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Resource-Aware Discretization of Accelerated Optimization Flows
Miguel Vaquero Pol Mestres Jorge Cortés

Abstract—This paper tackles the problem of discretizing ac-
celerated optimization flows while retaining their convergence
properties. Inspired by the success of resource-aware control
in developing efficient closed-loop feedback implementations on
digital systems, we view the last sampled state of the system as the
resource to be aware of. The resulting variable-stepsize discrete-
time algorithms retain by design the desired decrease of the
Lyapunov certificate of their continuous-time counterparts. Our
algorithm design employs various concepts and techniques from
resource-aware control that, in the present context, have inter-
esting parallelisms with the discrete-time implementation of opti-
mization algorithms. These include derivative- and performance-
based triggers to monitor the evolution of the Lyapunov function
as a way of determining the algorithm stepsize, exploiting
sampled information to enhance algorithm performance, and
employing high-order holds using more accurate integrators
of the original dynamics. Throughout the paper, we illustrate
our approach on a newly introduced continuous-time dynamics
termed heavy-ball dynamics with displaced gradient, but the
ideas proposed here have broad applicability to other globally
asymptotically stable flows endowed with a Lyapunov certificate.

I. INTRODUCTION

A recent body of research seeks to understand the acceler-
ation phenomena of first-order discrete optimization methods
by means of models that evolve in continuous time. Roughly
speaking, the idea is to study the behavior of ordinary differ-
ential equations (ODEs) which arise as continuous limits of
discrete-time accelerated algorithms. The basic premise is that
the availability of the powerful tools of the continuous realm,
such as differential calculus, Lie derivatives, and Lyapunov
stability theory, can be then brought to bear to analyze and
explain the accelerated behavior of these flows, providing
insight into their discrete counterparts. Fully closing the circle
to provide a complete description of the acceleration phe-
nomenon requires solving the outstanding open question of
how to discretize the continuous flows while retaining their
accelerated convergence properties. However, the discretiza-
tion of accelerated flows has proven to be a challenging task,
where retaining acceleration seems to depend largely on the
particular ODE and the discretization method employed. This
paper develops a resource-aware approach to the discretization
of accelerated optimization flows.

Literature Review: The acceleration phenomenon goes back
to the seminal paper [1] introducing the so-called heavy-ball
method, which employed momentum terms to speed up the
convergence of the classical gradient descent method. The
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Cataluña, polmestres4@gmail.com

heavy-ball method achieves optimal convergence rate in a
neighborhood of the minimizer for arbitrary convex functions
and global optimal convergence rate for quadratic objective
functions. Later on, the work [2] proposed the Nesterov’s
accelerated gradient method and, employing the technique
of estimating sequences, showed that it converges globally
with optimal convergence rate for convex and strongly-convex
smooth functions. The algebraic nature of the technique of
estimating sequences does not fully explain the mechanisms
behind the acceleration phenomenon, and this has motivated
many approaches in the literature to provide fundamental un-
derstanding and insights. These include coupling dynamics [3],
dissipativity theory [4], integral quadratic constraints [5], [6],
and geometric arguments [7].

