searches. In contrast, we are interested in the scenario where
agents do not communicate their intentions during runtime.
The work [19] combines components of linear temporal
logic and hierarchical planning using MCTS with options
learned from reinforcement learning, and demonstrates them
on simulated autonomous driving. The work [20] uses tree
search to create artificial cyclic policies which improve
convergence in the multi-agent patrolling problem.

Statement of contributions: We provide two novel contri-
butions that work together as a refinement of existing state-
of-the-art model-based reinforcement learning techniques.
The first contribution, Multi-agent informed policy construc-
tion (MIPC), is a process where we use deep imitation
learning to build a heuristic offline, called informed policy,
that guides the agents’ tree search. Our strategy is to develop
an informed policy for a small number of agents and use
that informed policy to accelerate the tree search for environ-
ments with more agents. The second contribution, Cascading
agent tree search (CATS), is a variation on tree search with
an action selection that is biased by the informed policy
and is catered for multiple agents. We prove convergence
to optimal values of the Markov decision process under
the Bellman operation. To evaluate the performance of this
algorithm, we train a deep neural network as an informed
policy, deploy the algorithm distributively across agents,
and evaluate the performance across several metrics in the
environments of Figure 1. In a comparison with similar tree
search and model-free reinforcement learning approaches,
CATS excels when the number of agents increase and when
search time is limited to realistic time constraints for online
deployment.

Notation: Throughout the paper, we use the following
notation. Let R represent the set of real numbers. Let 〈a, b, c〉
and [a, b, c] represent a tuple and an ordered list, respectively,
of elements a, b, and c. In what follows, we use the notation
: to represent the concatenation of two lists. For example, if
A = [a, b] and B = [c, d], then A : B = [a, b, c, d]. Finally,
we use the notation |S| to represent the cardinality of a set S.

II. PRELIMINARIES

This section introduces basic preliminaries on Markov
decision processes and Monte-Carlo tree searches. We also
discuss imitation learning and its use to bias tree searching
in multi-agent environments to improve performance.

Markov decision processes and tree search: A Markov
decision process (MDP) is a tuple 〈A,S,R,Pr, γ〉, where s ∈
S and a ∈ A are state and action spaces respectively; Prs′|s,a
is the transition function which encodes the probability of
the next state being s′ given current state s and action a.
After every transition, a reward is obtained according to the
reward function R : s′, a, s → r ∈ R. A policy π specifies
the actions given a state according to π : s, a→ (0, 1) such
that

∑
a∈A πs,a = 1. Given a policy π, the state value is

V πs =
∑
a∈A

πs,a
∑
s′∈S

Prs′|s,a
(
Rs′,a,s + γV πs′

)
,

where γ ∈ [0, 1] is a discount factor. The state-action value
is the value of taking an action at state is

Qπs,a =
∑
s′∈S

Prs′|s,a
(
Rs′,a,s + γV πs′

)
.

When the transition function of the MDP is known, a
popular method for approximating the optimal policy is
Monte-Carlo tree search [8]. There are four major steps in
MCTS: selection, expansion, simulation, and backpropaga-
tion. During the selection process, actions are chosen from
A to transition the MDP until a state has been reached
for the first time, where it then expands the tree by one
node. The next step is to use a predefined rollout policy to
simulate future moves until a specified depth or state. If no
information is known regarding the environment, it is com-
mon for the rollout policy to return a random move. Finally,
rewards obtained during the tree traversal are backpropagated
to update the estimated values for taking actions at the visited
states.

Upper confidence bound tree search (UCT) [7] executes
the first step with the following action selection policy

argmax
a∈A

(
Q̂s,a + c1

√
lnNs
Ns,a

)
. (1)

Here the first term, Q̂s,a is the empirical value estimation
for choosing action a at state s, which is exploitive and
influences the action selection towards actions that yielded
higher rewards in previous iterations of the tree search. In
the second term, Ns and Ns,a are the number of times that
the state has been visited and the number of times that a
particular action has been chosen at that state, respectively.
The second term is explorative and biases the search towards
actions that have been selected least often at a state. The
probability that the optimal action is selected by UCT goes
to 1 as shown in rigorous finite-time analysis [21], [22].

Tree search bias via imitation learning: Deep learning
has also been used [11]–[15] to predict which actions to
take in a never before visited state. We call the resulting
network an informed policy, π̂, which specifies that training
used data created from previous iterations of tree search on
the environment. In both ExIt [15] and AlphaZero [14], an
informed policy is trained to resemble the action selection
distribution Ns,a/Ns. The informed policy is then used to
improve future tree searches by biasing the action selection
of the tree search as follows

argmax
a∈A

(
Q̂s,a + c1

√
lnNs
Ns,a

+ c2
π̂s,a
Ns,a

)
, (2)

where c2 weights the neural networks influence on action
selection. Our algorithm builds on this idea to modify the
action selection by tempering the explorative term using a
sequential process in order to balance exploitation versus
exploration. In the multi-agent domain, the informed policy
can be used to enable distributed tree searches. To do this,
one agent will search using its own action space (as opposed
to the joint action space amongst all agents) while other

agents essentially become part of the environment and are
modeled by taking the max-likelihood action according to π̂.

