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Abstract

This paper studies real-time bidding mechanisms for economic dispatch and frequency regulation in electrical power networks
described by topologies with edge-disjoint cycles. We consider a market administered by an independent system operator
(ISO) where a group of strategic generators participate in a Bertrand game of competition. Generators bid prices at which
they are willing to produce electricity. Each generator aims to maximize their profit, while the ISO seeks to minimize the
total generation cost while respecting line flow limits and regulate the frequency of the system. We consider a continuous-time
bidding process coupled with the swing dynamics of the network through the use of frequency as a feedback signal for the
negotiation process. We analyze the stability of the resulting interconnected system, establishing frequency regulation and the
convergence to a Nash equilibrium and optimal generation levels. Simulations illustrate our theoretical findings.

1 Introduction

Power generation dispatch is typically done in a hierar-
chical fashion, where the different layers are separated ac-
cording to their time scales. Broadly, at the top layer, eco-
nomic efficiency is ensured via market clearing and at the
bottom layer, frequency control and regulation is achieved
via primary and secondary controllers. However, the in-
termittent and uncertain nature of distributed energy re-
sources (DERs) represents a major challenge to the cur-
rent design. Of particular concern is the need to maintain
both frequency regulation and cost efficiency of regula-
tion reserves in the face of increasing fluctuations in re-
newables. This presents an opportunity to rethink the ar-
chitecture and its hierarchical separation, with potential
significant implications for efficiency, ancillary services,
and resilience of the future power grid. To this end, we
propose an integrated dynamic market mechanism which
combines the real-time market and frequency regulation,
allowing competitive market players, including renewable
generation, to negotiate electricity prices while using the
most recent information on grid frequency.

? A preliminary version appeared at the 2018 Power Systems
Computation Conference as [Stegink et al., 2018]. This work
is supported by the NWO (Netherlands Organisation for Sci-
entific Research) Uncertainty Reduction in Smart Energy Sys-
tems (URSES) programme and the ARPA-e Network Opti-
mized Distributed Energy Systems (NODES) program.

Email addresses: a.k.cherukuri@rug.nl (Ashish
Cherukuri), tjerkstegink@gmail.com (Tjerk Stegink),
c.de.persis@rug.nl (Claudio De Persis),
a.j.van.der.schaft@rug.nl (Arjan van der Schaft),
cortes@ucsd.edu (Jorge Cortés).

Literature review: The combination of economic dispatch
and frequency regulation has received increasing atten-
tion in recent years. Various works have sought to move
beyond the traditional and compartmentalized hierarchi-
cal control layers to instead simultaneously achieve fre-
quency stabilization and economic dispatch in power net-
works [Trip et al., 2016, Zhang and Papachristodoulou,
2015, Li et al., 2016] and microgrids [Cady et al., 2015,
Dörfler et al., 2016]. Along this line of research, the var-
ious agents involved work cooperatively towards the sat-
isfaction of a common goal. An alternative body of re-
search has investigated the use of price-based incentives
for economic generation- and demand-side management
and frequency regulation [Alvarado et al., 2001, Shiltz
et al., 2016, Stegink et al., 2017]. To achieve these goals,
these works consider dynamic pricing mechanisms in con-
junction with system dynamics of the power network. We
also adopt this approach, with the key difference that here
generators bid in the market and are, therefore, price-
setters instead of price-takers. This viewpoint results in a
Bertrand game of competition among the generators. The
work [Cherukuri and Cortés, 2020] studied this type of
games and established that iterative bidding can achieve
convergence to an optimal allocation of power genera-
tion, without considering the effects on the dynamics of
the power network. The underlying assumption was that
generation setpoints could be commanded after conver-
gence, which in practice poses a limitation, considering
the fast time-scales at which DERs operate. This was
extended in [Stegink et al., 2019], which considers the
power network dynamics to develop a time-triggered hy-
brid implementation of bidding and power setpoint up-
dates based on a simplified formulation of optimal dis-
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patch with quadratic cost functions, no generator bounds,
and no line flow limits. Our treatment here supersedes
these limitations.We propose an online bidding scheme
where the setpoints are updated continuously throughout
time to better cope with fast changes in the network. The
novelty of the present paper lies in the conjoined treat-
ment of frequency regulation and optimal power dispatch,
incorporating key elements of power systems operation
and the competitive aspect among the generators.

Statement of contributions: We consider an electrical
power network consisting of an independent system op-
erator (ISO) and a group of competitive generators. The
physical interconnection of buses and transmission lines
is described by an undirected graph with edge-disjoint
cycles, meaning that no two cycles have an edge in com-
mon. The integration of different layers at the same
timescale might create unintended outcomes, since the
mechanisms employed at the upper layers cannot be
assumed to be in steady state when analyzing the mech-
anisms at the lower ones. Our technical presentation
successfully addresses this challenge, providing a novel
algorithmic solution that combines real-time markets
with strategic players and frequency regulation. Each
generator seeks to maximize its individual profit, while
the ISO aims to solve the economic dispatch problem
while respecting thermal line limits and regulate the fre-
quency. Since the generators are not willing to share their
cost functions, the ISO is unable to solve the economic
dispatch problem. Instead, it has the generators compete
in a bidding market where they submit bids to the ISO
in the form of a price at which they are willing to pro-
duce electricity. In return, the ISO determines the power
generations levels the generators have to meet. We ana-
lyze the underlying Bertrand game among the generators
and characterize the Nash equilibria that correspond to
optimal power dispatch termed efficient Nash equilibria.
In particular, we establish the existence of such efficient
Nash equilibria and provide a sufficient condition for its
uniqueness. We also propose a Nash equilibrium seeking
scheme in the form of a continuous-time bidding process
that captures the interaction between the generators and
the ISO. In this scheme, the generators adjust their bid
based on their current bid and the production level that
the ISO requests from them with the aim to maximize
their profit. At the same time, the ISO adjusts the gen-
eration setpoints to minimize the total payment to the
generators while taking the power balance and frequency
deviation into account. Moreover, along the execution of
the algorithm the nonnegativity constraints on the bids
and power generation quantities are satisfied. The use of
the local frequency error as a feedback signal in the ne-
gotiation process couples the ISO-generator coordination
scheme with the swing dynamics of the power network.
We show that each equilibrium of the interconnected
system corresponds to an efficient Nash equilibrium, op-
timal generation levels and zero frequency regulation. We
furthermore establish local convergence to such an equi-
librium by invoking a suitable invariance principle for the
closed-loop projected dynamical system. Finally, the nu-
merical results on a 6-bus example show fast convergence
of the closed-loop system to an optimal equilibrium, even
under sudden changes of the load and the cost functions.