Of specific relevance to this paper is a recent line of
research initiated by [8] that seeks to understand the ac-
celeration phenomenon in first-order optimization methods
by means of models that evolve in continuous time. [8]
introduced a second-order ODE as the continuous limit of
Nesterov’s accelerated gradient method and characterized its
accelerated convergence properties using Lyapunov stability
analysis. The ODE approach to acceleration now includes the
use of Hamiltonian dynamical systems [9], [10], inertial sys-
tems with Hessian-driven damping [11], and high-resolution
ODEs [12], [13]. This body of research is also reminiscient
of the classical dynamical systems approach to algorithms
in optimization, see [14], [15]. The question of how to
discretize the continuous flows while maintaining their acceler-
ated convergence rates has also attracted significant attention,
motivated by the ultimate goal of fully understanding the
acceleration phenomenon and taking advantage of it to design
better optimization algorithms. Interestingly, discretizations of
these ODEs do not necessarily lead to acceleration [16]. In
fact, explicit discretization schemes, like forward Euler, can
even become numerically unstable after a few iterations [17].
Most of the discretization approaches found in the literature
are based on the study of well-known integrators, including
symplectic integrators [9], [18], Runge-Kutta integrators [19]
or modifications of Nesterov’s three sequences [17], [18],
[20]. Our previous work [21] instead developed a variable-
stepsize discretization using zero-order holds and state-triggers
based on the derivative of the Lyapunov function of the
original continuous flow. Here, we provide a comprehensive
approach based on powerful tools from resource-aware con-
trol, including performance-based triggering and state holds
that more effectively use sampled information. Other recent
approaches to the acceleration phenomena and the synthesis
of optimization algorithms using control-theoretic notions and
techniques include [22], which employs hybrid systems to
design a continuous-time dynamics with a feedback regulator
of the viscosity of the heavy-ball ODE to guarantee arbitrarily
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fast exponential convergence, and [23], which introduced an
algorithm which alternates between two (one fast when far
from the minimizer but unstable, and another slower but stable
around the minimizer) continuous heavy-ball dynamics.

Statement of Contributions: This paper develops a resource-
aware control framework to the discretization of acceler-
ated optimization flows that fully exploits their dynamical
properties. Our approach relies on the key observation that
resource-aware control provides a principled way to go from
continuous-time control design to real-time implementation
with stability and performance guarantees by opportunistically
prescribing when certain resource should be employed. In our
treatment, the resource to be aware of is the last sampled
state of the system, and hence what we seek to maximize
is the stepsize of the resulting discrete-time algorithm. Our
first contribution is the introduction of a second-order dif-
ferential equation which we term heavy-ball dynamics with
displaced gradient. This dynamics generalizes the continuous-
time heavy-ball dynamics analyzed in the literature by evalu-
ating the gradient of the objective function taking into account
the second-order nature of the flow. We establish that the
proposed dynamics retains the same convergence properties
as the original one while providing additional flexibility in the
form of a design parameter.

Our second contribution uses trigger design concepts from
resource-aware control to synthesize criteria that determine
the variable stepsize of the discrete-time implementation of
the heavy-ball dynamics with displaced gradient. We refer to
these criteria as event- or self-triggered, depending on whether
the stepsize is implicitly or explicitly defined. We employ
derivative- and performance-based triggering to ensure the al-
gorithm retains the desired decrease of the Lyapunov function
of the continuous flow. In doing so, we face the challenge
that the evaluation of this function requires knowledge of the
unknown optimizer of the objective function. To circumvect
this hurdle, we derive bounds on the evolution of the Lyapunov
function that can be evaluated without knowledge of the
optimizer. We characterize the convergence properties of the
resulting discrete-time algorithms, establishing the existence
of a minimum inter-event time and performance guarantees
with regards to the objective function.

Our last two contributions provide ways of exploiting the
sampled information to enhance the algorithm performance.
Our third contribution provides an adaptive implementation
of the algorithms that adaptively adjusts the value of the
gradient displacement parameter depending on the region of
the space to which the state belongs. Our fourth and last
contribution builds on the fact that the continuous-time heavy-
ball dynamics can be decomposed as the sum of a second-order
linear dynamics with a nonlinear forcing term corresponding
to the gradient of the objective function. Building on this
observation, we provide a more accurate hold for the resource-
aware implementation by using the samples only on the
nonlinear term, and integrating exactly the resulting linear
system with constant forcing. We establish the existence of
a minimum inter-event time and characterize the performance
with regards to the objective function of the resulting high-
order-hold algorithm. Finally, we illustrate the proposed opti-

mization algorithms in simulation, comparing them against the
heavy-ball and Nesterov’s accelerated gradient methods and
showing superior performance to other discretization methods
proposed in the literature.