III. PROBLEM STATEMENT

Consider a scenario where cooperative homogeneous
agents seek to maximize future discounted rewards in an
environment modeled as a Markov decision process. Let
I denote the set of agents and si ∈ Rd be the state of
agent i. The state of the environment is then given by
s = [s1, . . . , s|I|, s

α] ∈ S, where sα = Rp corresponds
to the non-agent states of the environment. At every time
step, each agent i chooses from a set of discrete actions
given by ai ∈ Ai. Agents act simultaneously according
to a joint action defined as a ∈ A = A1 × . . . × A|I|,
which is determined by the distributed selection of actions
amongst agents. Given a joint state s and a joint action a,
the probability that a state transitions to s′ is Prs′|s,a. Agents
receive the same reward at every step in the environment
with R which encodes the success of cooperative tasks. The
goal is to determine a policy that maximizes the state values
for the Markov decision process 〈A,S,R,Pr, γ〉. Achieving
this goal is challenging for multi-agent environments because
the joint state and action space grow exponentially with
the number of agents. We are interested in reasoning over
environments where the alignment of the joint actions of the
agents may have a significant impact on performance.

IV. MULTI-AGENT TREE SEARCH AND BIAS
EXPLOITATION

In this section we introduce MIPC and CATS, cf. Fig-
ure 2. First we discuss MIPC, an algorithm for constructing
an informed policy offline. This construction requires the
simulation of environments and data collection, which is
performed by CATS.

Fig. 2. Flowchart of the iterative process MIPC. First, many environments
are generated parameterized by a specified number of agents. In parallel
processes, the tree search CATS generates expected state-action values and
action selection distributions for each of the generated environments. A
convolutional neural network is trained to map an image that represents
a local perspective of a single agent to the output of CATS, yielding an
informed policy.

A. Multi-agent informed policy construction

MIPC is an algorithm that runs offline to iteratively build
an informed policy. There are three main components to
it, cf. Figure 2: GenerateEnvironment, CATS, and
Train. Let n̄ = [n̄1, n̄2, . . .] be a list with entries, n̄k ∈ R,
that correspond to the number of agents that will be spawned
in an environment during the k-th iteration of MIPC. Hand
tuning n̄ allows for the customization of difficulty for each
iteration. In practice, we start with a small amount of agents
which is slowly incremented with iterations of MIPC. The

function generate environment(n̄k) creates a random-
ized environment with n̄k agents. Iterations of MIPC begin
by generating environments with n1 agents. The environ-
ments are simulated in CATS, which gathers data using tree
search. The data collected is used to create an informed
policy π̂1 with Train. On the next iteration, environments
are generated with n2 agents and π̂1 is used to catalyze the
data collection in CATS. The new data is used to create a new
informed policy, π̂2. This process iterates up to |n̄| times.

The informed policy is a convolutional neural network
that maps an image and an action to a number, (xi, ai) 7→
π̂xi,ai(xi, ai) ∈ (0, 1), where xi is an image that represents
the local perspective of an agent i during the initial state
of the simulation that is labeled by the action selection
distribution determined in CATS. This mapping from state
to an image is translated and rotated for agent i and is low
resolution in practice to allow for fast inference. We map
the state to an image for two reasons. First, the number
of dimensions of the full state is dependent on the number
of agents. Mapping the full state to an image results in a
state space dimension that is not a function of the number
of agents. Second, many multi-agent deployment problems
are spatial by nature. Relevant spatial information can be
captured by convolutional neural networks.

B. Cascading agent tree search

CATS is a variation of MCTS which utilizes a neu-
ral network to guide the action selection for multi-
ple agents. Algorithm 1 presents the pseudocode for
the main components: GenerateBias, Traverse,
Expansion, Simulation, and Backpropagation. In
GenerateBias we generate an approximation of the neu-
ral network evaluated at the initial state of the simulation
that we use to increase tree search speed. In Traverse we
modify the tree traversal and action selection process of the
tree search to accomodate for multiple agents. Expansion,
Simulation and Backpropagation are all unchanged
from the original UCT [7]. The tree search is executed from
the perspective of a single agent. Actions of this agent and
others are sampled with respect to a metric, cascaded agent
action selection, where agents choose actions in a sequential
manner. The order that agents choose actions is determined
by Ī = [i1, . . . , i|I|], where the first agent i1 indicates the
agent who is executing the tree search. CATS outputs the
following, Q̂,Ns, Ns,a, which are used to train informed
policies or to choose actions during runtime.