Notation: Let R,R≥0,R>0 be the set of real, nonnega-

tive real, and positive real numbers, resp. We write [n] :=
{1, . . . , n}. The transpose operator is denoted by >. We
denote by 1n ∈ Rn the n-dimensional vector whose ele-
ments are equal to 1. Given a twice differentiable func-
tion f : Rn → R, its gradient and its Hessian evaluated
at x is written as ∇f(x) and ∇2f(x), resp. A twice con-
tinuously differentiable function f : Rn → R is strongly
convex on S ⊂ Rn if it is convex and, for some µ > 0,
its Hessian satisfies ∇2f(x) � µI for all x ∈ S. The
projection of a point y ∈ Rn onto a closed convex set
K ⊂ Rn is projK(y) = arg minz∈K ‖z − y‖. The projec-
tion of vector v ∈ Rn at a point x ∈ K with respect
to K is ΦK(x, v) = limδ→0+

(
projK(x+ δv)− x

)
/δ. For

A ∈ Rm×n, the induced 2-norm is denoted by ‖A‖. Given

v ∈ Rn, τ ∈ Rn×n, we write ‖v‖τ :=
√
v>τv. Given a set

of numbers v1, v2, . . . , vn ∈ R, col(v1, . . . , vn) denotes the

column vector
[
v1, . . . , vn

]>
and likewise diag(v1, . . . , vn)

denotes the n×n diagonal matrix with entries v1, . . . , vn
on the diagonal. For u, v ∈ Rn we write u ⊥ v if u>v = 0.
The complementarity conditions u ≥ 0, v ≥ 0, u ⊥ v are
denoted as 0 ≤ u ⊥ v ≥ 0. The notations sin(.) and cos(.)
are the element-wise sine and cosine functions, resp.

2 Power network model and dynamics

We consider an electrical power network consisting of n
buses and m transmission lines. The network is repre-
sented by a connected and undirected graph G = (V, E),
where nodes V = [n] represent buses and edges E ⊂ V×V
are the transmission lines connecting the buses. The edges
are arbitrarily labeled with a unique identifier in [m] and
the ends of each edge are arbitrary labeled with ‘+’ and
‘-’. The resulting labeled directed graph is denoted by
Gd = (Vd, Ed). The incidence matrix D ∈ Rn×m of this
directed graph is

Di` =


+1 if i is the positive end of edge `,

−1 if i is the negative end of edge `,

0 otherwise.

Each bus k represents a control area and is assumed to
have a load Pdk and Nk number of generators. We let
N =

∑n
k=1Nk be the total number of generators and as-

sign them a unique identity in [N ]. Let the set of gener-
ators at node k be Gk ⊂ [N ] (this set is empty if there
are no generators connected to bus k). The dynamics at
the buses is assumed to be governed by the swing equa-
tions [Machowski et al., 2008],

δ̇ = ω,

Mω̇ = −DΓ sin(D>δ)−Aω + EgPg − Pd,
(1)

with Pd = col(Pd1, . . . , Pdn). Here Eg ∈ Rn×N whose
columns are unit vectors indicating which generator be-
longs to which node. In addition, Γ = diag(γ1, . . . , γm),
where γ` = BkjVkVj = BjkVkVj and ` ∈ [m] corresponds
to the edge between nodes i and j. Table 1 presents a list
of symbols employed in the model (1). We assume 1 that

1 All assumptions in the paper are italicized and are summa-
rized on Table 2.
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δ ∈ Rn voltage phase angle

ω ∈ Rn frequency deviation w.r.t. the nominal frequency

Pg ∈ RN
≥0 power generation

Pd ∈ Rn
≥0 power load

M ∈ Rn×n
≥0 diagonal matrix of moments of inertia

A ∈ Rn×n
≥0 diagonal matrix of damping constants

Vk ∈ R>0 voltage magnitude at bus k

Bkj ∈ R>0 negative of the susceptance of line (k, j)

Table 1
Elements of swing equations (1).

at least one diagonal element of A is positive and the ma-
trix M is invertible. Finally, we assume that the cycles
in (V, E) are edge-disjoint, that is, no two cycles have an
edge in common. Note that radial networks trivially sat-
isfy this condition.

It is convenient to work with the voltage phase an-
gle differences ϕ = D>δ ∈ Rm. Further, let U(ϕ) =
−1>mΓ cosϕ, then the physical system (1) in the (ϕ, ω)-
coordinates reads as

ϕ̇ = D>ω,

Mω̇ = −D∇U(ϕ)−Aω + EgPg − Pd.
(2)

3 Problem description

Here we formulate the problem statement, introduce the
game-theoretic tools, and discuss the goals of the paper.

3.1 ISO-generator coordination

Taking as starting point the electrical power network
model described in Section 2, here we outline the ele-
ments of the ISO-generator coordination problem follow-
ing the exposition of [Cherukuri and Cortés, 2020]. Let
Ci : R≥0 → R≥0 be the cost incurred by generator i ∈ [N ]
in producing Pgi units of power. We assume Ci is strongly
convex on the domain R≥0 and satisfies ∇Ci(0) ≥ 0.
Given a load Pd and the total network cost

C(Pg) :=
∑
i∈[N ]

Ci(Pgi), (3)

the ISO seeks to solve the economic dispatch (ED) prob-
lem

minimize
(Pg,v)

C(Pg), (4a)

subject to Dv + Pd − EgPg = 0, (4b)

Pg ≥ 0, (4c)

− vb ≤ v ≤ vb (4d)

and, at the same time, to regulate the frequency of the
physical power network. Here v ∈ Rm represents the
power flow between the buses and vb captures flow re-
strictions. For radial networks, this vector corresponds
to the thermal line limits. For more general networks,
this represents a further restriction that allows satisfac-
tion of the network flow constraint at the equilibrium of

the interconnected system. We elaborate more on this
design aspect in Section 5.2 below. To guarantee feasi-
bility of the nonlinear power flow equations, we assume
vb < Γ1m element-wise. Furthermore, we assume the to-
tal load to be positive, i.e., 1>nPd > 0 such that (4) is fea-
sible. Since the constraints (4b), (4c), and (4d) are affine,
Slater’s condition holds implying that (4) has zero dual-
ity gap. We can also show that its primal-dual optimizer
(P ∗g , v

∗, λ∗, µ∗, ν∗−, ν
∗
+) where λ∗, µ∗, ν∗−, ν

∗
+ are associated

to constraints (4b), (4c), (4d) resp., is unique by exploit-
ing strong convexity of C. We assume that for the power
injectionPg = P ∗g , there exists an equilibrium (ϕ̄, ω̄) of (2)
that satisfies ϕ̄ ∈ (−π/2, π/2)m. The latter assumption
is standard and is referred to as the security constraint
in the power systems literature [Machowski et al., 2008].
We also assume that at the optimal generation P ∗g , at each
generator bus, there exist at least two generators produc-
ing positive power. The reason for such a condition will
become clear in the next section where we discuss the ex-
istence of the efficient Nash equilibrium. Note that our
formulation can also incorporate flexible demand, such as
demand response elements. We can consider their contri-
bution as “negative” generation, and as long as the con-
vexity of the problem (4) is retained, the results extend
to this generalized setup.

We note that the ISO cannot determine the optimizer of
the ED problem (4) because generators are strategic and
they do not reveal their cost functions to anyone. Instead,
the ISO operates a market where each generator i ∈ [N ]
submits a bid bi ∈ R≥0 in the form of a price at which
it is willing to provide power. Based on these bids, the
ISO aims to find the power allocation that meets the load
and minimizes the total payment to the generators. Thus
instead of solving the ED problem (4) directly, the ISO
considers, given a bid b ∈ RN≥0, the convex optimization
problem

minimize
(Pg,v)

b>Pg, (5a)

subject to Dv + Pd − EgPg = 0, (5b)

Pg ≥ 0, (5c)

− vb ≤ v ≤ vb. (5d)

A major difference between (4) and (5) is that the latter
problem is linear and may have multiple solutions. Let
P opt
g (b) be the optimizer of (5) the ISO selects (this se-

lection might not be unique) given bids b and broadcasts
to the generators. Knowing the ISO’s strategy, each gen-
erator i bids a quantity bi ≥ 0 to maximize its payoff

Πi(bi, P
opt
gi (b)) := P opt

gi (b)bi − Ci(P opt
gi (b)), (6)

where P opt
gi (b) is the i-th component of the optimizer

P opt
g (b). This function is not necessarily continuous in the

bid b. Since each generator is strategic, we analyze the
market clearing and the dispatch process explained above
using game theory [Başar and Oldser, 1982, Fudenberg
and Tirole, 1991].

