
Temporal sampling annealing schemes
for receding horizon multi-agent planning

Aaron Maa,c, Mike Ouimetb,d, Jorge Cortésa,c

aUniversity of California, San Diego
bSingular Genomics, San Diego

c{aam021,cortes}@ucsd.edu
dmichaelo@singulargenomics.com

Abstract

This paper deals with multi-agent scenarios where individual agents must coor-
dinate their plans in order to efficiently complete a set of tasks. Our strategy
formulates the task planning problem as a potential game and uses decentral-
ized stochastic sampling policies to reach a consensus on which sequences of
actions agents should take. We execute this over a receding finite time horizon
and take special care to discourage agents from breaking promises in the near
future, which may cause other agents to unsuccessfully attempt a joint action.
At the same time, we allow agents to change plans in the distant future, as this
gives time for other agents to adapt their plans, allowing the team to escape lo-
cally optimal solutions. To do this we introduce two sampling schemes for new
actions: a geometric-based scheme, where the probability of sampling a new
action increases geometrically in time, and an inference-based sampling scheme,
where a convolutional neural network provides recommendations for joint ac-
tions. We test the proposed schemes in a cooperative orienteering environment
to illustrate their performance and validate the intuition behind their design.

Keywords: Multi-agent planning, potential games, reinforcement learning,
simulated annealing

1. Introduction

Interest in autonomous unmanned vehicles (UxVs) and their applications to
real-world scenarios is increasing enabled by recent technological and compu-
tational advances. Problems of interest include mapping of unknown regions,
monitoring, and surveillance. The use of UxVs in these scenarios is motivated
by safety, improved task performance, and robustness through redundancy. The
ability to complete tasks to satisfy these objectives is largely determined by the
vehicle’s capabilities for autonomy and planning. When considering multiple
vehicles, centralized task planning can become infeasible because the size of the
joint action space grows exponentially as the number of agents increases.

Preprint submitted to Elsevier Wednesday 17th June, 2020

This paper proposes a multi-agent task planning algorithm by modeling the
joint action selection process that agents face as a potential game . For reasons
of computational efficiency, the game is solved iteratively over a moving time
horizon and, to promote finding more globally optimal solutions, agents utilize
stochastic policies for selecting plans. Both aspects of our strategy might lead
to agents changing their action right before it is executed, potentially leading to
the loss of some other agent’s utility because of the lack of time for replanning.
To address this, we investigate sampling schemes which discourage agents from
switching actions in the near future and instead allow agents to change plans in
the distant future to escape locally optimal solutions.

Literature review

Distributed coordination algorithms aim to achieve a global outcome when
agents only have partial information about each other and the environment, see
e.g., [1, 2, 3, 4, 5]. Many of these algorithms are naturally robust to individual
failures and distribute the computational load across the group of agents, mak-
ing them preferable over centralized ones. Their correctness guarantees are valid
under specific set of assumptions about the task and the environment. How-
ever, in general there is a need for the development of multi-agent deployment
capabilities that can deal with scenarios with varying degrees of uncertainty.

Markov decision processes (MDP) are often used to model systems where the
probability of state transition is only dependent on the current state and action
selected by an agent [6, 7, 8, 9]. Semi-Markov decision process (SMDP) [10]
are a variation of MDPs where agents select between macro-actions that each
take a probabilistic amount of time to complete [6]. Model-based reinforce-
ment learning can be utilized to generate plans or select actions in MDPs and
SMDPs. This is commonly done by utilizing tree search as a means to sam-
ple the action space with Monte-Carlo tree search (MCTS) [11]. One efficient
method [12] for sampling the action space during Monte-Carlo tree search is
to select actions with respect to the upper confidence bound of the expected
discounted reward for taking that action. Along with the use of tree search
methods comes the challenge of the size of the state and action spaces: as they
become large, sampling for suitable actions becomes infeasible within a reason-
able amount of time. The use of abstractions and hierarchical structures is an
efficient way to deal with this, cf. [13, 14], where agents search for subspaces
of the environment on one level and optimize their plans within that subspace
on another level. An alternative approach to deal with this challenge is the use
of neural networks to aid in tree search. Neural networks have been used to
infer the state value [15], saving time during tree search. These networks have
also been trained on the distribution of actions selected at a given state during
offline sessions. The output distribution of these networks can then be used to
influence the action selection of tree search [16, 17, 18] in the hope of improv-
ing the sampling efficiency. Recently, deep convolutional neural networks have
been used in both ExIt [19] and AlphaZero [20] to generate a stochastic action
selection policy which resembles the action selection distribution for previous
iterations of UCT/MCTS. The work [21] extends these ideas to environments

2

where the dynamics is not known a priori and must be learned. Our work draws
inspiration from recommendation networks when considering sampling actions
in simulated annealing.

The algorithmic strategy proposed here also builds on the field of game the-
ory to formulate the multi-agent planning decision process. Game theory [22, 23]
provides a powerful framework for enabling cooperative decision making through
strategic interactions. We are particularly interested in potential games [24],
where the agents’ incentive to change strategies is aligned with a global poten-
tial function. Potential games have been utilized for cooperative control [25] as
well as for cooperative task planning [26]. In potential games, agents will reach
a pure Nash equilibrium in finite time by incrementally choosing actions that
improve their utility, albeit this Nash equilibrium may only be a local global opti-
mizer of the potential function. To address this, spatial adaptive play [25, 27, 28]
has an agent change its strategy at random with respect to a stochastic policy
that balances exploration vs exploitation. In this paper, we utilize stochastic
sampling policies from simulated annealing (SA) [29, 30, 31, 32, 33]. Simulated
annealing is an approach for finding a state with optimal value in a Markov
chain that borrows the idea of annealing from nature and is capable of handling
high-dimensional, nonconvex problems. Under appropriate temperature sched-
ules, simulated annealing finds the globally optimal solution with probability 1
as the number of iterations grows to infinity.

How the paper advances the state of the art

Scenarios where agents can complete multiple tasks often require precise and
timely sequences of joint actions to reach a desired outcome. Furthermore, it
is difficult to find an optimal sequence of joint actions in a reasonable amount
of time with a large number of agents because of the number of possible out-
comes. Consequently, there is a broad range of approaches for multi-agent task
planning that attempt to alleviate the computational challenges of multi-agent
task planning, generally in a stochastic fashion.

One recent popular success in multi-agent task planning is demonstrated
with AlphaStar [34], where a system of networks is trained to assign precise
tasks to units in Starcraft II. Multiple deep neural networks work together and
are trained for very particular operations in order to select unit(s) and assign
them an action. AlphaStar is able to compete at a competive level against
humans, but its extension to real-world robotics presents significant challenges.
One challenge is that AlphaStar is centralized in assigning tasks for the units,
which can pose a problem in environments with latency, missed packages, or
lack of connectivity amongst agents. In those environments, it is more robust
to deploy an algorithm where agents are able to plan locally. Another limitation
AlphaStar for implementation on real-world robotic systems is that the structure
of the system of neural networks is engineered specifically for StarCraft II. One
of the benefits of using machine learning in robotics is the capability of extending
an algorithm to a broad range of environments and scenarios. Machine learning
is beneficial in this aspect because it allows the agents’ policy to be automated
as opposed to hand-crafted by an engineer. Unlike AlphaStar, whose system of

3

networks make it narrow and dedicated in scope of environment and application,
our algorithm is applicable to any environment that can be described as a multi-
agent Markov decision process.