1) Bias generation: Before performing tree search, we
generate biases that influence actions selected. Ideally, the
bias comes from the evaluation of the informed policy
created by MIPC each time a new state is visited as a forward
pass through the neural network. Unfortunately, this term
has to be evaluated O(|A|D) times, restricting its use for
large scale multi-agent systems. To avoid this problem, we
devise a fast local approximation of informed policy for
each agent before tree search in GenerateBias. To do
this, we evaluate the informed policy at nearby locations for
agent i while keeping all other agents at their original state.

This is done for every action in the agent’s action space.
Evaluations are fit using regression and the output is the
local bias (si, ai) 7→ ψsi,ai(si, ai) ∈ (0, 1) evaluated at the
initial state of the environment.

Algorithm 1: MIPC and CATS

MIPC (N, π̂0)
for k = 0 to |n̄|:
D = ∅
do in parallel:
E ← GenerateEnvironment(n̄k)
Φs,0, Ns, Ns,a ← CATS (E , π̂k)
D.append(Φs,0, Ns, Ns,a)

π̂k+1.Train (D)
return π̂|n̄k|

CATS (E , Ī):
for agent i in Ī

ψi ← GenerateBias(E , π̂k)
for allotted time

Traverse(sc, Ī, k)
Expansion(. . .)
Simulation(. . .)
Backpropagation(. . .)

GenerateBias (E , π̂k, i):
for ai in Ai:

for allotted time
s′i = sample uniformly nearby si
s′ = s such that with s′i replaces si
X.append(s′i)
Y.append(π̂xi,ai)

ψi,si,ai ← regression of X on Y
return ψi = (ψi,a1 , . . . , ψi,a|A|)

Traverse(sc, Ī, k):
if k < |Ī|:

sc.ā.append
(
argmax ai∈Ai

fcaas(s
c, ai)

)
k = k + 1

else:
s′ ← evolve environment
sc = 〈s′, []〉
k = 0

if sc is unvisited:
return sc

else:
Traverse (sc, Ī, k)

2) Cascading agent action selection: Our proposed action
selection is biased by the informed policy via the local
bias ψ and allows for exploration of joint action spaces. To
choose a joint action for the selection process, an action is
chosen for each agent sequentially. Let ā be a cascading joint
action, which is an ordered list of some agents’ actions. The
cascading joint action starts empty and is built sequentially
as agents choose actions. We introduce cascading states to

be sc = 〈s, ā〉, which contains the current state of the
environment s and the set of actions already selected by
agents ā. Agents choose their actions with respect to the
number of times a cascaded state has been visited, Nsc ,
implying that the action selection process is conditioned
on the selections of previous agents in the sequential pro-
cess. Algorithm 1 outlines the sequential process under
the Traverse pseudocode. The action selection metric is
modified accordingly to reflect the change of Ns → Nsc and
Ns,a → Nsc,ai as

fcaas(s
c, ai) = Q̂sc,ai + c1

√
lnNsc
Nsc,ai

+
ψsc.si,aI√
Nsc,ai

.

The maximization of this function leads the agent to choose
the action most recommended by ψsc.si,ai when visiting a
state-action pair for the first time because Q̂sc,ai is initialized
at 0. The cascading state now transitions both when an agent
selects an action and when all of the agents take a step in
the environment, which is a modification of the Traverse
process in the tree search.

Remark 4.1: (Advantages of cascaded agent action selec-
tion): This method of action selection has several implica-
tions. The cascade effect on agents’ exploration grants the
ability to discover reward signals behind joint actions. If
only one agent is allowed to explore its individual action
space at a time, then it is committed to plan strictly under
the predictions of other agents. When those predictions do
not include actions necessary for joint cooperation, then
certain reward signals will be difficult to reach. The second
advantage of cascading exploration is that agents are able to
take a bad prior informed policy π̂k and create a good post
informed policy π̂k+1 given enough time. This is balanced
by the exploitive local bias, which allows for search deep into
the tree for tractability. This algorithm is used to generate a
dataset that will train π̂k+1 for the first agent only. �

Remark 4.2: (Cascaded agent action selection vs joint
action selection): Our proposed action selection does not im-
prove the branching factor of the tree search when compared
with the joint case. There are structural advantages that lead
to efficient tree traversal when allowing agents to choose
one at a time. A particular case is when agents receive some
rewards based on non-joint actions or partial rewards for joint
actions. �

C. Online and offline deployment

CATS is meant to be run both offline and online. CATS is
used to generate data for training informed policies offline
for MIPC as shown in Figure 2, where the agent order Ī
is chosen at random. In the online case, CATS is executed
on each of the agents individually during deployment and all
agents take actions simultaneously. Each of the agent choose
themselves as first in Ī, and the rest is chosen heuristically.