3.2 Inelastic electricity market game

We define the inelastic electricity market game as
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• M is invertible; A is nonzero; edge-disjoint cycles in G
• Ci strongly convex, ∇Ci(0) ≥ 0; flow capacity vb < Γ1m

• at P ∗
g security constraint holds and two generators at

each generator bus have positive production

Table 2
Summary of assumptions. Detailed explanations are given in
Section 2 and Section 3.

• Players: the set of generators [N ].
• Action: for each player i, the bid bi ∈ R≥0.
• Payoff: for each player i, the payoff Πi defined in (6).

In the sequel we interchangeably use the notation b ∈ RN≥0

and (bi, b−i) ∈ RN≥0 for the bid vector, where b−i ∈ RN−1
≥0

represents the bids of all players except i. We note that
the payoff of generator i not only depends on the bids of
the other players but also on the optimizer P opt

g (b) the
ISO selects. Therefore, the concept of a Nash equilibrium
is defined slightly differently compared to the usual one.

Definition 3.1 (Nash equilibrium [Cherukuri and
Cortés, 2020]): A bid profile b∗ ∈ RN≥0 is a Nash equi-
librium of the inelastic electricity market game if there
exists an optimizer P opt

g (b∗) of (5) such that

Πi(bi, P
opt
gi (bi, b

∗
−i)) ≤ Πi(b

∗
i , P

opt
gi (b∗))

for all i ∈ [N ], for all bi ∈ R≥0 with bi 6= b∗i , and all

optimizers P opt
gi (bi, b

∗
−i) of (5) given bids (bi, b

∗
−i).

We are interested in bid profiles for which the optimizer
of (4) is also a solution to (5). This is captured next.

Definition 3.2 (Efficient bid and efficient Nash equilib-
rium): An efficient bid of the inelastic electricity market
is a bid b∗ ∈ RN≥0 for which the optimizer P ∗g of (4) is also

an optimizer of (5) given bids b = b∗ and

P ∗gi = arg max
Pgi≥0

{Pgib∗i − Ci(Pgi)} for each i ∈ [N ]. (7)

A bid b∗ ∈ RN≥0 is an efficient Nash equilibrium if it is an
efficient bid and a Nash equilibrium.

At the efficient Nash equilibrium, the optimizer of the ED
problem coincides with the production levels that maxi-
mize the individual profits (6) of the generators.

3.3 Paper goals: control design for stable interconnection

Given the problem setup, neither the ISO nor the individ-
ual strategic generators are able to determine the efficient
Nash equilibrium a priori. As a first objective, we are in-
terested in designing a Nash equilibrium seeking mecha-
nism in the form of a bidding process where the genera-
tors coordinate with the ISO to dynamically update their
bids and production levels, while respecting the nonneg-
ativity constraints throughout its execution. Our second
objective is the characterization of the stability proper-
ties of the interconnection of the bidding process with the
physical dynamics of the power network.

4 Existence and uniqueness of Nash equilibria

Here we establish existence of an efficient Nash equilib-
rium and provide a condition for its uniqueness. We start
by providing a characterization of a set of efficient Nash
equilibria.

Proposition 4.1 (Characterization of efficient Nash
equilibria): Let (P ∗g , v

∗, λ∗, µ∗, ν∗−, ν
∗
+) be a primal-dual

optimizer of (4), i.e., P ∗g ∈ RN , v∗ ∈ Rm, λ∗ ∈ Rn, µ∗ ∈
RN , ν∗− ∈ Rm, ν∗+ ∈ Rm satisfy the Karush-Kuhn-Tucker
(KKT) conditions

0 = ∇C(P ∗g )− E>g λ∗ − µ∗, (8a)

0 = −D>λ∗ − ν∗+ + ν∗−, (8b)

0 = Dv∗ − EgP ∗g + Pd, (8c)

0 ≤ P ∗g ⊥ µ∗ ≥ 0, (8d)

0 ≤ (vb − v∗) ⊥ ν∗+ ≥ 0, 0 ≤ (vb + v∗) ⊥ ν∗− ≥ 0.
(8e)

Suppose that at each node k, P ∗gi > 0 for at least two
distinct generators i ∈ Gk or P ∗gi = 0,∀i ∈ Gk. Then, any

b∗ ∈ RN≥0 satisfying E>g λ
∗ ≤ b∗ ≤ ∇C(P ∗g ) is an efficient

Nash equilibrium of the inelastic electricity market game.

PROOF. Let (P ∗g , v
∗, λ∗, µ∗, ν∗−, ν

∗
+) satisfy (8). Note

that since the objective function of (4) is strongly con-
vex, for any optimizer (P̄g, v̄) of (4), we have P̄g = P ∗g .

From (8a), E>g λ
∗ ≤ ∇C(P ∗g ). Fix b∗ ∈ RN≥0 satisfy-

ing E>g λ
∗ ≤ b∗ ≤ ∇C(P ∗g ). We will now prove that

b∗ is efficient. Define µ̂∗ := b∗ −E>g λ∗ and note that
(P ∗g , v

∗, λ∗, µ̂∗, ν∗−, ν
∗
+) satisfies

b∗ = E>g λ
∗ + µ̂∗, Dv∗ − EgP ∗g + Pd = 0,

0 ≤ P ∗g ⊥ µ̂∗ ≥ 0, 0 = −D>λ∗ − ν∗+ + ν∗−
(9)

and (8e). We note that Slater’s condition holds for (5)
and its KKT conditions are given by (9). Consequently,
(P ∗g , v

∗) is a primal optimizer of (5). In addition, the bid
b∗ satisfies

P ∗gi = arg max
Pgi≥0

{Pgib∗i − Ci(Pgi)} for each i ∈ [N ]. (10)

This is true as for each i ∈ [N ], the following optimality
conditions: ∇Ci(P ∗gi) = b∗i + η∗i , and 0 ≤ P ∗gi ⊥ η∗i ≥ 0,
are satisfied for η∗i = ∇Ci(P ∗gi) − b∗i . Note that in the
above set of conditions, P ∗giη

∗
i = 0 because if P ∗gi > 0, then

∇Ci(P ∗gi) = λ∗k = b∗i for i ∈ Gk. Thus, we have established
that b∗ is efficient. In the remainder of the proof we show
that b∗ is a Nash equilibrium. Suppose generator i devi-
ates from the bid b∗i . We distinguish between two cases.
Suppose first that bi > b∗i , then by replacing b∗ by (bi, b

∗
−i)

in (5) and checking the optimality conditions, we obtain

P opt
gi (bi, b

∗
−i) = 0 as, by assumption, there is at least one

other generator j at node k such that b∗j = λ∗k < bi. With-
out loss of generality assume that P ∗gi > 0 since other-

wise Πi(b
∗
i , P

∗
gi) = Πi(bi, P

opt
gi (bi, b

∗
−i)). For P ∗gi > 0, we
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have b∗i = ∇Ci(P ∗gi) and therefore ∇Ci(Pgi) ≤ b∗i for all
Pgi ∈ [0, P ∗gi]. As a result

Πi(bi, P
opt
gi (bi, b

∗
−i)) = C(0) ≤ Πi(b

∗
i , P

∗
gi).