II. PRELIMINARIES

This section presents basic notation and preliminaries.

A. Notation

We denote by R and R>0 the sets of real and positive
real numbers, resp. All vectors are column vectors. We de-
note their scalar product by 〈·, ·〉. We use ‖·‖ to denote
the 2-norm in Euclidean space. Given µ ∈ R>0, a con-
tinuously differentiable function f is µ-strongly convex if
f(y) − f(x) ≥ 〈∇f(x), y − x〉 + µ

2 ‖x− y‖
2 for x, y ∈ Rn.

Given L ∈ R>0 and a function f : X → Y between two
normed spaces (X, ‖·‖X) and (Y, ‖·‖Y ), f is L-Lipschitz
if ‖f(x)− f(x′)‖Y ≤ L ‖x− x′‖X for x, x′ ∈ X . The
functions we consider here are continuously differentiable, µ-
strongly convex and have L-Lipschitz continuous gradient.
We refer to the set of functions with all these properties
by S1

µ,L(Rn). A function f : Rn → R is positive definite
relative to x∗ if f(x∗) = 0 and f(x) > 0 for x ∈ Rn \ {x∗}.

B. Resource-Aware Control

Our work builds on ideas from resource-aware control to
develop discretizations of continuous-time accelerated flows.
Here, we provide a brief exposition of its basic elements and
refer to [24], [25] for further details.

Given a controlled dynamical system ṗ = X(p, u), with p ∈
Rn and u ∈ Rm, assume we are given a stabilizing continuous
state-feedback k : Rn → Rm so that the closed-loop system
ṗ = X(p, k(p)) has p∗ as a globally asymptotically stable
equilibrium point. Assume also that a Lyapunov function V :
Rn → R is available as a certificate of the globally stabilizing
nature of the controller. Here, we assume this takes the form

V̇ = 〈∇V (p)X(p, k(p))〉 ≤ −
√
µ

4
V (p), (1)

for all p ∈ Rn. Although exponential decay of V along the
system trajectories is not necessary, we restrict our attention
to this case as it arises naturally in our treatment.

Suppose we are given the task of implementing the con-
troller signal over a digital platform, meaning that the actuator
cannot be continuously updated as prescribed by the specifi-
cation u = k(p). In such case, one is forced to discretize the
control action along the execution of the dynamics, while mak-
ing sure that stability is still preserved. A simple-to-implement
approach is to update the control action periodically, i.e., fix
h > 0, sample the state as {p(kh)}∞k=0 and implement

ṗ(t) = X(p(t), k(p(kh))), t ∈ [kh, (k + 1)h].

This approach requires h to be small enough to ensure that V
remains a Lyapunov function and, consequently, the system
remains stable. By contrast, in resource-aware control, one
employs the information generated by the system along its
trajectory to update the control action in an opportunistic
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fashion. Specifically, we seek to determine in a state-dependent
fashion a sequence of times {tk}∞k=0, not necessarily uni-
formly spaced, such that p∗ remains a globally asymptotically
stable equilibrium for the system

ṗ(t) = X(p(t), k(p(tk))), t ∈ [tk, tk+1]. (2)

The main idea to accomplish this is to let the state sampling
be guided by the principle of maintaining the same type of
exponential decay (1) along the new dynamics. To do this,
one defines triggers to ensure that this decay is never violated
by prescribing a new state sampling. Formally, one sets t0 = 0
and tk+1 = tk + step(p(tk)), where the stepsize is defined by

step(p̂) = min{t > 0 | b(p̂, t) = 0}. (3)

We refer to the criteria as event-triggering or self-triggering
depending on whether the evaluation of the function b requires
monitoring of the state p along the trajectory of (2) (ET) or just
knowledge of its initial condition p̂ (ST). The more stringent
requirements to implement event-triggering lead to larger step-
sizes versus the more conservative ones characteristic of self-
triggering. In order for the state sampling to be implementable
in practice, the inter-event times {tk+1 − tk}∞k=0 must be
uniformly lower bounded by a positive minimum inter-event
time, abbreviated MIET. In particular, the existence of a MIET
rules out the existence of Zeno behavior, i.e., the possibility
of an infinite number of triggers in a finite amount of time.