V. CONVERGENCE OF CATS TO OPTIMAL VALUE

Here we analyze the convergence properties of CATS.
Our technical analysis proceeds in two steps. We discuss
how to properly model the sequence of multi-agent state

transition and action selection in the algorithm execution via
cascaded MDPs and then, building on this construction, we
establish that the state-action value estimate determined by
CATS converges to the optimal value of the MDP.

A. Cascaded MDPs
The sequential action selection process employed by fcaas,

cf. Section IV-B.2, requires care in using standard MDPs to
model the process of state transition and action selection.
This is because agents choose their actions conditioned on
the current tentative sequence of actions decided by agents
which choose earlier in the sequence: in turn, this is infor-
mation not contained in states of the originally defined MDP.
To address this issue, we transform the original MDP with
multiple agents and joint action selection into a cascaded
MDP. Additionally we show that this transformation has a
unique and convergent state value for every state in the new
state space using value iteration with discount 0 < γ < 1.

Let C = 〈Sc, Ac,Prc, Rc, γc〉, where sc ∈ Sc contains
states defined in original MDP as well as cascaded actions
ā. The notation scj,n = 〈sj , [a1, a2, . . . , an]〉 specifies the
environment state sj from the original MDP and the actions
that are in ā. The set of allowable actions for each agent is
ai ∈ Ai ∈ Ac and Prc, Rc, and γc are dependent on one of
two types of state transitions that we distinguish in C. The
first type of state transition, intra-agent transitions, occurs
when the current state’s cascaded action is not full, i.e., scj,n
such that n < N − 1. In this situation, the next action
that will be picked will not yet complete the sequence of
actions (one per agent) so this action will not yet result in
a step in the environment. Picking an action results in a
determined probability of transition, Prcscj,n+1|scj,n,a

= 1. The
next state will contain the previously selected sequence of
actions and the newly selected a. The reward given for this
transition is always zero, Rcscj,n+1,a,s

c
j,n

= 0. Furthermore, the
discount factor is always γc = 1. The second type of state
transition, environmental transitions, happens when the last
agent in the sequence chooses an action, i.e., scj,n such that
n = N − 1. At this point, the agents all take their promised
action in the environment and the next state, scj+1,0, contains
changes in the environment and an empty cascaded action.
This transition has the corresponding probability of transition
in the original MDP, Prcscj+1,0|scj,N−1,a

= Prsj+1|sj ,ā, given
that sc.ā = ā and sc.s = s. The reward under this transition is
determined by the original MDP as well, Rcscj+1,0,a,s

c
j,N−1

=

Rsj+1,ā,sj , such that sc.s = s. Finally, the discount factor
used is the same as the constant discount factor from the
original MDP, γcscs = γ. Figure 3 shows the original MDP
and the cascaded MDP. The convergence of MDPs under
value iteration generally depend on having the discount factor
0 < γ < 1. Our next result shows that given the constraints
of the probability of transition, reward function, and the
discount factor under intra-agent transitions and environment
transitions, the state value converges under the Bellman
operator B defined by

B(Vs) = max
a

(
rs,a + γ

∑
s

Prs′|s,aVs′)
)
.

Fig. 3. Original MDP (left) and associated cascaded MDP (right). The
MDPs start at the root state s0 and sc0,0, respectively. The original MDP
is shown to depth D. Its first step is expanded to show the additional steps
of the cascaded MDP. Transition probability Pr(sc0,1|sc0,0, a1) = 1 in the
green region indicates an intra-agent state transition (dashed line), where
the first agent in the sequence selects action a1. Further down the tree
in the blue region, Pr(sc1,0|sc0,N−1, aN) = Pr(s1|s0, ā) such that ā =
[a1, a2, . . . , aN], represents environment transitions (solid line).

For 0 < γ < 1, the Bellman operator induces V ∗.

Theorem 5.1 (Convergence to V ∗): Consider an MDP
and its associated cascaded MDP, generated as described
above. Let V be the estimated state value induced by the
Bellman operator in a cascaded MDP. V converges to the
optimal state value of the original MDP, V ∗. Furthermore,
for all sc such that sc.s = s, the state values from the original
MDP and cascaded MDP are equivalent, Vsc = V ∗s .