This shows that a bid bi > b∗i does not increase its payoff.
Suppose now that bi < b∗i , then

Πi(bi, P
opt
gi (bi, b

∗
−i)) = biP

opt
gi (bi, b

∗
−i))− Ci(P

opt
gi (bi, b

∗
−i))

≤ b∗iP
opt
gi (bi, b

∗
−i))− Ci(P

opt
gi (bi, b

∗
−i))

≤ b∗iP ∗gi − Ci(P ∗gi) = Πi(b
∗
i , P

∗
gi),

where the second inequality follows from (10) as b∗ is ef-
ficient. Hence, each generator i has no incentive to devi-
ate from bid b∗i given b∗−i. We conclude that b∗ is an effi-
cient Nash equilibrium of the inelastic electricity market
game. 2

The proof of Proposition 4.1 shows that if P ∗gi > 0, then
generator i’s efficient Nash equilibrium bid b∗i is equal
to the (unique) Lagrange multiplier λ∗k associated to the
power balance (4b) at bus k where i ∈ Gk. In the other
case that P ∗gi = 0, i ∈ Gk, generator i’s Nash equilibrium
bid is larger than or equal to λ∗k. This represents the case
that generator i’s marginal costs at zero power produc-
tion is larger than or equal to the market clearing price at
that node, and hence generator i is not willing to produce
any electricity in that case. The underlying assumption
in Proposition 4.1 is that at least two generators have a
positive production at the optimal generation levels. We
assume this condition holds for the remainder of the pa-
per unless stated otherwise. This assumption is satisfied
even if there is one generator at some node provided this
generator produces zero power at the optimum. Note that
if there is only one generator at some node and at the
optimum it produces positive power, then it is possible
that the line limits are reached at the optimum and the
generator can increase its bid to an arbitrary large value
and still get positive power allocated at the market clear-
ing dispatch. In such a case an efficient Nash bid will not
exist. The assumption prevents this situation.

The previous observations lead to the identification of
the same sufficient condition as in [Cherukuri and Cortés,
2020] (which only establishes the existence of one specific
efficient Nash equilibrium) to guarantee the uniqueness
of the efficient Nash equilibrium, which we state here for
completeness.

Corollary 4.2 (Uniqueness of the efficient Nash equilib-
rium [Cherukuri and Cortés, 2020]): Let (P ∗g , v

∗, λ∗, µ∗, ν∗−, ν
∗
+)

be a primal-dual optimizer of (4) and suppose that
P ∗g ∈ RN>0, then b∗ = ∇C(P ∗g ) = E>g λ

∗ is the unique effi-
cient Nash equilibrium of the inelastic electricity market
game.

Remark 4.3 (Any efficient Nash equilibrium character-
ized by Proposition 4.1 is positive): Under our assump-
tion that, at each node k ∈ [n], P ∗gi > 0, i ∈ Gk for at
least two generators, it follows from the optimality condi-
tions (8) that, for such P ∗gi, we have ∇Ci(P ∗gi) > 0 by the
strict convexity of Ci and the assumption ∇Ci(0) ≥ 0.

This implies that λ∗ ∈ Rn>0 and therefore also b∗ ∈ RN>0. •
We note that under our assumption, the set of efficient
Nash equilibrium is not necessarily unique. We will see
later that as a consequence, the set of equilibria of the
interconnected system (12) need not be a singleton.

5 Interconnection of bid update scheme with
power network dynamics

In this section we introduce a Nash equilibrium seeking
mechanism between the generators and the ISO. Each
generator dynamically updates its bid based on the power
generation setpoint received from the ISO, while the ISO
changes the power generation setpoints depending on the
generator bids and the frequency of the network. This up-
date mechanism of the bids and the setpoints is written
as a continuous-time dynamical system. We assume that
each generator can only communicate with the ISO and
is not aware of the number of other generators participat-
ing, their respective cost functions, or the load at its own
bus. This assumption on the communication architecture
is reasonable as in an electricity market, each participat-
ing generator submits bids to the ISO and the ISO de-
clares the generator setpoints upon market clearing. We
study the interconnection of the proposed online bidding
process with the power system dynamics and establish lo-
cal convergence to an efficient Nash equilibrium, optimal
power dispatch, and zero frequency deviation.

5.1 Price-bidding mechanism

In our design, each generator i ∈ [N ] changes its bid
bi ≥ 0 according to the projected dynamical system

τbi ḃi = ΦR≥0
(bi, Pgi −∇C∗i (bi)), (11a)

with gain τbi > 0. The projection operator in the above
dynamics ensures that trajectories starting in the non-
negative orthant remain there (see notations for the ex-
act definition). The map C∗i : R≥0 → R≥0 denotes the
convex conjugate of the cost function Ci and is defined as
C∗i (bi) := maxPgi≥0{biPgi−Ci(Pgi)}. The mapC∗i is con-
vex and continuously differentiable on the domain R≥0

and strictly convex on the domain [∇Ci(0),∞) [Hiriart-
Urruty and Lemaréchal, 2013, Section I.6] . Moreover,
∇C∗i (bi) = arg maxPgi≥0{biPgi − Ci(Pgi)} for all bi ≥ 0.

The motivation behind the update law (11a) is as fol-
lows. Given the bid bi > 0, generator i seeks to pro-
duce power that maximizes its profit, which is given by
P des
gi = ∇C∗i (bi) = arg maxPgi≥0{biPgi − Ci(Pgi)}. How-

ever, if the ISO requests more power from the generator
compared to its desired quantity, i.e., Pgi > P des

gi , then
i will increase its bid to increase its profit. On the other
hand if Pgi < P des

gi , then i will decrease its bid. For the
ISO, we also provide an update law which depends on the
generator bids and the network frequency. This involves
seeking a primal-dual optimizer of (5) or, equivalently,
finding a saddle-point of the augmented Lagrangian

L(Pg, v, λ) = b>Pg + λ>(Dv + Pd − EgPg)
+ (1/2)‖Dv + Pd − EgPg‖2Ξ,

where Ξ ∈ Rn×n is a positive definite matrix. By writing
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the associated projected saddle-point dynamics (see e.g.,
[Cherukuri et al., 2017, Goebel, 2017]), the ISO dynamics
takes the form

τgṖg = ΦRN
≥0

(Pg, E
>
g (λ+Ξ(Dv + Pd−EgPg)−σ2ω)−b),

τv v̇ = Φ[−vb,vb](v,−D>(λ+ Ξ(Dv + Pd − EgPg)),
τλλ̇ = Dv + Pd − EgPg, (11b)

with design parameters σ ∈ R>0 and diagonal positive
definite matrices τλ ∈ Rn×n, τv ∈ Rm×m, and τg ∈
RN×N . Bearing in mind the ISO’s second objective of
driving the frequency deviation to zero, we add the feed-
back signal −σ2ω to adjust the generation based on the
frequency deviation in the grid. The dynamics (11b) can
be interpreted as follows. If generator i bids higher than
the Lagrange multiplier λk for i ∈ Gk (which can be in-
terpreted as a price) associated with the power balance
constraint (5b) at node k, then the power generation set-
point at node i is decreased, and vice versa. The terms
Ξ(Dv + Pd − EgPg) and −σ2ω in (11b) help to compen-
sate for the supply-demand mismatch in the network.