Another successful algorithm created by Deepmind is AlphaZero [20], which
utilizes a multitude of techniques to augment and improve UCT to compete
in games such as chess and go. When trying to implement techniques used for
AlphaZero for multi-agent task planning, the most obvious limitation is that it is
designed for a single agent. Implementing a real world multi-agent deployment
algorithm that is similar to AlphaZero poses analogous challenges as AlphaStar.
In particular, communication concerns such as latency, and connectivity would
inhibit the implementation of AlphaZero in a centralized way. In the fully
decentralized case, a possible implementation would have each agent running
their own tree search and predicting the other agents actions to be able to
function independently of communication. Comparatively, the decentralized
algorithm that we introduce here is flexible in its requirements to connectivity.
Agents that lose connectivity during deployment are still able to operate on
their own, and resume joint planning when they regain connectivity.

Spatial adaptive play (SAP) is game-theoretic algorithm used for multi-
agent task planning. In SAP, agents individually sample actions. They accept
and communicate the action if it yields higher expected reward or with some
probability which decreases with time. One limitation of SAP is that it requires
a heuristic in order to sample actions efficiently. As previously mentioned, one of
the problems we face is the computational complexity in finding solutions in the
large joint action space in multi-agent task planning. Without a heuristic, SAP
resorts to sampling actions with respect to a flat distribution. Our algorithm
deals with the large joint action space by sampling more efficiently with either
a self-learned heuristic, or a temporal heuristic, both of which can be applied to
a variety of scenarios. We also recycle our solutions and utilize a receding time
horizon in order to make our sampling more efficient. Other algorithms aim
to solve the problem of computational complexity by abstracting the state and
action spaces. In the algorithm that we present, we sacrifice optimality by only
planning over a finite time horizon as opposed to an infinite time horizon, but
we reach an optimal multi-agent Nash equilibrium in that finite time horizon
through the use of simulated annealing.
Statement of contributions

We strive to enable a swarm of UxVs to cooperate and complete a large
variety of objectives in massive environments. The goal for the agents is to
collectively generate plans in a receding horizon fashion to maximize future re-
wards gained from the completion of cooperative tasks. We model the problem
as a potential game, where the potential function corresponds to the sum of
future rewards over the time horizon. In the resulting potential game, agents
select actions to increase their wonderful life utility, leading to a receding im-
provement path which terminates at a pure Nash equilibrium that, in general,
is only a locally optimal solution of the potential function. With the aim of
finding a globally optimal solution, we utilize simulated annealing, where we

4

recycle solutions as the time horizon shifts and design sampling schemes which
determine the probability that an agent will sample an action schedule given
its current solution. Our sampling schemes are specifically tailored to discour-
age agents from breaking promises in the near future and instead allow them
to change plans in the distant future. The first sampling scheme, termed ‘ge-
ometric sampling’, is novel in that the placement of action schedule elements
is determined with respect to their position in the receding time horizon. This
sampling scheme aims to be efficient in terms of the solutions that we recycle
during the simulated annealing process, leading to quicker convergence of the
solution to the stationary distribution. The second sampling scheme, termed
‘inference-based’ sampling, incentivizes the agents to select actions during the
simulated annealing process that lead to globally optimal solutions. Inspired by
recent work in tree searches guided by neural networks, we utilize convolutional
neural networks to generate efficient sampling matrices given the state of the
environment. We provide theoretical analysis for properties of the Markov chain
induced by the simulated annealing process given our sampling schemes. Perfor-
mance and theoretical results are validated with metrics tested in a cooperative
orienteering environment.

2. Preliminaries

We introduce here essential concepts and tools for the rest of the paper,
beginning with some notation. We use Z and R to denote integers and real
numbers, respectively. An object-oriented approach with the use of tuples is
present throughout the paper: for an arbitrary tuple a = 〈b, c〉, the notation a.b
means that b belongs to tuple a. Also, |Y| indicates the cardinality of a set Y. A
row-stochastic matrix P is a matrix with non-negative entries whose rows sum 1.
Row-stochastic matrices have 1 as their largest absolute value eigenvalue.

2.1. Markov chains

A Markov chain describes a sequence of states such that the probability of
transitioning from one state to another only depends on the current state. We
define a Markov chain as a tuple 〈S, P 〉 of states s ∈ S and probability P (s′|s)
that s transitions to s′. If we assign states of the Markov chain to nodes, and
positive state transition probabilities P (s′|s) > 0 to edges, we can create a
directed graph representing the Markov chain.

The transition probabilities can be used to construct the transition matrix
Ptr such that

Ptrij = P (j|i).

The transition matrix is row-stochastic, and hence it has an eigenvalue λ = 1.
Let {S0, . . . , Sk} denote a series of random variables representing state transi-
tions of a Markov chain across time. Let the vector µk ∈ R|S| be the distribution

5

of random variables at time k such that

µk(s) = P (Sk = s).

A Markov chain is irreducible if for any state j ∈ S there exist k such that
µk(j) > 0 from S0 = s, for all s ∈ S. As k tends to infinity, the distribution of
states in the Markov chain converges to the stationary distribution

lim
k→∞

µk = v.

The stationary distribution can be determined by finding the row-eigenvector of
Ptr associated with the eigenvalue λ = 1, vPtr = v. The total variation distance

d(v, µ) = sup
s∈S
|v(s)− µ(s)|,

measures the difference between the stationary distribution v and an arbitrary
distribution µ. The mixing time [35] tmix of a Markov chain, tmix = min{k :
d(v, µk) ≤ ε} captures the time required for the stationary distribution and the
distribution µk at time k to become smaller than ε. The mixing time can be
approximated via the relaxation time of a Markov chain,

trel =
1

1− λ2
, (1)

where λ2 is the second largest eigenvalue of Ptr (1− λ2 is known as the spectral
gap). The relaxation time gives the following bounds on the mixing time,

(trel − 1) log
(1

2ε

)
≤ tmix(ε) ≤ log

(1

εvmin

)
trel, (2)

where vmin := mins∈Sv(s). In general, a small mixing time is desirable when we
want the distribution of the Markov chain to reach steady state quickly, which
is common in computational applications. This in turn means that a small
relaxation time trel is also desirable.

2.2. Simulated annealing

Let V : S → R be a function that denotes the value of each state in
the Markov chain. Simulated annealing seeks to determine the optimal state
argmaxs V (s), which is generally a combinatorial problem [29, 30, 32, 33]. In
order to find it, simulated annealing is a probabilistic algorithm that samples
states from the current one and accepts them with a probability that is increas-
ingly determined, as the temperature of the annealing process decreases, by
whether they lead to a larger value of V .

Simulated annealing employs a row-stochastic sampling matrix Ps. Here Psij
represents the probability of considering candidate solution j when the current
solution is i. The candidate solution is accepted with probability e(V (j)−V (i))/Tk ,
where Tk is the temperature of the process at time k. For a given temperature,

6

we can construct the acceptance matrix

Paij =

{
1 if i = j

min(1, e
V (i)−V (j)
Tk) else.

(3)

Algorithm 1: Simulated annealing

1 s is sampled uniformly from S
2 for k = 1→ K:
3 select s′ with probability Psss′
4 if V (s′) > V (s) or rand()> Pass′ :
5 s = s′

Algorithm 1 outlines the process of simulated annealing with respect to Ps

and Pa. Given the sampling and acceptance matrices, the probability that
solution i transitions to solution j under a single iteration of the simulated
annealing process are captured by the elements of the transition matrix,

Ptrij =

Psij +
∑
k 6=i

Psik(1− Paik) if i = j

PsijP
a
ij else.