Proof: We examine the two types of transitions in the
cascaded MDP. If scj,n such that n < N − 1 then an intra-
agent transition occurs next. Let Scj,n+1 be the set of all states
that could occur at depth n+ 1, then

B(Vsc) = max
scj,n+1

Vscj,n+1
, (3)

Since rscj,n+1,s
c
j,n

= 0, Prcscj,n+1|scj,n,a
= 1, and γc = 1. There-

fore, a Bellman operation sets the state value equal to the next
state value for intra-agent transitions. This implies that in a
sequence of intra-agent transitions, all state values become
equal to each other under multiple Bellman operations and

BN−1(Vscj,0) = BN−1(Vscj,0) = BN−2(Vscj,1)

= . . . = max
scj,N−1∈Sc

j,N−1

Vscj,N−1
,

where scj,N−1 is a state prior to all agents choosing their ac-
tions. After the last agent selects an action, an environmental
transition occurs and the next state is of the form scj+1,0.
Under N − 1 Bellman operations, scj,0 becomes affected by
the next environmental transition, which can be shown to be
a contraction as follows,

|BN−1(Vscj,0)− BN−1(V̄scj,0)|
= |BN−2(Vscj,1)− BN−2(V̄scj,1)|
= |BN−3(Vscj,2)− BN−3(V̄scj,2)|
= . . . = |B(Vscj,N−1

)− B(V̄scj,N−1
)|,

where the derivation of convergence for standard MDPs
can be applied. For brevity, we use Pr to denote
Prscj+1,0|scj,N−1,an+1

,

|B(Vscj,N−1
)− B(V̄scj,N−1

)|

= max
an+1

{rscj,N−1,an+1
+ γ

∑
scj+1,0

PrVscj+1,0
}

−max
a′n+1

{rscj,N−1,a
′
n+1

+ γ
∑
scj+1,0

Pr V̄scj+1,0
})

≤ max
an+1

|{rscj,N−1,an+1
+ γ

∑
scj+1,0

PrVscj+1,0
}

− {rscj,N−1,an+1 + γ
∑
y

Pr V̄scj+1,0
}|

= max
an+1

γ
∑
y

Pr |Vscj+1,0
− V̄scj+1,0

|

≤ max
an+1

γ
∑
s′

Pr ‖V − V̄ ‖∞

= γ ‖V − V̄ ‖∞max
an+1

∑
y

Pr = γ ‖V − V̄ ‖∞.

Finally, because lim
k→∞

Bk(Vsc) = V ∗, state values under
Bellman operations converge.

B. Convergence to optimal state value

Next, we show that the state-action value estimate deter-
mined by CATS converges to the optimal value of the MDP.
This requires careful consideration of the effect of the local
bias term ψ. Our treatment follows the argumentation in [21]
for the convergence analysis of UCT, noting the necessary
differences. First, let Xit be the payoff rewarded when action
i is taken at time t. The average payoff is given by

X̄im =
1

m

m∑
t=1

Xim.

Let µim = E[X̄im] be the expected payoff for taking action
i after m attempts and define

µi = lim
m→∞

µim. (4)

Finally, let δim be the drift in the mean payoff,

µim = µi + δim. (5)

We make the following assumption.
Assumption 5.2 (Bounds on expected payoff): Fix 1 ≤

i ≤ K, where K = |Ac|. Let {Fit}t be a filtration such that
{Xit}t is {Fit}-adapted and Xi,t is conditionally indepen-
dent of Fi,t+1,Fi,t2 , . . . given Fi,t−1. Then 0 ≤ Xit ≤ 1
and the limit of µim exists. Further, we assume that there
exist a constant Cp > 0 and an integer Np such that for
m ≥ Np, for any δ > 0, ∆m(δ) = Cp

√
m ln(1/δ), the

following bounds hold:

Pr(mX̄is ≥ mE[X̄in] + ∆m(δ)) ≤ δ,
Pr(mX̄is ≤ mE[X̄in]−∆m(δ)) ≤ δ.

We let ∆i = µ∗ − µi, where i and ∗ indicate suboptimal
and optimal actions, respectively. Assumption 5.2 implies
that δit converges to 0. Therefore, for all ε > 0, there exists
N0(ε) such that if t ≥ N0(ε), then |δit| ≤ ε∆i/2 and |δ∗t | ≤
ε∆i/2, where |δ∗t | is the drift corresponding to the optimal
action. In particular, it follows that for any optimal action,

if t > N0(ε), then δ∗t ≤ ε/2 mini|∆i>0 ∆i. We are ready to
characterize the convergence properties of CATS.

Theorem 5.3 (Convergence of CATS): Consider CATS
running to depth D where K = |Ac| is the number of
actions available to each agent. Assume that rewards at the
leafs are in the interval [0, 1]. Then,

|Q̂sc − V ∗sc | = |δ∗m|+O
(
KND log(m) +KND

m

)
, (6)

for any initial state sc. Further, the failure probability at the
root converges to zero as the number of samples grow to
infinity.