In the following, we analyze the equilibria and the stabil-
ity of the interconnection of the physical power network
dynamics (2) with the bidding process (11). We assume
that the bids and power generations are initialized within
the feasible domain, i.e., b(0) ≥ 0, Pg(0) ≥ 0.

5.2 Equilibrium analysis of the interconnected system

The closed-loop system comprises the ISO-generator bid-
ding scheme (11) and the power network dynamics (2),

ϕ̇ = D>ω, (12a)

Mω̇ = −DΓ sinϕ−Aω + EgPg − Pd, (12b)

τbḃ = ΦRN
≥0

(b, Pg −∇C∗(b)), (12c)

τgṖg = ΦRN
≥0

(Pg, E
>
g (λ+ Ξ(Dv + Pd−EgPg)− σ2ω)−b),

(12d)

τv v̇ = Φ[−vb,vb](v,−D>(λ+Ξ(Dv+Pd−EgPg))),
(12e)

τλλ̇ = Dv + Pd − EgPg, (12f)

where C∗(b) :=
∑
i∈[N ] C

∗
i (bi), τb = diag(τb1 , . . . , τbN ) ∈

RN×N . We note that the implementation of this inter-
connected dynamics is distributed, in the sense that it
only requires for each bus to interact with its neighboring
buses, and for each generator to interact with the ISO,
and therefore scales up with the size of the system. To be
specific, each generator can maintain and update its own
generation and bid dynamics and one computing agent at
each bus updates the Lagrange multiplier associated to
that bus and the flow variables of edges directed towards
it. One can verify that with such assignment of variables,
the dynamics can be implemented without the need for
global information.

We next investigate the equilibria of (12). In particular,
we are interested in equilibria that correspond simultane-
ously to an efficient Nash equilibrium, economic dispatch,
and frequency regulation, as specified next.

Definition 5.1 (Efficient equilibrium): An equilibrium

x̄ = col(ϕ̄, ω̄, b̄, P̄g, v̄, λ̄) of (12) is efficient if ω̄ = 0, b̄ is
an efficient Nash equilibrium, and (P̄g, v̄) is an optimizer
of (4).

The next result shows that all equilibria of (12) are effi-
cient.

Proposition 5.2 (Equilibria are efficient): Any equilib-
rium x̄ = col(ϕ̄, ω̄, b̄, P̄g, v̄, λ̄) of (12) is efficient.

PROOF. Let x̄ be an equilibrium of (12), then there
exist µ̄b, µ̄g ∈ RN and ν̄+, ν̄− ∈ Rm such that

0 = D>ω̄, (13a)

0 = −DΓ sin ϕ̄−Aω̄ + EgP̄g − Pd, (13b)

0 = P̄g −∇C∗(b̄) + µ̄b, (13c)

0 = E>g λ̄− b̄+ E>g Ξ(Dv̄ + Pd − EgP̄g))
− σ2E>g ω̄ + µ̄g, (13d)

0 = −D>(λ̄+ Ξ(Dv̄ + Pd − EgP̄g))− ν̄+ + ν̄−, (13e)

0 = Dv̄ + Pd − EgP̄g, (13f)

0 ≤ b̄ ⊥ µ̄b ≥ 0, 0 ≤ P̄g ⊥ µ̄g ≥ 0, (13g)

0 ≤ vb − v̄ ⊥ ν̄+ ≥ 0, 0 ≤ vb + v̄ ⊥ ν̄− ≥ 0. (13h)

We first show that ω̄ = 0. From (13a) it follows that ω̄ =
1nωs for some ωs ∈ R. Then by pre-multiplying (13b)
by 1>n and using (13f) we obtain 1>nA1nωs = 0, which
implies that ω̄ = 1nωs = 0. We prove next that (P̄g, v̄)
is a primal optimizer of (4). We claim that µ̄b = 0 since,
by contradiction, if µ̄bi > 0 for some i ∈ [N ], then b̄i = 0
and therefore 0 = P̄gi − ∇C∗i (b̄i) + µ̄bi = P̄gi + µ̄bi > 0,
see also Remark 4.3. Therefore, (13c) implies that P̄g =
∇C∗(b̄) = arg maxPg≥0{P>g b̄−C(Pg)} and thus satisfies
the optimality conditions

∇C(P̄g) = b̄+ η̄, 0 ≤ P̄g ⊥ η̄ ≥ 0, for some η̄. (14)

Let us define µ̄ = b̄ + η̄ − E>g λ̄ ≥ 0 where the inequality

holds by (13d). By (13g) and (14) we have P̄>g µ̄ = P̄>g (b̄−
E>g λ̄) = P>g µ̄g = 0. Hence, (P̄g, v̄, λ̄, µ̄, ν̄+, ν̄−) satisfies

∇C(P̄g) = E>g λ̄+ µ̄, Dv̄ + Pd − EgP̄g = 0,

0 ≤ P̄g ⊥ µ̄ ≥ 0, −D>λ̄− ν̄+ + ν̄− = 0,
(15)

and (13h) implying that (P̄g, v̄, λ̄, µ̄, ν̄+, ν̄−) is a primal-
dual optimizer of (4). Furthermore, (14) implies
b̄ ≤ ∇C(P̄g) and thus, by Proposition 4.1, b̄ is an efficient
Nash equilibrium. Hence, x̄ is an efficient equilibrium
of (12). 2

An important observation from the proof of Proposi-
tion 5.2 is that, at the equilibrium,

−DΓ sin ϕ̄+ EgP̄g − Pd = 0,

−Dv̄ + EgP̄g − Pd = 0,

implying that D(v̄−Γ sin ϕ̄) = 0. This fact ensures satis-
faction of thermal line limits at the equilibrium, provided
the vector vb is chosen appropriately in the ED prob-
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lem (4). In the case of a tree network, choosing vb equal
to the thermal line limits ensures this, since the expres-
sion D(v̄ − Γ sin ϕ̄) = 0 implies v̄ = Γ sin ϕ̄ and due to
the constraint, −vb ≤ v̄ ≤ vb < Γ1m, we conclude that
the physical power flow also satisfies the thermal limits,
i.e., −vb ≤ Γ sin ϕ̄ ≤ vb.
For general networks with edge-disjoint cycles, one needs
more care when selecting vb, as in this case v̄ need not be
equal to Γ sin ϕ̄. The next result shows how to choose vb

smaller than thermal line limits by a precise amount in
this scenario to ensure that the power flow at the equi-
librium, Γ sin ϕ̄, satisfies the thermal limits. The result
adapts the formal statements and discussion provided
in [Zholbaryssov and Domı́nguez-Garćıa, 2020, Section V]
for our setup. We include the proof for completeness of
exposition.

Proposition 5.3 (Power flow limits hold at the equilib-
rium): Let vt ∈ Rm≥0 be the thermal line limits for the net-

work. Let C be the number of cycles. For each k ∈ [C],
let (Vk, Ek) ⊂ (Vd, Ed) denote the subset of vertices and
directed edges contained in cycle k, and define

Bk :={v ∈ R|E
d|| − vtij + β∗k ≤ vij ≤ vtij − β∗k ,∀(i, j) ∈ Ek},

where

β∗k :=
ζMk
2
− ζmk

2
sin(ψk), ψk :=

π

2(dk − 1)
, (16)

ζMk := max
(i,j)∈Ek

vtij , ζmk := min
(i,j)∈Ek

vtij ,

and dk is the number of edges in cycle k.