(4)

which is row-stochastic, cf. [36]. This transition matrix defines a Markov chain.
Simulated annealing seeks to manipulate the transition matrix such that the
expected states of the stationary distribution are in the set of optimal states.
In order to ensure that this is possible from any initial state, it is important
to maintain irreducibility in the induced Markov chain, and therefore a posi-
tive temperature is required. In practice, large temperatures help the induced
Markov chain escape local maxima. Cooling schedules gradually have the tem-
perature of the process decrease over time. Simulated annealing converges to the
global optimal if the temperature is decreased sufficiently slowly. The cooling
rate

Tk =
c

log (k)
, ∀k ∈ {1, . . . ,K}, (5)

where c ∈ R corresponds to the difference between maximum and minimum
values of solutions. This cooling schedule is shown [32] to be a necessary and
sufficient condition for the algorithm to converge in probability to a set of states
that globally optimize V when the underlying Markov chain has both strong
irreducible and weak reversible properties. We are also interested in linear
cooling schedules of the form

Tk = max(T0 − ck, 0), ∀k ∈ {1, . . . ,K}, (6)

7

which generally yield strong performance and constant temperature schedules

Tk = T0, ∀k ∈ {1, . . . ,K}, (7)

which is relevant for theoretical analysis of our sampling schemes.

2.3. Potential games

In a game-theoretic framework agents select actions in order to maximize
their utility. For agent α ∈ A, a function uα : Aα ×A−α → R defines its utility
as uα(aα, a−α), where aα ∈ Aα denotes its action and a−α ∈ A−α denotes
the actions of all other agents. Agents have the option of selecting the null
action, denoted ∅ ∈ Aα, in which α does not contribute to the completion of
any objective in the game. Let a = {a1, . . . , a|A|} be the collection of actions
selected by all the agents. The collection of actions selected by the agents is
a pure Nash equilibrium when no agent can select an action that unilaterally
improves their utility given the actions of other agents. Formally,

u(aα, a−α) ≥ u(a′α, a−α), ∀α ∈ A, a′α ∈ Aα.

In our treatment, we rely on the notion of potential game. A game is an exact
potential game if there exists a function V : Aα × A−α → R, called potential
function, such that

uα(aα, a−α)− uα(a′α, a−α) = V(aα, a−α)− V(a′α, a−α), (8)

for all α ∈ A. In an exact potential game, the utilities of all agents are all
aligned, in the sense that the strategic improvement of its own utility function
by one agent actually contributes to the improvement of a common global utility
function V.

In this paper we take advantage of the fact that, given an arbitrary function,
one can define utility functions so that the resulting game is an exact potential
game. Formally, given V, we define the wonderful life utility

uα(aα, a−α) = V(aα, a−α)− V(∅, a−α), for α ∈ A. (9)

The wonderful life utility is a measure of the marginal gain that an agent con-
tributes when selecting a given action. It is easy to see that the wonderful life
utility ensures (8) holds.

Generally, potential games have at least one pure Nash equilibrium. An
improvement path is any sequence of strategies {at}t=0,1,... such that u(at+1) ≥
u(at) wherever at+1 is defined. A finite improvement path is an improvement
path that terminates at a Nash equilibrium. Exact potential games have finite
improvement paths so if agents select actions that improve their utility, they
eventually arrive at a pure Nash equilibrium that is a local optimum of the po-
tential function V. The local optimum is generally not global because, when the
potential function is not convex, reaching the global optimum from an arbitrary

8

initial condition requires agents to select actions which yield a lower value, i.e.,
the agents do not follow a finite improvement path.

3. Problem statement

Consider a scenario where a team of N agents seek to jointly determine
a schedule of future actions. Agents must select actions that alter the state
s = (s1, . . . , sN , s

e) ∈ S, where s1 through sN represent the states of agents
1 through N , and se represents the state of the environment. Agent α is able
to select action aα according to its individual action space Aα. We use āt =
{at1, . . . , atN} to represent the set of actions that agents plan to select at exactly
time t. The execution of these actions by the agents gives rise to the state st.
When a state is reached, agents receive a reward determined by R : S → R.
Agents seek to collectively maximize the sum of future rewards

∞∑
t=1

Rst , (10)

representing the sum of future rewards that are gathered by the agents over
an infinite time horizon. Determining the optimal sequence of agents’ actions
that optimize (10) is in general difficult due to the infinite nature of the time
horizon and the computational effort required to determine a solution under
time constraints when considering real-world deployments.

Therefore we solve the problem in a receding horizon fashion. Given a time
horizon T , let āα = [a1

α, . . . , a
T
α] ∈ Āα denote the action schedule that agent

α plans to execute over the next T timesteps. The joint action schedule ā =
[ā1, . . . , āN] ∈ Ā is the set of all agents action schedules and, for convenience,
we let ā−α = ā \ āα. Define

Vt(ā) =

T∑
`=1

Rst+` , (11)

representing the sum of future rewards that are gathered by the agents over the
time horizon T . We treat the scheduling problem as a receding time horizon
where agents strive to determine

argmax
ā∈Ā

Vt(ā),

at every time step t during deployment. To achieve this, we set up a potential
game among the agents where each one is endowed with the ‘wonderful life
utility’ defined in (9). By selecting action schedules that improve their utility,
agents follow a finite improvement path that eventually leads them to reach a
Nash equilibrium. However, doing this only guarantees that the agents reach a
local optimum of the potential function. Furthermore, because we are solving
the problem in a receding horizon fashion, there is nothing precluding agents

9

from deviating from previously agreed upon joint plans from one timestep to the
next, leading to poor performance. Because the agents can deviate from their
previously agreed upon joint plans, we assume that changes in action schedules
by an agent are communicated to all other agents.

We strive to improve upon this process through the use of decentralized
simulated annealing and recycling solutions from previous time steps. The use
of stochastically selected actions in simulated annealing improves the chances of
reaching a Nash equilibrium that belongs to the set of globally optimal states. In
addition, we seek to tune the sampling strategy employed during the annealing
process to discourage agents from breaking promises in the near future and
instead allow them to change plans in the distant future. We explain our strategy
in detail in the next section. In what follows, we interchangably use the notation
āα and i to refer to an arbitrary action schedule. In general, we use āα when
we want to stress the game-theoretic context and i when we want to stress the
Markov-chain contfext.

4. Action scheduling with recycled solutions

In this section we detail our strategy to employ simulated annealing, tak-
ing advantage of the flexibility offered by the sampling stage to recycle action
schedules agreed upon by agents at the previous timestep. The inclusion of
stochastic sampling of action schedules with a cooling schedule is motivated by
the inherent temporal structure of the solutions. Action schedules likely have
similar utilities when their actions are similar. Using a cooling schedule means
that extra pathways in the Markov chain to the optimal action schedule will
exist. The motivation is that by increasing the number of pathways to the op-
timal solution, we increase the probability to find that solution and it will be
found more quickly with simulated annealing than without.

We study three components to the evolution of events that occur during
deployment in our algorithms. First, agents execute an action. Then, actions
are shifted to represent the step, i.e., ātα becomes āt−1

α for all t ∈ (2, . . . , T) and
α ∈ A. The shifted action schedules will become the initial solution for agents
in the next step of the finite time horizon. However, these action schedules will
be missing āTα , so the third component we consider is the generation of that
action. We refer to this process as recycling solutions.

Here, we propose a deployment strategy, outlined in Algorithm 2, called hori-
zon shift planning (HSP). HSP uses horizon shift annealing (HSA), where agents
sample action schedules with respect to the sampling matrix Ps (specific schemes
to determine this matrix are introduced later in Section 5, giving rise to differ-
ent instantiations of HSP). With probability respective to Pa, the agent accepts
the candidate action schedule. The agent then broadcasts the change in action
schedule with some probability. This process is repeated for K steps, which
captures the limited amount of time allowed for computation during each time
step of the receding time horizon. It is important to note that after agents take
actions, and the finite time horizon shifts, agents recycle their chosen action
schedules ā to be used as an initial action schedule for the next time step.