Proof: The proof follows closely the steps in [21] to
establish convergence of UCT. To determine the expectation
on the number of times suboptimal actions are taken, fix
ε > 0 and let Ti(n) denote the number of plays of arm i.
Then if i is the index of a suboptimal arm and assuming that
every action is tried at least once, we bound the Ti using the
indicator function, {It = i} , where l is an arbitrary integer,

Ti(m) = 1 +

m∑
t=K+1

{It = i} ≤ l +

m∑
t=K+1

{It = i, Ti(t− 1) ≥ l}

≤ l +

m∑
t=K+1

{X̄∗T∗(t−1) + ct−1,T∗(t−1) ≤ X̄i,Ti(t−1)

+ ct−1,Ti(t−1), Ti(t− 1) ≥ l}

≤ l +

m∑
t=K+1

{ min
0<z<t

X̄∗z + ct−1,z ≤ max
l≤zi<t

X̄i,zi + ct−1,zi}

≤ l +

∞∑
t=1

t−1∑
z=1

t−1∑
zi=l

{X̄∗z + ct,z ≤ X̄i,zi + ct,zi}.

The last term, X̄∗z +ct,z ≤ X̄i,zi +ct,zi , implies one of three
possible cases

X̄∗z ≤ µ∗ − ct,z (7a)
X̄i,zi ≥ µi + ct,zi (7b)
µ∗ ≤ µi + 2ct,zi , (7c)

where l represents the number of times (7c) occurs, and (7a)
and (7b) are characterized by Assumption 5.2. We proceed
by finding upper bounds for each of these three cases.
Under Assumption 5.2, we can use the Chernoff-Hoeffding
bounds [23] P(X̄iz ≥ E[X̄im] + c) ≤ e−2c2z and P(X̄iz ≤
E[X̄im] − c) ≤ e−2c2z to bound cases (7a) and (7b). We

apply c = C
√

ln(t)
z + 1√

z
to e−c

2z , where C ≥
√

2, t > 0,
and z > 0 to get

P(X̄∗z ≤ µ∗ − ct,z) ≤ e−2c2z

≤ e−2(C

√
ln(t)

z +1/z)2z ≤ e−2(

√
2

ln(t)
z)2z = t−4,

and P(X̄i,zi ≥ µi + ct,zi) follows similarly. To bound l we
look at (7c) where 2ct,z ≤ (1− ε)∆i. Solving for z yields

z ≤ 2(∆i + C2 log(t)− ε∆i)

ε2∆2
i − 2ε∆2

i + ∆2
i

+
2
√
−2εC2∆i log(t) + C4 log2(t) + 2C2∆i log(t))

ε2∆2
i − 2ε∆2

i + ∆2
i

≤ WC2 log(t)

(1− ε)2∆2
i

such that some constant W , which can be upper bounded
for any t ≥ 2, 0 ≥ ε ≥ 1, and d > 0. Note that this
requires Assumption 5.2, where t > Np and t > m > N0(ε).
Therefore l is bounded with

l = max{z,N0(ε), Np} ≤
WC2(ln(t))

(1− ε)2∆2
i

+N0(ε) +Np.

Our expected Ti is then

E[Ti(m)] ≤ WCp2(ln(t))

(1− ε)2∆2
i

+N0(ε) +Np

+

∞∑
t=1

t−1∑
s=1

t−1∑
si=l

1

t4
≤ WC2(ln(t))

(1− ε)2∆2
i

+N0(ε) +Np +
π2

3
,

which is of order O(Cp2 ln(m) +N0). The rest of the proof
follows from [21] where this bound is used to derive the
expected regret as well as convergence of the probability of
choosing suboptimal arms to 0. The statement follows via
induction on the depth Dc, noting that Dc = |A||D| as a
result of the construction of the cascaded MDP.

The convergence bound is worse for CATS than for UCT
(i.e., the constant W in (6) is larger than the constant in [21])
since the worst-case scenario for the local bias term has to
be accounted for. In practice the local bias term helps the
convergence rate, as we demonstrate in Section VI.

VI. IMPLEMENTATION ON 2D ENVIRONMENTS

In this section we test 3 environments defined in Figure 1
and discuss performance of several algorithms in a variety
of metrics. Significant parameters of the experiments are
shown in Table I. The following variations of tree search
and reinforcement learning algorithms are implemented.1

CATS The algorithm we propose in Section IV which
utilizes the informed policy generated by MIPC.
CATS-π Our proposed algorithm with cascading action

selection but withouts the bias term from the informed policy.
CATS-APP Our proposed algorithm without use of the

local bias approximation. This algorithm evaluates the in-
formed policy at every newly visited state to bias tree search.
UCT Monte-Carlo tree search using upper confidence

bound for action selection on the full joint action space.
PPO Proximal policy optimization (PPO), a policy-based

model-free reinforcement learning algorithm [24]. In our
adaptation, each agent uses the same policy to choose actions
given their local state image x.

Figure 4 displays results for the following experiments.