If a flow vector v ∈ R|E
d| satisfies: (a) the thermal limits

for all edges not belonging to a cycle, (b) v ∈ ∩k∈[C]Bk,
and (c) D(v − Γ sinϕ) = 0, then −vt ≤ Γ sinϕ ≤ vt, that
is, the physical flow satisfies the thermal limits.

PROOF. Note that edges in Ek are directed according
to the labels attached to the edges in Ed. Recall that we
obtained (Vd, Ed) by assigning an arbitrary direction to

each edge in (V, E). For each cycle k, let ~Ek ⊂ Vk ×Vk be
the set of directed edges that form a cyclic path covering
all vertices in Vk once. Further, define the vector nk ∈
{−1, 1, 0}|E

d| as

(nk)ij :=


1, if (i, j) ∈ ~Ek,
−1, if (j, i) ∈ ~Ek,
0, otherwise.

This vector codifies the (mis-)alignment of the directed

edges in Ed and ~Ek. For each k, define functions

hk(v) :=
∑

(i,j)∈Ek

arcsin((nk)ijvij/γij) (17a)

µmk (v) := max
(i,j)∈Ek

(−vtij − (nk)ijvij), (17b)

µMk (v) := min
(i,j)∈Ek

(vtij − (nk)ijvij). (17c)

The function hk sums the voltage angle differences across
each edge of the cycle k given the flows v. Further, µmk
and µMk keep track of the maximum allowable up-shift
or down-shift of the flows v till any one of the line lim-
its in cycle k become active. According to [Zholbaryssov
and Domı́nguez-Garćıa, 2020, Proposition 3], the set Bk
defined in the statement is equivalent to the following set

Fk := {v ∈ R|E
d| |hk(v + nkµ

M
k (v)) ≥ 0, µMk (v) ≥ β∗k ,

hk(v + nkµ
m
k (v)) ≤ 0, µmk (v) ≤ −β∗k}.

By the equivalence of Bk and Fk, if the vector v belongs
to the set ∩k∈[C]Bk, then we have

hk(v + nkµ
M
k (v)) ≥ 0, and hk(v + nkµ

m
k (v)) ≤ 0,

(18)

for all k ∈ [C]. Note that for each k, the func-
tion µ 7→ hk(v + nkµ) is monotonically increasing.
Thus, (18) implies that for each k, there exists a unique
µ̄k ∈ [µmk (v), µMk (v)] such that hk(v + nkµ̄k) = 0. Due
to the fact that all cycles are edge-disjoint, the expres-
sion D(v − Γ sinϕ) = 0 implies that v = Γ sinϕ + Nµ∗

for some µ∗ ∈ RC , where columns of the matrix

N ∈ {−1, 1, 0}|E
d|×C consist of vectors nk, k ∈ [C]. This

implies that for all k,

hk(v − nkµ
∗
k) = hk(v −Nµ∗) = hk(Γ sinϕ) = 0, (19)

where, the first of the above equality follows from the
edge-disjoint property of the set of cycles and the last
equality is due to the fact that adding angle differences
across all edges in a cycle gives zero.

From the uniqueness of µ̄k ∈ [µmk (v), µMk (v)] such that
hk(v + nkµ̄k) = 0 and equation (19), we conclude that
−µ∗k ∈ [µmk (v), µMk (v)] for all k. This implies that the vec-
tor Γ sinϕ belongs to the hyperrectangle [v+ µmk (v), v+
µMk (v)] for all k. As a consequence, by definitions (17b)
and (17c), we conclude that Γ sinϕ satisfies flow con-
straints. 2

According to Proposition 5.3, we select vb for a general
network with edge-disjoint cycles as follows. For an edge
(i, j) that does not belong to any cycle, we let vbij = vtij . If

(i, j) belongs to cycle k ∈ [C], then we set vbij = vtij − β∗k ,
where β∗k is given in (16). This choice ensures that, as
in the case of a tree network, the physical power flow
satisfies the thermal line limits at the equilibrium. Note
that if power flow constraints can be ensured by some
other mechanism, then the assumption of edge-disjoint
cycles can be dropped.

5.3 Convergence analysis

In this section we establish the local asymptotic conver-
gence of (12) to an efficient equilibrium.

Theorem 5.4 (Convergence of the closed-loop sys-
tem (12)): Consider the subset of (efficient) equilibria,

X := {x̄ = col(ϕ̄, ω̄, b̄, P̄g, v̄, λ̄) : x̄ is an equilibrium of (12)

and ϕ̄ ∈ (−π/2, π/2)m}.

7



Then, X is locally asymptotically stable under (12). More-
over, the convergence of trajectories is to a point.

PROOF. Our proof strategy to show local convergence
to X is based on applying Theorem A.1, which is a special
case of the invariance principle stated in [Brogliato and
Goeleven, 2005] adapted for complementarity systems. To
this end, we rewrite the projected dynamical system (12)
as the equivalent complementarity system (20), see also
[Brogliato et al., 2006, Theorem 1], [van der Schaft and
Schumacher, 1998] for more details,

ϕ̇ = D>ω, (20a)

Mω̇ = −DΓ sinϕ−Aω + EgPg − Pd, (20b)

τbḃ = Pg −∇C∗(b) + µb, (20c)

τgṖg = E>g (λ+ Ξ(Dv+Pd−EgPg))−σ2ω)−b+µg,
(20d)

τv v̇ = −D>(λ+ Ξ(Dv + Pd − EgPg))− ν+ + ν−,
(20e)

τλλ̇ = Dv + Pd − EgPg, (20f)

0 ≤ b ⊥ µb ≥ 0, 0 ≤ Pg ⊥ µg ≥ 0, (20g)

0 ≤ vb − v ⊥ ν+ ≥ 0, 0 ≤ vb + v ⊥ ν− ≥ 0, (20h)

where µb, µg ∈ RN and ν+, ν− ∈ Rm. We can equivalently
write (20) in the compact form

ẋ = F (x) + C>Λ, (21a)

0 ≤ Cx+ d ⊥ Λ ≥ 0, (21b)

with x = col(ϕ, ω, b, Pg, v, λ),Λ = col(µb, µg, ν−, ν+), and

F (x) =



D>ω

M−1(−D∇U(ϕ)−Aω + EgPg − Pd)
τ−1
b (Pg −∇C∗(b))

τ−1
g (E>g (λ+ Ξ(Dv + Pd − EgPg))− σ2ω)− b)

τ−1
v D>(−λ− Ξ(Dv + Pd − EgPg))

τ−1
λ (Dv + Pd − EgPg)



C =


0 0 τ−1

b 0 0 0

0 0 0 τ−1
g 0 0

0 0 0 0 τ−1
v 0

0 0 0 0 −τ−1
v 0

 , d = 0. (22)

Note that F is Lipschitz continuous (here we observe that,
since C is continuously differentiable and µ-strongly con-
vex on R≥0, C∗ is 1

µ -Lipschitz continuous on R≥0). For

the equivalence of the projected dynamical system (12)
and the complementarity system (20) to hold, we con-
sider absolutely continuous solutions t 7→ x(t) that satisfy
(20) almost everywhere (in time) in the sense of Lebesgue
measure. Further, we consider (unique) solutions of (21)
that are slow, i.e., at each t, Λ satisfies (21b) and is such
that ẋ(t) is of minimal norm, cf. [Brogliato et al., 2006].