10

Algorithm 2: Horizon shift planning

Theorem 1. (Reaching pure Nash equilibria through HSA): Consider the hori-
zon shift annealing HSA described in Algorithm 2 and assume that Psij > 0 for
any i and j, with agents using the wonderful life utility. Under the linear cooling
schedule (6), agents reach a pure Nash equilibrium in a finite number of itera-
tions. Furthermore, under the logarithmic cooling schedule, agents reach a pure
Nash equilibrium w.p. 1 as K tends to infinity.

Proof. We use the fact that exact potential games exhibit the finite improvement
property, meaning that every improvement path is finite in length. Because of
this property, a Nash equilibrium exists. Under the linear cooling schedule (6),
for k > c, the temperature becomes 0 and agents will only choose action sched-
ules with positive utility u. Agents then select actions that are along some finite
improvement path until they reach a pure Nash equilibrium.

Under the logarithmic cooling schedule, note that there exist a positive prob-
ability to sample any of the agents action schedules based on the assumption
that Psij > 0 for all i and j. The probability of accepting only action schedules
that improve the wonderful life utility tends to 1 as the iteration k goes to in-
finity. It follows that the agent has access to all action schedules which follow
a finite improvement path, which are chosen with probability 1 as k goes to
infinity.

Note that the proof of Theorem 1 relies on the fact that, once the temper-
ature is 0, so long as Psi,j > 0 for all i := āα and j := ā′α, a locally optimal
solution can be found given large enough K. We introduce next strategies for
sampling action schedules to ensure that agents are discouraged from breaking
promises in the near future (to avoid negatively impacting other agents’ plans)
while at the same time they are allowed to change plans in the distant future
(to improve our chances of finding a globally optimal solution).

5. Sampling schemes for action scheduling

In this section we design sampling schemes for action scheduling. In general,
the probability Ps is not viewed as a design choice in annealing approaches, and
is often a result of existing state transition probabilities in a Markov chain. In

11

our case, since agents can choose to take an arbitrary action schedule, we design
Ps to make sampling more efficient with respect to the finite time horizon and
to confront the issue of agents breaking promises in the near future, which may
cause other agents to lose utility.

5.1. Matrix structure with respect to action schedule indices

In this section we describe some notational conventions regarding the sam-
pling matrix that will be useful later when introducing our novel sampling
schemes. We choose to structure and position the indices of Ps with the follow-

ing conventions. For agent α, Ps ∈ R|ATα |×|ATα | is a block matrix with |Aα|×|Aα|
blocks corresponding to the number of actions the agent can choose for the first
time step of the horizon. A block Psi1 of Ps is a matrix of probabilities of
transition for action schedules with first action i1 to action schedules with the
same first action i1. Psi1 is itself a block matrix with |Aα| × |Aα| blocks. This
organization of Ps has the following properties:

• Diagonal elements are transitions to the same action schedule. Diagonal
blocks are transitions to the same action taken at that time step;

• Ps is row-stochastic.

In addition to the sampling matrix, we also structure the acceptance and
transition matrices, Pa and Ptr, with the same convention for the action schedule
indices. Organizing the matrices in this fashion is valuable because it provides
intuition for the resulting distribution of action schedules that we get from
recycling solutions. We let the recycled stationary distribution v̂i1 indicate the
conditional probability distribution of action schedules as determined by the
transition matrix, given that the selected action schedule has first action i1. To
determine this stationary distribution, we define the recycled transition matrix

P̂tr ∈ R|AT−1
α |×|AT−1

α | by

P̂trij =

P̂sij +
∑
k 6=i

P̂sik(1− (Pai1)ik) if i = j

P̂sij(P
a
i1)ij else,

(12a)

where Pai1 is a block of Pa that corresponds to the first action i1 taken, and P̂s ∈
R|AT−1

α |×|AT−1
α | is the probability of sampling an action schedule conditioned on

the first action taken being i1,

P̂sij =
(Psi1)ij∑
j

(Psi1)ij
. (12b)

The recycled stationary distribution v̂i1 is then determined by finding the row-
eigenvector that corresponds to the eigenvalue λ1 = 1. We are interested in
recycled stationary distribution because this is a distribution of initial solutions
for our next step in the receding time horizon, which implies that it will require

12

less iterations to reach steady state. Figure 1 illustrates an example sampling
matrix with |Aα| = 2 and T = 4, the corresponding transition matrix Ptr, and
the recycled transition matrix.

(a) Pgs (b) Ptr (c) P̂tr

Figure 1: Illustration of the matrix structure with respect to action schedule indices. In (a),
we show the probability of action schedule sampling according to Pgs as defined in (13). In
this case, the agent has an action space |Aα| of 2 and is planning up to T = 4 time steps
ahead. In the image, the intensity of the pixel i, j corresponds to the probability of the
agent sampling j := ā′α when its last solution is i := āα. Light and dark pixels correspond
to low and high probabilities, respectively. In (b), we show the transition matrix Ptr for

the simulated annealing process using Pgs and Pa (not shown). In (c), we show P̂tr, which

is the block of Ptr that corresponds to the first action i1 = 1 being chosen. P̂tr helps us
approximate the transition matrix of the simulated annealing process in the time step after
executing action i1 = 1.

5.2. Geometric sampling

Here we introduce the geometric sampling scheme. The idea is inspired by
simulated annealing where we modify the probability that actions are sampled
based on their position in the finite time horizon. Specifically, the generation
probability for a sampled action schedule is geometrically reduced as follows

Pgsij =
ρT−tij∑

p 6=j
ρT−tip

, (13)

where ρ ∈ (0, 1) and tij is the minimum time where actions deviate in the
two action schedules, i.e., tij = min {t ∈ R | it 6= jt}. Note that the expression
‘T − tij ’ is larger when two action schedules i and j deviate closer to the present
time. When the term ‘ρ’ is small, there is a small probability that the agent
samples an action schedule j where tij is small. We use ρ as a design parameter
to influence the agent to sample actions that are further in the finite time
horizon, more often. Figure 1 illustrates the above definition.

According to the scheme (13), we decrease the probability that agents sample
action schedules that change actions in the near future to avoid ‘breaking short-
term promises’ with other agents. However, agents are not disincentivized from

13

making such changes in the distant future in order to find joint cooperative
plans with high reward.

5.2.1. Approximating the next-step transition matrix via horizon shift

For the sake of evaluating the effect of recycling solutions we define the

next-step transition matrix Ptr′ ∈ RATα×ATα , which is the transition matrix after
taking a step in the environment. We do not know what the transition matrix
will be without evaluating action schedules at the T + t+1 time step, so instead

we determine the approximate next-step transition matrix, P̃tr′ ∈ RAT−1
α ×AT−1

α ,
which approximates the transition matrix at the next time step corresponding
to a shorter time horizon than usual, T̃ ′ = T − 1.

P̃tr′ij =

P̃gs′ij +
∑
k 6=i

P̃gs′ik (1− P̃a′ik) if i = j

P̃gs′ij P̃a′ij else,
(14)

where P̃gs′ ∈ RAT−1
α ×AT−1

α and P̃a′ ∈ RAT−1
α ×AT−1

α represent approximates,
which we define next, of the geometric sampling matrix and acceptance ma-
trix, respectively, at the next time step. These matrices reflect changes that we
expect during the next time step. To determine P̃a′, note that the receding time
horizon is smaller by 1. We then have the following result regarding evaluating
P̃a′ from Pa.