Depending on how the evolution of the function V is
examined, we describe two types of triggering conditions1:

Derivative-based trigger: In this case, bd is defined as an up-
per bound of the expression d

dtV (p(t; p̂))+
√
µ

4 V (p(t; p̂)).
This definition ensures that (1) is maintained along (2);

Performance-based trigger: In this case, bp is defined as an
upper bound of the expression V (p(t; p̂))− e−

√
µ

4 tV (p̂).
Note that this definition ensures that the integral version
of (1) is maintained along (2).

In general, the performance-based trigger gives rise to step-
sizes that are at least as large as the ones determined by the
derivative-based approach, cf. [26]. This is because the latter
prescribes an update as soon as the exponential decay is about
to be violated, and therefore, does not take into account the
fact that the Lyapunov function might have been decreasing
at a faster rate since the last update. Instead, the performance-
based approach reasons over the accumulated decay of the
Lyapunov function since the last update, potentially yielding
longer inter-sampling times.

A final point worth mentioning is that, in the event-triggered
control literature, the notion of resource to be aware of
can be many different things, beyond the actuator described
above, including the sensor, sensor-controller communication,
communication with other agents, etc. This richness opens the
way to explore more elaborate uses of the sampled information
beyond the zero-order hold in (2), something that we also
leverage later in our presentation.

1In both cases, for a given z ∈ Rn, we let p(t; p̂) denote the solution of
ṗ(t) = X(p(t), k(p̂)) with initial condition p(0) = p̂.

III. PROBLEM STATEMENT

Our motivation here is to show that principled approaches to
discretization can retain the accelerated convergence properties
of continuous-time dynamics, fill the gap between the contin-
uous and discrete viewpoints on optimization algorithms, and
lead to the construction of new ones. Throughout the paper, we
focus on the continuous-time version of the celebrated heavy-
ball method [1]. Let f be a function in S1

µ,L(Rn) and let
x∗ be its unique minimizer. The heavy-ball method is known
to have an optimal convergence rate in a neighborhood of
the minimizer. For its continuous-time counterpart, consider
the following s-dependent family of second-order differential
equations, with s ∈ R>0, proposed in [12],[

ẋ
v̇

]
=

[
v

−2
√
µv − (1 +

√
µs)∇f(x))

]
, (4a)

x(0) = x0, v(0) = −2
√
s∇f(x0)

1 +
√
µs

. (4b)

We refer to this dynamics as Xhb. The following result char-
acterizes the convergence properties of (4) to p∗ = [x∗, 0]T .

Theorem III.1 ([12]). Let V : Rn × Rn → R be

V (x, v) = (1 +
√
µs)(f(x)− f(x∗)) +

1

4
‖v‖2

+
1

4
‖v + 2

√
µ(x− x∗)‖2 , (5)

which is positive definite relative to [x∗, 0]T . Then V̇ ≤
−
√
µ

4 V along the dynamics (4) and, as a consequence,
p∗ = [x∗, 0]T is globally asymptotically stable. Moreover, for
s ≤ 1/L, the exponential decrease of V implies

f(x(t))− f(x∗) ≤
7 ‖x(0)− x∗‖2

2s
e−
√
µ

4 t. (6)

This result, along with analogous results [12] for the Nes-
terov’s accelerated gradient descent, serves as an inspiration to
build Lyapunov functions that help to explain the accelerated
convergence rate of the discrete-time methods.