Let x̄ ∈ X be arbitrary and fixed for the remainder of
the proof. For aesthetic reasons we first consider the case

where σ = 1 in (12d) or (20d) and later we explain how to
generalize the convergence result. Consider the function
V defined by

V (x) = U(ϕ)− (ϕ− ϕ̄)>∇U(ϕ̄)− U(ϕ̄) +
1

2
||x− x̄||2τ

with τ = blockdiag(0,M, τb, τg, τv, τλ) and the map
ϕ 7→ U(ϕ) = −1>mΓ cosϕ. The function V was proposed
in [Stegink et al., 2017] to analyze the stability of a
power system dynamics coupled with a different market
mechanism. Note that V (x̄) = 0,∇V (x̄) = 0 and, since
ϕ̄ ∈ (−π/2, π/2)m, ∇2V (x̄) � 0. Consequently, there ex-
ists a compact level set Ψ of V around x̄. We show now
that the two conditions of Theorem A.1 are satisfied.

Condition (I): For C given in (22) and d = 0 the poly-
hedron (A.2) takes the form

K={x=col(ϕ, ω, b, Pg, v, λ) :b ≥ 0, Pg ≥ 0, v∈ [−vb, vb]}.

Consequently, for all x ∈ ∂K ∩Ψ we have

x−∇V (x) =



ϕ−∇U(ϕ) +∇U(ϕ̄)

ω −Mω

b− τb(b− b̄)
Pg − τg(Pg − P̄g)
v − τv(v − v̄)

λ− τλ(λ− λ̄)


∈ K,

where the inclusion holds because of the definition of K
and the property that the elements b − τb(b − b̄), Pg −
τg(Pg − P̄g), and v − τv(v − v̄) are convex combinations
provided that the time constants belong to the interval
(0, 1]. We can assume this property for the time constants
without loss of generality since otherwise we can consider
a scaling of V , say W (x) = αV (x) with α = 1/τmax and
τmax being the maximum of all the diagonal terms in the
matrices τb, τg, τv. Then, x − ∇W (x) ∈ K for all x ∈
∂K ∩Ψ. We continue the proof with V as the candidate
Lyapunov function.

Condition (II): Since x̄ ∈ X there exists Λ̄ such that
F (x̄) + C>Λ̄ = 0. As a result, for each x ∈ K we have

〈∇V (x), F (x)〉 = 〈∇V (x), F (x)− F (x̄)− C>Λ̄〉
= (∇U(ϕ)−∇U(ϕ̄))>D>ω

+ ω>(−D(∇U(ϕ)−∇U(ϕ̄))−Aω + Eg(Pg − P̄g))
+ (b− b̄)>(Pg −∇C∗(b)− P̄g +∇C∗(b̄)− µ̄b)
+ (Pg − P̄g)>(E>g (λ− λ̄+ Ξ(D(v − v̄) + Eg(P̄g − Pg))
− ω)− µ̄g − b+ b̄) + (λ− λ̄)>(D(v − v̄) + Eg(P̄g − Pg))
+ (v − v̄)>D>(−λ+ λ̄− Ξ(D(v − v̄)− Eg(Pg − P̄g)))
+ (v − v̄)>(ν̄+ − ν̄−)

= −ω>Aω − (b− b̄)>(∇C∗(b)−∇C∗(b̄))
− ‖D(v − v̄)− Eg(Pg − P̄g))‖2Ξ − (b− b̄)>µ̄b
− (Pg − P̄g)>µ̄g + (v − v̄)>(ν̄+ − ν̄−) ≤ 0, (23)
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where the inequality holds because C∗ is convex, b̄>µ̄b =
0, P̄>g µ̄g = 0 and µ̄b, µ̄g, b, Pg ≥ 0. Hence, the second
condition of Theorem A.1 is satisfied. Note that above we
have used the following reasoning

(v − v̄)>(ν̄+ − ν̄−) = (v − vb + vb − v̄)>(ν̄+ − ν̄−)

= (v − vb)>ν̄+ − (v + vb)>ν̄− ≤ 0,

since (vb − v̄)>ν̄+ = 0, (vb + v̄)>ν̄− = 0 and ν̄+, ν̄− ≥ 0.

Invariance of Ψ: We note that (23) does not necessarily
imply that Ψ is forward invariant. We show this next.
Observe that for each x,Λ satisfying 0 ≤ Cx ⊥ Λ ≥ 0 we
have

〈∇V (x), F (x) + C>Λ〉 = 〈∇V (x), F (x)〉
+ 〈∇V (x), C>Λ〉 ≤ 〈∇V (x), C>Λ〉 (24)

= (b− b̄)>µb + (Pg − P̄g)>µg + (v − v̄)>(ν− − ν+)

= −b̄>µb − P̄>g µg + (v̄ − vb)>ν+ − (v̄ + vb)>ν− ≤ 0.

Hence, V is non-increasing along trajectories initialized
in K ∩Ψ and so, Ψ is forward invariant as it is a level set.

Largest invariant set: Define

E = {x ∈ K ∩Ψ : 〈F (x),∇V (x)〉 = 0}

and denote the largest invariant subset of E by M. By
(23) we note that each x ∈M satisfies ω = 0, (Dv+Pd−
EgPg) = 0 and, bi = b̄i > 0 for each i ∈ [n] with P̄gi > 0
asC∗i is strictly convex around such b̄i (note that if b̄i = 0,
then 0 = P̄gi−∇C∗i (b̄i)+µ̄bi = P̄gi+µ̄bi > 0, which results
in a contradiction). Now consider a trajectory t 7→ x(t)
that starts in M and by definition, remains there at all
times. For i with Pgi > 0 since bi(t) = b̄i for all t, we get
from (12c) that Pgi(t) = P̄gi > 0 for all t and from (12d)
that bi(t) = λk(t) = λ̄k for i ∈ Gk for all t. Since the initial
condition of the trajectory was arbitrary, these properties
hold for all points inM. Next note that for each x ∈ M
and i ∈ [N ] with P̄gi = 0, we have ∇C∗i (bi) = ∇C∗i (b̄i) =
0 by the convexity of Ci. Using the definition of C∗i , we
get Pgi = P̄gi = 0. That is, Pgi = P̄gi for all i. Finally,
using all the facts, one concludes that each point inM is
an equilibrium and soM⊂ X . Thus, from the invariance
principle, each trajectory initialized in Ψ converges to X .
Moreover, from (24), we deduce that x̄ is stable. Since
this equilibrium has been chosen arbitrarily, we conclude
that every point in X is Lyapunov stable, implying that
convergence of the trajectories is to a point.

The proof for σ > 0, σ 6= 1 proceeds in the same way as
before except that we appropriately scale the Lyapunov
function. Specifically, we define the Lyapunov function V
with τ=blockdiag(0,M, στb, στg, στv, στλ)>0. 2

Theorem 5.4 together with Proposition 5.2 ensure social
welfare-maximization, i.e., the generators’ setpoints con-
verge to the optimizer of the ED problem (the same one
the ISO would dispatch had it all the information avail-
able), and incentive-compatibility, i.e., the generators are
willing to produce the optimal generation at the con-
verged bid and do not want to deviate from this bid.

4 5 6

32 1

g1 g2 g3 g4 g5

Figure 1. Schematic of a 6-bus power network. Each solid edge
represents a transmission line and red nodes represent loads.
Nodes 4 and 6 represent generator nodes which are connected
to 2 and 3 producers, resp., where the different colors match
the ones used in Figures 2b and 2c.