Lemma 2. (Determining P̃a′ from Pa): Let Pa be the acceptance matrix corre-
sponding to the receding time horizon [t, T + t] and P̃a′ be the acceptance matrix
corresponding to the receding time horizon [t+ 1, T + t]. Assume without loss of
generality that an action selection with first action i1 is chosen for the current
time step t. Then for a constant cooling schedule with T = T ′ = T0

P̃a′ = Pai1

Proof. Since the temperatures are constant between the transitions, the accep-
tance probability determined from (3) is determined as a function of evaluations
of the potential function

Vt(i)− Vt(j) =

T∑
l=1

Rst+l −
T∑
l=1

Rst+l .

We assume that i and j belong to the same block Pai1 and that the first action
of i and j are the same. This means that the rewards Rst and Rst are the same,
thus

Vt(i)− Vt(j) =

T∑
l=2

Rst+l −
T∑
l=2

Rst+l = Vt(i2:T)− Vt(j2:T).

It then follows from (3) that elements of Pai1 are equivalent to those in P̃a.

14

To determine P̃gs′, note that each element of P̃gs′ corresponds to an element
of a block of Pgs with updated minimum deviation times tij , cf (13), reduced by

1. To determine P̃gs′ from P̂gs, we apply the horizon shift operation defined by

P̃gs′ij = ρP̂gsij , ∀j 6= i, (15a)

P̃gs′ij = P̂gsij + (1− ρ)
∑
j 6=i

P̂gsij , ∀i, (15b)

where ρ ∈ (0, 1). When this operation is applied to P̂gs, the probability of all
transitions between differing action schedules in Ptr is reduced by ρ.

5.2.2. Relationship between the recycled and next-step transition matrices

Next we describe the relationship between the recycled transition matrix
P̂tr and the approximate next-step transition matrix P̃tr′ given what we know
about Pa, P̃a′, P̂gs, and P̃gs′.

Theorem 3. (Relationship between the recycled and next-step transition ma-
trices): Let the recycled transition matrix P̂tr be determined as shown in (12a)
using P̂s from (12b) and a block Pai1 which correspond to a first action i1. Also,

let the approximate next transition matrix P̃tr′ be determined from (14) where
P̃gs′ be the output of the horizon shift operation on P̂gs as described in (15), and
P̃a′ = Pai1 be the acceptance matrix as determined in Lemma 2. Then, P̃tr′ is

row-stochastic. Also, let λ̂1, λ̂2, . . . and λ̃′1, λ̃
′
2, . . . be the eigenvalues of P̂tr and

P̃tr′, respectively, such that

λ̂ ≥ λ̂ ≥ . . . ≥ λ̂|AT−1
α |

λ̃′ ≥ λ̃′≥ . . . ≥ λ̃′|AT−1
α |,

Then, λ̃′k = 1 + ρλ̂k− ρ. Furthermore, the row-eigenvectors are invariant under
the operation.

Proof. The horizon shift operation as presented is applied to P̂gs, to get P̃gs′

in order to determine P̃tr′. We show that the application of the horizon shift
operation can be applied directly to the recycled transition matrix P̂tr to get
transition matrix P̃tr′, i.e.

P̃tr′ij = ρP̂trij , ∀j 6= i,

P̃tr′ij = P̂trij + (1− ρ)
∑
j 6=i

P̂trij , ∀i,

For all j 6= i, we have P̃tr′ij = (ρP̂sij)P̃
a′
ij = ρP̂trij . Thus, all off-diagonal elements

are the same when the horizon shift operation is applied to either P̂gs or P̂tr.
Then for all diagonal elements P̃tr′ii from (14)

P̃tr′ii = P̃gs′ii +
∑
j 6=i

P̃gs′ij (1− P̃a′ij)

15

= (Pgsii + (1− ρ)
∑
j 6=i

Pgsij) + ρ
∑
j 6=i

Pgsij (1− P̃a′ij)

= Pgsii +
∑
j 6=i

Pgsij − ρ
∑
j 6=i

Pgsij P̃a′ij

= Pgsii +
∑
j 6=i

Pgsij − ρ
∑
j 6=i

Pgsij P̃a′ij +
∑
j 6=i

Pgsij P̃a′ij −
∑
j 6=i

Pgsij P̃a′ij

= Pgsii +
∑
j 6=i

Pgsij (1− P̃a′ij) + (1− ρ)
∑
j 6=i

Pgsij P̃a′ij

= Pgsii +
∑
j 6=i

Pgsij (1− (Pai1)ij) + (1− ρ)
∑
j 6=i

Pgsij (Pai1)ij

= P̂trii + (1− ρ)
∑
i6=j

P̂trij

This means that we can apply the horizon shift operation shown in (15) to
either P̂gs or directly to P̂tr in order to get P̃tr′. It follows from the horizon
shift definition that P̃gs′, and therefore P̃tr′, is row-stochastic. Next we show
that the row-eigenvectors are invariant under the operation when the horizon
shift operation is applied directly to P̂tr, i.e.,

vP̃tr′ = vP̂tr = λv = [v1, . . . , vN]

Consider the element-wise calculation for vi.

(vP̃tr′)i =
∑
∀j

vjP̃
tr′
ji = viP̃

tr′
ii +

∑
i 6=j

vjP̃
tr′
ji

We apply the horizon shift operation to the right-hand side to obtain

(viP̂
tr
ii + (1− ρ)

∑
j 6=i

viP̂
tr
ij) + ρ

∑
j 6=i

vjP̂
tr
ji

= (1− ρ)viP̂
tr
ii + ρviP̂

tr
ii + (1− ρ)

∑
j 6=i

viP̂
tr
ij + ρ

∑
j 6=i

vjP̂
tr
ji

= ρ(viP̂
tr
ii +

∑
j 6=i

vjP̂
tr
ji) + (1− ρ)(viP̂

tr
ii +

∑
j 6=i

viP̂
tr
ij)

Then we use the fact that viP̂
tr
ii +

∑
j 6=i vjP̂

tr
ji = λvi and group the terms by ρ

ρλvi + (1− ρ)(viP̂
tr
ii +

∑
i 6=j

viP̂
tr
ij)

Next, since P̂tr is row-stochastic, we conclude

λ′vi = ρλvi + (1− ρ)vi

16

and hence λ′ = 1 + ρλ− ρ, as stated.

The horizon shift operation helps analyze properties of the stationary dis-
tribution as agents execute actions in the environment.

Corollary 4. (Stationary distribution under horizon shift): Let P̃gs′ be the
output of the horizon shift operation on P̂gs as described in (15), and Pa be any
acceptance matrix. Then the stationary distributions for the transition matrices
P̂tr and P̃tr′ are the same.

Recall that the recycled stationary distribution v̂ is the left eigenvector of the
P̂tr and the conditional probability distribution of action schedules given that
an action schedule with first action i1 is chosen. In Corollary 4 we find that the
recycled stationary distribution and the stationary distribution of the approx-
imate next step transition matrix are equivalent. This implies that reaching a
steady state solution for the current time step will result in a recycled solution
that approximates the steady state distribution for the next time step in the
receding time horizon. The primary motivation behind recycling solutions is
to reduce the number of iterations required for the simulated annealing step of
HSA in order to reach the stationary distribution. The distribution of recycled
solutions remain close to the stationary distribution after executing a step in
the environment and after the horizon shift operation on P̂gs. Furthermore,
by focusing the sampling probability on action schedules that deviate distant
in the future, geometric sampling aids in the mixing of the Markov chain for
future solutions more efficiently. Another interesting property of the horizon
shift operation is its effect on the relaxation time trel.