A. Performance vs. allotted simulation time (Perf. vs. ∆t)

The sum of rewards per episode vs. ∆t (time allotted
for tree search per step) for L number of steps in the

1Hyperparameters for the algorithms and environments can be found at
https://github.com/aaronma37/cats hyperparameters.

Perf. vs. ∆t Perf. vs. |I| Time to threshold

Ecomm Ecov Eres Ecomm Ecov Eres Ecomm Ecov Eres

∆t — — — .1s .1s .1s — — —

|Ī| 3 3 2 — — — 3 3 3

L 10 10 10 10 10 10 — — —

TABLE I
PARAMETERS FOR EACH ENVIRONMENT AND EXPERIMENT.

environment during an online deployment. We find that for
each of the environments, CATS and CATS-APP have strong
performance given limited simulation time in the tree search.
It is likely that CATS scales better than CATS-APP in this
experiment because evaluation of the local bias takes less
time than a forward pass through π̂ at each node during
the tree search. Performance of CATS-π and UCT both start
off low and increase as ∆t increases as expected, however
the cascading action selection structure enables CATS-π to
scale better with ∆t. PPO does not perform tree search
so it is shown at constant performance. As ∆t increases,
CATS performs equal or better than PPO in the environments
tested.
B. Performance vs. number of agents (Perf. vs. |I|)

The sum of rewards per episode vs. |I| for L number
of steps in an online deployment is tested. As the number
of agents increases, the branching factor increases exponen-
tially. This results in a shallow tree search because of limited
time allotted for simulation. CATS sees superior performance
as |I| increases as it is able to effectively simulate other
agents during search under time constraints. Adding agents
means an exponential increase in evaluations of the informed
policy in CATS-APP. In Ecomm, CATS-APP performs poorly
and likely would have benefited if it had more time to ex-
plore joint actions during tree search. CATS-π yields better
performance than UCT in some cases where the cascading
action selection allows an agent to find an adequate action
when determining the best joint action is difficult under the
time constraints. In some cases, PPO performs better than
the tested tree search algorithms as the increased branching
factor of tree search inhibits their performance.

C. Simulation time to threshold value (Time to threshold)

The amount of simulation time vs. depth of tree search (D)
required during simulation to find an adequate solution in the
environment, which is determined when Q̂ is greater than a
threshold value. This experiment measures how quickly an
agent finds a satisfactory state in the MDP with respect to
distance of that state, in terms of steps in the environment.
CATS-APP performs worse than other algorithms because
the evaluation of the informed policy for each agent at each
new state becomes computationally expensive with respect
to tree search depth. Performance in the other algorithms
is influenced by how effectively agents are able to choose
actions during tree search. PPO is omitted since it does not
perform tree search.

VII. CONCLUSIONS

We provide two major contributions, first being a scalable
approach for determining an informed policy using MIPC
to recycle and reduce the amount of time required for data
collection. The second contribution, CATS, is a variation
of Monte-Carlo tree search, which provides a balance of
exploitation and exploration that utilizes prior knowledge
about the environment and multi-agent scenarios. Agent
explore sequentially allowing for robustness to errors in the
prior informed bias enabling them to distributively determine
solutions for cooperative objectives. We show that this mod-
ified MDP converges to the optimal state value and CATS
estimates the optimal state value when using misinformed
biases. The efficacy of CATS is shown Our algorithm is
compared against variations of UCT with a joint action
spaces, where it excels when joint-actions are required for
rewards but require low action space size for tractability.

REFERENCES

[1] B. P. Gerkey and M. J. Mataric, “A formal analysis and taxonomy
of task allocation in multi-robot systems,” International Journal of
Robotics Research, vol. 23, no. 9, pp. 939–954, 2004.

[2] F. Bullo, J. Cortés, and S. Martinez, Distributed Control of Robotic
Networks, ser. Applied Mathematics Series. Princeton University
Press, 2009.

[3] M. Mesbahi and M. Egerstedt, Graph Theoretic Methods in Multiagent
Networks, ser. Applied Mathematics Series. Princeton University
Press, 2010.

[4] M. Dunbabin and L. Marques, “Robots for environmental monitoring:
Significant advancements and applications,” IEEE Robotics & Automa-
tion Magazine, vol. 19, no. 1, pp. 24–39, 2012.

[5] J. Das, F. Py, J. B. J. Harvey, J. P. Ryan, A. Gellene, R. Graham,
D. A. Caron, K. Rajan, and G. S. Sukhatme, “Data-driven robotic
sampling for marine ecosystem monitoring,” The International Journal
of Robotics Research, vol. 34, no. 12, pp. 1435–1452, 2015.

[6] J. Cortés and M. Egerstedt, “Coordinated control of multi-robot
systems: A survey,” SICE Journal of Control, Measurement, and
System Integration, vol. 10, no. 6, pp. 495–503, 2017.