Regarding implementation, we envision that, under our
scheme, the market would be cleared when the dynamics
settles down and gets close to an efficient Nash equilib-
rium. The simulations show that the proposed algorithm
handles well changes in the load. Hence, for a every con-
secutive dispatch event, one could continue implementing
the algorithm from the previous dispatch setpoint.

6 Simulations

We simulate the closed-loop dynamics (12) for the
modified 6-bus model illustrated in Figure 1. We as-
sume quadratic costs for all generators g1, g2, g3, g4, g5

which are of the form Ci(Pgi) = 1
2qiP

2
gi + ciPgi with

(q1, q2, q3, q4, q5) = (1.7, 4.6, 4, 5, 3) and (c1, c2, c3, c4, c5) =
(5, 20, 25, 25, 25). In this 6-bus model, nodes 4 and 6 cor-
respond to generator nodes while the other nodes are
load nodes and have no power generation. There are
two generators g1, g2 presents at node 4, and 3 gener-
ators g3, g4, g5 present at node 6. The flow capacity of
the line (3, 6) is 70 MW and that of all other lines is
200 MW. We choose M4 = 5.22,M6 = 3.98 for gen-
erator nodes and Mi � 1 for the load nodes. We set
Ai ∈ [1.4, 2], Vi ∈ [1, 1.06] for all i ∈ [n], Ξ = ρI with
ρ = 160, and σ = 14.1. Further, we let (τb, τg, τv, τλ) =
(0.1415, 0.5615, 0.5615, 0.00716). At t = 0 s, the load
(in MW’s) is given by Pd = (13.5, 90, 44, 0, 3.3, 0).
The system (12) is initialized at steady state at the
optimal generation level (Pg1, Pg2, Pg3, Pg4, Pg5) =
(62.83, 19.96, 21.70, 17.36, 28.94). Figure 2 shows the
evolution of the system (20). At t = 5 s the loads are
increased to Pd = (16, 93, 47, 8, 4.5, 10) and the trajec-
tories converge to a new efficient equilibrium with op-
timal power generation levels (Pg1, Pg2, Pg3, Pg4, Pg5) =
(74.27, 24.18, 25.54, 20.43, 34.06). Furthermore, at steady
state the generators 1, 2, 3, 4, 5 bid equal to the synchro-
nized Lagrange multiplier (also the respective locational
marginal costs) and thus, by Proposition 4.1, we know
that this corresponds to an efficient Nash equilibrium.
At steady state, the line (3, 6) carries the maximum al-
lowable flow. As seen in Figure 2(e), the virtual and the
physical power flow are constrained for this line at 70
MW. As a consequence, the bids of generators g1 and g2

are different from the bids of generators g3, g4, and g5,
see Figure 2(b).

At t = 15 s, generator g5 stops producing power and
exits the market mechanism. This reflects the case of
a generator failure. We observe in Figure 2(c) that all
the other generators start producing more power to
meet the load mismatch. Further, the system converges
to the optimal generation (Pg1, Pg2, Pg3, Pg4, Pg5) =

9
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(a) Evolution of the frequency devi-
ation. After each change of the load
or generator failure, the frequency
is restored to its nominal value.
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(b) Evolution of bids and Lagrange
multipliers (dashed lines). At the sec-
ond steady-state (14 s) the Lagrange
multipliers differ at bus 4 and 6 due to
congestion.
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(c) Evolution of the power genera-
tion at each node. After the incraese
in the load and the generator failure,
all other generators increase their
production.
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(d) Evolution of physical (solid lines)
and virtual power flows (dashed lines).
The physical power flow tracks the
virtual power flow, and the latter is
bounded for line (3, 6) at 70 MW.
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(e) Evolution of physical (solid lines)
and virtual power flows (dashed lines)
near the maximal power flow. The
virtual power flow remains within the
bounds while the physical power may
exceed it for a limited amount of time.
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(f) Evolution of the piecewise con-
stant power demand. At time 1 s the
demand is increased, resulting in an
initial frequency drop as observed in
Figure 2(a).

Figure 2. Simulations of the interconnection (12) between the ISO-generation bidding mechanism and the power network
dynamics. At t = 5 s the overall load increases. At t = 15 s, generator g5 fails and stops contributing power to the network. The
line colors of plots (b) and (c) match the ones assigned to generator nodes in Figure 1.

(89.36, 29.76, 32.98, 26.38, 0) where no line is congested,
as opposed to before where line (3, 6) has the maximum
allowable flow of 70 MW, see Figure 2(d). Since no line
is congested, the bids of all generators become equal at
the equilibrium as seen in Figure 2(b). We note that the
generator drop-out does not cause major oscillations in
the frequency, as seen in Figure 2(a).

The proposed closed-loop dynamics (12) consists of sev-
eral tunable design parameters (τb, τg, τv, τλ, ρ, σ) that
might affect the convergence rate of the system. In our
example, we have observed that the time constants have
a great impact on convergence. We do not report these
comparisons in detail due to space constraints.

7 Conclusions

We have studied a market-based power dispatch scheme
and its interconnection with the swing dynamic of the
physical network. From the market perspective, we have
considered a continuous-time bidding scheme that de-
scribes the negotiation process between the independent
system operator and a group of competitive generators.

Using the frequency as a feedback signal in the bidding
dynamics, we have shown that the interconnected sys-
tem provably converges to an efficient Nash equilibrium
(where generation levels minimize the total cost) and to
zero frequency deviation. This way, competitive genera-
tors are enabled to participate in the real-time electricity
market without compromising efficiency and stability of
the power system. Future work will investigate the effect
of the design parameters on the convergence and tran-
sient behavior of the system, finite-horizon scenarios in-
corporating ramp rates and storage assets, more general
bidding mechanisms, including scenarios where genera-
tors interact simultaneously with multiple ISOs, the in-
corporation of demand response elements, and objective
functions that consider the cost of changing operational
set points at the frequency regulation scale. In general,
the addition of capacity constraints on generator’s pro-
duction might lead to the lack of existence of efficient
Nash equilibrium. However, if this is not the case, we be-
lieve the convergence results presented here still hold, and
plan to investigate it as part of our future work. We also
would like to drop the requirement of edge-disjoint cycles
to deal with general undirected networks. Finally, we are
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interested in scenarios where generators share informa-
tion among each other to maximize their profits. In such
a case, we aim to determine conditions under which col-
lusion can be prevented. Lastly, our swing equations as-
sume positive inertia for all generators and we would like
to extend our analysis to inertialess resources, where one
would study the interconnection of a differential algebraic
system defining the physics with the bidding mechanisms.

A Appendix

Theorem A.1 (Invariance principle for complementar-
ity systems [Brogliato and Goeleven, 2005]): Consider

ẋ = F (x) + C>Λ, (A.1a)

0 ≤ Cx+ d ⊥ Λ ≥ 0, (A.1b)

with Lipschitz continuous F and let K be the polyhedron

K = {x : Cx+ d ≥ 0}. (A.2)

Let Ψ ⊂ Rn be a compact set and V : Rn → R be a
continuous differentiable function such that

(I) x−∇V (x) ∈ K, for all x ∈ ∂K ∩Ψ,

(II) 〈∇V (x), F (x)〉 ≤ 0, for all x ∈ K ∩Ψ.

Let Rn ⊃ E := {x ∈ K ∩ Ψ : 〈F (x),∇V (x)〉 = 0} and
denote the largest invariant subset of E byM. Then, for
each x0 ∈ K such that its orbit satisfies γ(x0) ⊂ Ψ,

lim
t→∞

d(x(t; t0, x0),M) = 0.
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