Corollary 5. (Relaxation time under horizon shift): Let P̃gs′ be the output of
the horizon shift operation on P̂gs as described in (15), and Pa be any acceptance
matrix. Let the relaxation time for the transition matrix P̂tr and P̃tr′ be denoted
t̂rel and t̃′rel, respectively. Then

t̃′rel =
t̂rel
ρ
.

Proof. From Theorem 3, the second largest eigenvalue of P̃tr′ is

λ′2 = 1 + ρλ2 − ρ.

Now, using the definition (1) of the relaxation time, we have

t̃′rel =
1

1− λ′2
=

1

1− (1 + ρλ2 − ρ)
=

1

ρ(1− λ2)
=
t̂rel

ρ
.

This is a useful property because the relaxation time yields bounds found in
(2), for the mixing times of the Markov chain induced by the transition matrix.

17

The trade-off for using a smaller ρ is that the mixing time increases, however
it does allow for more mixing to take place in future events, which is beneficial
because we recycle solutions for future time steps. If ρ is too small, however,
the mixing time becomes large and the agent may be unable iterate enough to
reach near-steady state.

5.3. Inference-based sampling

Here we focus on the multi-agent aspect of the algorithm by creating recom-
mendations with machine learning. In this section, we aim to create a sampling
matrix that is more efficient than the geometric sampling scheme in terms of
number of samples necessary to reach a Nash equilibria. To do this we design
a process that generates a dataset D that contains inputs which correspond to
images of the environment, and outputs which correspond to real-number values
for selecting action schedules.

5.3.1. Creating a dataset

We train a model on the dataset so that the learned policy can provide
recommendations for sampling during deployment. We take advantage of the
fact that most robotic deployment scenarios are spatial in nature by training
our policy to map a local image, xα,s, of the environment to a vector of values

that correspond to action schedules that the agent can select y ∈ R|Āα|, i.e.,
π : xα,s → y. The local image xα,s is translated and rotated with respect to the
pose of agent α. We choose to assign values in y to action schedules according
to

yāα = max
ā−α∈Ā−α

u(āα, ā−α), (17)

for all āα ∈ Āα as an incentive to select a joint action schedule that yield
high rewards and cooperates with other agents. Particular high rewarding joint
actions that require two or more agents to cooperate may have difficulty being
selected because they do not exist in any available ‘finite improvement path’
from the current solution. In this case, an agent may have to choose an action
that yields less reward in order to escape local maximums. In order to get a set
of inputs and outputs, x and y, we randomize many states and solve for (17)
as outlined in Algorithm 3.

5.3.2. Generating sampling matrix Pπs

After collecting the data we train our learned policy π. We use the softmax
function, indicated by Ψ(π(x, s), i) : π(x, s)× i→ R as follows

Ψ(π(x, s), i) =
eπ(x,s)i∑
∀j e

π(x,s)j

18

Algorithm 3: Creating a dataset

1 CreateDataSet()
2 D = ∅
3 for n = 1→ N :
4 x(s)

5 y ∈ R|Āα|
6 for āα ∈ Āα:
7 yāα = 0
8 for ā−α ∈ Ā−α:
9 if V0(āα, ā−α)− V0(∅, ā−α) > yāα

10 yāα = V0(āα, ā−α)− V0(∅, ā−α)
11 D.append(input: x, label: y)
12 return D

in order to convert the output values into a probability distribution to be used
in the sampling matrix Pπs

Pπsα,s =


Ψπ(xα,s),1 . . Ψπ(xα,s),|Āα|

. . . .

. . . .
Ψπ(xα,s),1 . . Ψπ(xα,s),|Āα|

 (18)

With this sampling matrix, the probability of choosing an action schedule is
the same from any other initial action schedule.

Note that, under the inference-based sampling scheme, agents are incen-
tivized to sample action schedules that achieve potentially high ‘wonderful life
utility’. Thus the recommended distribution of actions is weighted more heavily
on action schedules that cooperate with other agents. We argue that this dis-
tribution tends to inhibit the probability of breaking promises in the near term,
as those action schedules will be sampled less often.

6. Cooperative orienteering

We design an algorithm to test and compare the different generation matri-
ces. In the cooperative orienteering 2-D environment, agents are tasked with
collecting resources, which may require multiple agents. Resources that require
1 agent yield a reward of 1, and resources that require 2 agents yield a reward of
3. The environment scrolls to the left, but agents always occupy the left-most
column where they can choose actions in (up, stay,down). Figure 2 illustrates
the cooperative orienteering setup.

We test the following modifications of HSA using different generation sam-
pling schemes.

19

(a) Multi-agent environment (b) xα,s

Figure 2: Cooperative orienteering. (a) shows the cooperative orienteering environment. In
this environment, agents, labeled with , are shown on the left column in the environment.
Agents move up and down in order to collect resource , which requires at least 1 agent on the
coordinate that the resource occupies and yields 1 reward. Agents can also collect , which
requires 2 agents on the coordinate and yields a reward of 3. (b) shows the relative view xα,s

of the agent which is used as an input to the learned policy π. In xα,s, green pixels represent
resources which require 1 agent to collect and red pixels represent resources which require 2.
The yellow pixel represents the agent α and the blue pixel represents an agent other than α.

HSAf : Horizon shift annealing with a ‘flat’ distribution Pfs defined as

Pfsij =
1

|Āα|
,

for all i and j.

HSAg: Horizon shift planning with a geometric distribution Pgs as defined in
(13). We use ρ = .25.

HSAπ: Horizon shift planning with the inferred sampling Pπs as defined in (18).
We use a random forest classifier with a decision tree depth of 12 with 12
estimators. We convert the environment to local images for each agent as
depicted in Figure 2(b). We are able to achieve 82.3% validation accuracy
with a validation loss (KL-divergence) of 0.1849 when trained on 10, 000
data samples generated from Algorithm 3.

6.1. Single-shift stationary distribution

Here we test the presented algorithms by examining the number of steps
that are required in order to reach the stationary distributions defined by the
transition probabilities after a shift in the finite time horizon. In this particular
test we use one agent. To be more precise, we take a scenario from the coopera-
tive orienteering environment and allow the agent to search for a parameterized
number of steps. The agent then executes their active selected action schedule.
Once the agent acts, the agent begins searching again. We are particularly in-
terested in this test because it validates our intuition that utilization of recycled
action schedules decreases the number of steps required to reach the stationary
distribution. Formally, the testing process is outlined in Algorithm 4.

20

Algorithm 4: Single shift sampling

1 Nk
āα = 0 for all k ∈ {1, . . . ,K2} and āα ∈ Āα

2 for j = 1→ J :
3 environment.initialize(seed=j)
4 āα = random.choice(Āα)
5 for k = 1→ K1:
6 āα = HSA(āα, k)
7 environment.step(āα)
8 for k = 1→ K2

9 āα = HSA(āα, k)

10 Nk
āα = Nk

āα + 1

11 π̂kāα =
Nkāα
J for all k ∈ {1, . . . ,K2} and āα ∈ Āα

12 return π̂

The stationary distribution v is determined by calculating the transition
probabilities determined with generation and acceptance probabilities. We cal-
culate the KL-divergence between v and the empirically found distribution v̂ for
every iteration k as follows

Lkv̂k,v = −
|Āα|∑
i=1

vki log v̂i +

|Āα|∑
i=1

vki log vi. (19)

The state of the environment is initially the same for each sample. Agents
iterate through HSA for k ∈ {1, . . . ,K1} steps and then select an action. The

sub-index k in HSA
f
k , HSAgk, HSAπk indicates the k number of iterations used on

the first time step of the corresponding algorithm. We take samples such that
the agent chooses to move straight and discard the rest. After executing the
step in the environment, the stationary distribution of the agent’s next choice is
determined. Figure 3 illustrates this stationary distribution after the shift. The
agent then plans for k ∈ {1, . . . ,K2} iterations and the empirical distribution
is determined with respect to k. Figure 4(a) shows the resulting KL-divergence
between v and v̂. We show in Figure 4(b) the KL-divergence vs. values of ρ, 0
through 1. If the user chooses a ρ that is too low (e.g., ρ < .1), HSAg reaches the
stationary distribution slower than HSAf , likely because not enough sampling
occurs in near time. We leave finding the optimal value of ρ for future work as
it is likely determined by characteristics of the environment, K1, and K2. We
also examine in Figure 5 the average expected reward of the action schedule
selected during the second step. .