[7] L. Kocsis and C. Szepesvári, “Bandit based Monte-Carlo planning,”
in ECML, vol. 6. Springer, 2006, pp. 282–293.

[8] C. Browne, E. Powley, D. Whitehouse, S. Lucas, P. Cowling, P. Rohlf-
shagen, S. Tavener, D. Perez, S. Samothrakis, and S. Colton, “A
survey of Monte Carlo tree search methods,” IEEE Transactions on
Computational Intelligence and AI in games, vol. 4, no. 1, pp. 1–43,
2012.

[9] A. Hussein, M. Gaber, E. Elyan, and C. Jayne, “Imitation learning:
A survey of learning methods,” ACM Computing Surveys (CSUR),
vol. 50, no. 2, p. 21, 2017.

[10] H. Daumés, J. Langford, and D. Marcu, “Search-based structured
prediction,” Machine Learning, vol. 75, no. 3, pp. 297–325, 2009.

[11] X. Guo, S. Singh, H. Lee, R. Lewis, and X. Wang, “Deep learning
for real-time atari game play using offline Monte-Carlo tree search
planning,” in Conference on Neural Information Processing Systems,
2014, pp. 3338–3346.

[12] S. Gelly and D. Silver, “Combining online and offline knowledge
in UCT,” in Proceedings of the 24th International Conference on
Machine Learning. ACM, 2007, pp. 273–280.

[13] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. V. D. Driess-
che, J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot,
et al., “Mastering the game of go with deep neural networks and tree
search,” Nature, vol. 529, no. 7587, p. 484, 2016.

[14] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang,
A. Guez, T. Hubert, L. Baker, M. Lai, A. Bolton, et al., “Mastering
the game of go without human knowledge,” Nature, vol. 550, no. 7676,
p. 354, 2017.

[15] T. Anthony, Z. Tian, and D. Barber, “Thinking fast and slow with
deep learning and tree search,” in Conference on Neural Information
Processing Systems, 2017, pp. 5360–5370.

[16] F. Riccio, R. Capobianco, and D. Nardi, “Q-CP: learning action
values for cooperative planning,” in IEEE Int. Conf. on Robotics and
Automation, Brisbane, Australia, 2018, pp. 6469–6475.

[17] C. Boutilier, “Planning, learning and coordination in multiagent deci-
sion processes,” in Proceedings of the 6th conference on Theoretical
aspects of rationality and knowledge. Morgan Kaufmann Publishers
Inc., 1996, pp. 195–210.

[18] G. Best, O. M. Cliff, T. Patten, R. R. Mettu, and R. Fitch, “Dec-
MCTS: Decentralized planning for multi-robot active perception,” The
International Journal of Robotics Research, vol. 38, no. 2-3, pp. 316–
337, 2019.

[19] C. Paxton, V. Raman, G. D. Hager, and M. Kobilarov, “Combining
neural networks and tree search for task and motion planning in chal-
lenging environments,” in 2017 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS). IEEE, 2017, pp. 6059–6066.

[20] B. Kartal, J. Godoy, I. Karamouzas, and S. J. Guy, “Stochastic tree
search with useful cycles for patrolling problems,” in 2015 IEEE
International Conference on Robotics and Automation (ICRA). IEEE,
2015, pp. 1289–1294.

[21] L. Kocsis, C. Szepesvári, and J. Willemson, “Improved Monte-Carlo
search,” Univ. Tartu, Estonia, Tech. Rep, vol. 1, 2006.

[22] P. Auer, N. Cesa-Bianchi, and P. Fischer, “Finite-time analysis of the
multiarmed bandit problem,” Machine Learning, vol. 47, no. 2-3, pp.
235–256, 2002.

[23] J. Schmidt, A. Siegel, and A. Srinivasan, “Chernoff–hoeffding bounds
for applications with limited independence,” SIAM Journal on Discrete
Mathematics, vol. 8, no. 2, pp. 223–250, 1995.

[24] J. Schulman, F. Wolski, P. Dhariwal, A. Radford, and O. Klimov,
“Proximal policy optimization algorithms,” arXiv preprint
arXiv:1707.06347, 2017.

Fig. 4. Results from the experiments in each of the environments. Each datapoint is sampled 100 times and the variance is shown as the shaded region.

	Introduction
	Preliminaries
	Problem statement
	Multi-agent tree search and bias exploitation
	Multi-agent informed policy construction
	Cascading agent tree search
	Bias generation
	Cascading agent action selection

	Online and offline deployment

	Convergence of CATS to optimal value
	Cascaded MDPs
	Convergence to optimal state value

	Implementation on 2D environments
	Performance vs. allotted simulation time (Perf. vs. t)
	Performance vs. number of agents (Perf. vs. |I|)
	Simulation time to threshold value (Time to threshold)

	Conclusions
	References