Note that the stationary distributions are slightly different for each of the
sampling schemes and that (19) is determined with each of the schemes’ station-
ary distributions, respectively. As expected, the empirical distributions converge

21

Figure 3: The average reward per step is shown between the stationary distribution and
empirical distribution in the single shift experiment. The y-axis indicates probabilities in the
stationary distribution for the corresponding action schedules that are indexed 0 through 80
on the x-axis.

(a) (b)

Figure 4: The KL-divergence is shown for the single shift experiment. On the left (a), HSAf and
HSAg are both ran initially for 1, 15, and 1000 first step iterations. The x-axis indicates number
of iterations during the second step and the y-axis indicates the KL-divergence between the
stationary distribution and the empirical distribution during the second step. On the right
(b), we show the KL-divergence on the y-axis vs. values of ρ ∈ (0, 1), where K1 = 20 and
K2 = 10.

to the stationary distributions as the number of iterations in the second step
increase. Also, as the first step iterations k1 increase, the number of iterations
k2 required for the KL-divergence to converge in the second step is smaller for
both sampling schemes. The faster convergence implies that the Markov chain
induced by the transition matrix at the second step is being mixed partially by
the first step, which backs up the idea of recycling solutions. When compar-
ing HSAf and HSAg, it is notable that HSAg performs preferably as k1 increases.
Intuitively, this is because the agent will dedicate more first step iterations for
sampling action schedules in the more distant future. When k1 is low, the sec-
ond step will not be mixed well and the mixing time required for HSAg is greater
since its relaxation time is greater.

22

Figure 5: The expected reward is shown for the single shift experiment. The x-axis indicates
number of iterations during the second step and the y-axis indicates the expected reward for
action schedules chosen during the second step.

6.2. Probability of finding globally optimal solutions

For this experiment we are interested in determining how often 2 agents
arrive at a joint action schedule ā that is in the set of globally optimal joint action
schedules when considering a single step (no horizon shift) in the environment.
Because we are not considering horizon shifts, we omit HSAg, which converges
slower than HSAf if there is no ‘pre-shift‘ mixing.

Figure 6: The percentage of joint action schedules that are in the set of optimal Nash equilib-
riums are shown. The y-axis indicates the percentage of trials where the joint action schedule
selected at iteration k, on the x-axis, was in the set of joint Nash equilibriums.

As shown in Figure 6, the probability that the current joint action schedule is
in the set of optimal Nash equilibriums increases with the number of iterations.
We see that HSAπ yields a higher probability. This is because the learned policy
is trained to output action schedules with high utility more often as determined
in (17) and Algorithm 3.

6.3. Full trial cooperative reward

We determine the average reward per step that 2 agents receive when agents
use the algorithms on cooperative orienteering for 1000 time steps with a re-
ceding time horizon of T = 4. In this experiment, we vary the number K of

23

iterations per time steps that agents take during the simulation and plot the
results in Figure 7(a). Additionally, we implement centralized UCT and SAP to
compare our results against. In centralized UCT, we search over a joint action
space up to a finite horizon of 4 time steps. In SAP, agents plan distributively
and sample task sequences. Because HSAπ requires inference from π at every

(a) (b)

Figure 7: Average reward per step for full trials versus (a) allowed iterations per time step
and (b) allowed time per time step. The y-axis indicates the average expected reward per
step. The x-axis indicates the (a) number of iterations and (b) time in seconds allowed per
time step.

time step, we also plot the results with respect to the amount of time that agents
use for each step in Figure 7(b).

As shown in Figure 7, the average reward gained per step increases with
the number of iterations. As suspected, HSAg performs worse than HSAf for
low number of iterations per step. As the number of iterations increase, HSAg

outperforms HSAf , which may be a consequence of its synergy with recycling
solutions and its ability to mix future actions more efficiently. HSAπ performs
the best, likely because it sampled better action schedules more often due to
the high categorical accuracy of the model. HSAπ does take some time for
inference however, and initially performs worse than the other algorithms when
considering real time per step. In this experiment, UCT requires more iterations,
but each iteration generally takes less time. In the cooperative orienteering
environment UCT yields similar performance to HSAf and HSAg. Given the cost
of inference, HSAπ requires more time per step but is able to overtake UCT in
average reward per step in a small number of iterations. As expected, SAP
performs most like HSAf . SAP performs slightly worse than HSAf because it
does not utilize recycling of solutions.

6.4. Keeping and breaking promises

Lastly, we design a metric for the notion of keeping and breaking ‘promises’.
Given a deployment with two or more agents, we say that there was a ‘promise’
broken during a time step if the following are all true:

• During iterations of simulated annealing, an agent expects to successfully
collect a resource that requires more than one agent;

24

• Subsequently, another agent who was required for that resource’s collec-
tion chooses a different action, resulting in the first agent’s inability to
collect the resource.

In this experiment, we run the algorithms on the cooperative orienteering
environment with 2 agents for N time steps and determine the probability of
steps where a promise was broken between the two agents.

Figure 8: 1000 trials of cooperative orienteering with N = 1000 time steps where the probabil-
ity of steps where ‘promises’ are broken is depicted by the y-axis and the number of iterations
per step is depicted by the x-axis.

Figure 8 shows that the probability of breaking promises decreases as the
number of iterations increase for all algorithms. As expected, promises are kept
more often under both the geometric and inference-based sampling schemes
when compared to the flat sampling scheme.

7. Conclusions

We have considered multi-agent task planning problems where individuals
must coordinate their actions to cooperatively solve a set of tasks. We have
formulated the selection of joint agents’ actions as a potential game and, in-
stead of relying on methods based on improvement paths to reach a pure Nash
equilibrium, we have introduced a decentralized simulated annealing process.
Agents implement the strategy in a receding horizon fashion, recycling the solu-
tions from one time step to the next, and sample new actions with a probability
determined by two novel schemes termed geometric and inference-based sam-
pling. In geometric sampling, actions are sampled based on their position in
the finite time horizon, with new actions having larger probability as the con-
sidered timestep is farther into the future. In inference-based sampling, we rely
on the recommendations provided by a learned model to output sampling prob-
abilities. We show that the proposed algorithm, given enough time, will find
at least a local pure Nash equilibrium and analyze the properties of geometric
sampling with respect to its stationary distribution as the finite time horizon
shifts. Future work will develop methods to optimize the rate of increase with
the number of iterations in the sampling probability in the geometric scheme.

25

We also plan to explore the improvement of the ability of the learned policy to
influence agents to reach an optimal Nash equilibrium by training the output
conditioned on the current solution of the agents.

Acknowledgments

This work was supported by ONR Award N00014-16-1-2836.

References

[1] F. Bullo, J. Cortés, S. Martinez, Distributed Control of Robotic Networks,
Applied Mathematics Series, Princeton University Press, 2009.

[2] M. Mesbahi, M. Egerstedt, Graph Theoretic Methods in Multiagent Net-
works, Applied Mathematics Series, Princeton University Press, 2010.

[3] M. Dunbabin, L. Marques, Robots for environmental monitoring: Signifi-
cant advancements and applications, IEEE Robotics & Automation Mag-
azine 19 (1) (2012) 24–39.

[4] J. Das, F. Py, J. B. J. Harvey, J. P. Ryan, A. Gellene, R. Graham, D. A.
Caron, K. Rajan, G. S. Sukhatme, Data-driven robotic sampling for ma-
rine ecosystem monitoring, The International Journal of Robotics Research
34 (12) (2015) 1435–1452.

[5] J. Cortés, M. Egerstedt, Coordinated control of multi-robot systems: A
survey, SICE Journal of Control, Measurement, and System Integration
10 (6) (2017) 495–503.

[6] R. Sutton, D. Precup, S. Singh, Between MDPs and semi-MDPs: A frame-
work for temporal abstraction in reinforcement learning, Artificial Intelli-
gence 112 (1-2) (1999) 181–211.

[7] F. Broz, I. Nourbakhsh, R. Simmons, Planning for human-robot interaction
using time-state aggregated POMDPs, in: AAAI, Vol. 8, 2008, pp. 1339–
1344.

[8] M. L. Puterman, Markov Decision Processes: Discrete Stochastic Dynamic
Programming, Wiley, New York, 2014.

[9] R. A. Howard, Dynamic Programming and Markov Processes, MIT Press,
Cambridge, MA, 1960.

[10] R. E. Parr, S. Russell, Hierarchical control and learning for Markov decision
processes, University of California, Berkeley Berkeley, CA, 1998.

[11] D. P. Bertsekas, Dynamic Programming and Optimal Control, Athena Sci-
entific, 1995.

26

[12] L. Kocsis, C. Szepesvári, Bandit based Monte-Carlo planning, in: ECML,
Vol. 6, Springer, New York, 2006, pp. 282–293.

[13] J. Co-Reyes, Y. Liu, A. Gupta, B. Eysenbach, P. Abbeel, S. Levine, Self-
consistent trajectory autoencoder: Hierarchical reinforcement learning with
trajectory embeddings, arXiv preprint arXiv:1806.02813 (2018).

[14] A. Ma, M. Ouimet, J. Cortés, Hierarchical reinforcement learning via dy-
namic subspace search for multi-agent planning, Autonomous Robots 44 (3-
4) (2020) 485–503.

[15] D. Silver, A. Huang, C. Maddison, A. Guez, L. Sifre, G. V. D. Driessche,
J. Schrittwieser, I. Antonoglou, V. Panneershelvam, M. Lanctot, et al.,
Mastering the game of Go with deep neural networks and tree search, Na-
ture 529 (7587) (2016) 484.

[16] X. Guo, S. Singh, H. Lee, R. Lewis, X. Wang, Deep learning for real-
time Atari game play using offline Monte-Carlo tree search planning, in:
Conference on Neural Information Processing Systems, Montreal, Canada,
2014, pp. 3338–3346.

[17] S. Gelly, D. Silver, Combining online and offline knowledge in UCT, in:
Proceedings of the 24th International Conference on Machine Learning,
Corvallis, OR, 2007, pp. 273–280.

[18] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, T. Lillicrap,
D. Silver, Mastering Atari, Go, Chess and Shogi by planning with a learned
model, arXiv preprint arXiv:1911.08265 (2019).

[19] T. Anthony, Z. Tian, D. Barber, Thinking fast and slow with deep learning
and tree search, in: Conference on Neural Information Processing Systems,
Long Beach, CA, 2017, pp. 5360–5370.

[20] D. Silver, J. Schrittwieser, K. Simonyan, I. Antonoglou, A. Huang, A. Guez,
T. Hubert, L. Baker, M. Lai, A. Bolton, et al., Mastering the game of Go
without human knowledge, Nature 550 (7676) (2017) 354.

[21] J. Schrittwieser, I. Antonoglou, T. Hubert, K. Simonyan, L. Sifre,
S. Schmitt, A. Guez, E. Lockhart, D. Hassabis, T. Graepel, et al., Mas-
tering atari, go, chess and shogi by planning with a learned model, arXiv
preprint arXiv:1911.08265 (2019).

[22] D. Fudenberg, J. Tirole, Game Theory, MIT Press, Cambridge, MA, 1991.

[23] D. Fudenberg, D. K. Levine, The Theory of Learning in Games, MIT Press,
Cambridge, MA, 1998.

[24] D. Monderer, L. S. Shapley, Potential games, Games and Economic Behav-
ior 14 (1996) 124–143.

27

[25] J. R. Marden, G. Arslan, J. S. Shamma, Cooperative control and poten-
tial games, IEEE Transactions on Systems, Man & Cybernetics. Part B:
Cybernetics 39 (2009) 1393–1407.

[26] A. C. Chapman, R. A. Micillo, R. Kota, N. R. Jennings, Decentralised
dynamic task allocation: a practical game: theoretic approach, in: Pro-
ceedings of The 8th International Conference on Autonomous Agents and
Multiagent Systems-Volume 2, International Foundation for Autonomous
Agents and Multiagent Systems, 2009, pp. 915–922.

[27] L. Blume, et al., The statistical mechanics of strategic interaction, Games
and Economic Behavior 5 (3) (1993) 387–424.

[28] H. P. Young, Individual Strategy and Social Structure: an Evolutionary
Theory of Institutions, Princeton University Press, Princeton, NJ, 1998.

[29] S. Kirkpatrick, C. Gelatt, M. Vecchi, Optimization by simulated annealing,
Science 220 (4598) (1983) 671–680.

[30] P. J. M. V. Laarhoven, E. H. L. Aarts, Simulated annealing, in: Simu-
lated annealing: Theory and applications, Vol. 37 of Mathematics and Its
Applications, Springer, New York, 1987, pp. 7–15.

[31] M. Malek, M. Guruswamy, M. Pandya, H. Owens, Serial and parallel sim-
ulated annealing and tabu search algorithms for the traveling salesman
problem, Annals of Operations Research 21 (1) (1989) 59–84.

[32] B. Hajek, Cooling schedules for optimal annealing, Mathematics of Oper-
ations Research 13 (2) (1988) 311–329.

[33] B. Suman, P. Kumar, A survey of simulated annealing as a tool for sin-
gle and multiobjective optimization, Journal of the Operational Research
Society 57 (10) (2006) 1143–1160.

[34] O. Vinyals, I. Babuschkin, J. Chung, M. Mathieu, M. Jaderberg, W. M.
Czarnecki, A. Dudzik, A. Huang, P. Georgiev, R. Powell, et al., Alphastar:
Mastering the real-time strategy game Starcraft II, DeepMind blog (2019)
2.

[35] D. A. Levin, Y. Peres, Markov Chains and Mixing Times, Vol. 107, Amer-
ican Mathematical Society, Providence, RI, 2017.

[36] D. Henderson, S. H. Jacobson, A. W. Johnson, The theory and practice of
simulated annealing, in: Handbook of metaheuristics, Springer, 2003, pp.
287–319.

28

	Introduction
	Preliminaries
	Markov chains
	Simulated annealing
	Potential games

	Problem statement
	Action scheduling with recycled solutions
	Sampling schemes for action scheduling
	Matrix structure with respect to action schedule indices
	Geometric sampling
	Approximating the next-step transition matrix via horizon shift
	Relationship between the recycled and next-step transition matrices

	Inference-based sampling
	Creating a dataset
	Generating sampling matrix Ps

	Cooperative orienteering
	Single-shift stationary distribution
	Probability of finding globally optimal solutions
	Full trial cooperative reward
	Keeping and breaking promises

	Conclusions