Inspired by the success of resource-aware control in de-
veloping efficient closed-loop feedback implementations on
digital systems, here we present a discretization approach to
accelerated optimization flows using resource-aware control.
At the basis of the approach taken here is the observation
that the convergence rate (6) of the continuous flow is a
direct consequence of the Lyapunov nature of the function (5).
In fact, the integration of V̇ ≤ −

√
µ

4 V along the system
trajectories yields

V (x(t), v(t)) ≤ e−
√
µ

4 tV (x(0), v(0)).

Since f(x(t))− f(x∗) ≤ V (x(t), v(t)), we deduce

f(x(t))− f(x∗) ≤ e−
√
µ

4 tV (x(0), v(0)) = O(e−
√
µ

4 t).

The characterization of the convergence rate via the decay of
the Lyapunov function is indeed common among accelerated
optimization flows. This observation motivates the resource-
aware approach to discretization pursued here, where the
resource that we aim to use efficiently is the sampling of
the state itself. By doing so, the ultimate goal is to give



4

rise to large stepsizes that take maximum advantage of the
decay of the Lyapunov function (and consequently of the
accelerated nature) of the continuous-time dynamics in the
resulting discrete-time implementation.

IV. RESOURCE-AWARE DISCRETIZATION OF
ACCELERATED OPTIMIZATION FLOWS

In this section we propose a discretization of accelerated
optimization flows using state-dependent triggering and an-
alyze the properties of the resulting discrete-time algorithm.
For convenience, we use the shorthand notation p = [x, v]T .
In following with the exposition in Section II-B, we start by
considering the zero-order hold implementation ṗ = Xhb(p̂),
p(0) = p̂ of the heavy-ball dynamics (4),

ẋ = v̂, (7a)
v̇ = −2

√
µv̂ − (1 +

√
µs)∇f(x̂). (7b)

Note that the solution trajectory takes the form p(t) = p̂ +
tXhb(p̂), which in discrete-time terminology corresponds to a
forward-Euler discretization of (4). Component-wise, we have

x(t) = x̂+ tv̂,

v(t) = v̂ − t
(
2
√
µv̂ + (1 +

√
µs)∇f(x̂)

)
.

As we pointed out in Section II-B, the use of sampled
information opens the way to more elaborated constructions
than the zero-order hold in (7). As an example, given the
second-order nature of the heavy-ball dynamics, it would seem
reasonable to leverage the (position, velocity) nature of the pair
(x̂, v̂) (meaning that, at position x̂, the system is moving with
velocity v̂) by employing the modified zero-order hold

ẋ = v̂, (8a)
v̇ = −2

√
µv̂ − (1 +

√
µs)∇f(x̂+ av̂), (8b)

where a ≥ 0. Note that the trajectory of (8) corresponds to the
forward-Euler discretization of the continuous-time dynamics[

ẋ
v̇

]
=

[
v

−2
√
µv − (1 +

√
µs)∇f(x+ av))

]
, (9)

We refer to this as the heavy-ball dynamics with displaced
gradient and denote it by Xa

hb (note that (8) and (9) with
a = 0 recover (7) and (4), respectively). In order to pursue
the resource-aware approach laid out in Section II-B with the
modified zero-order hold in (8), we need to characterize the
asymptotic convergence properties of the heavy-ball dynamics
with displaced gradient, which we tackle next.

Remark IV.1. (Connection between the use of sampled infor-
mation and high-resolution-ODEs). A number of works [27],
[28], [29] have explored formulations of Nesterov’s acceler-
ated that employ displaced-gradient-like terms similar to the
one used above. Here, we make this connection explicit. Given
Nesterov’s algorithm

yk+1 = xk − s∇f(xk)

xk+1 = yk+1 +
1−√µs
1 +
√
µs

(yk+1 − yk)

the work [12] obtains the following limiting high-resolution
ODE

ẍ+ 2
√
µẋ+

√
s∇2f(x)ẋ+ (1 +

√
µs)∇f(x) = 0. (10)

Interestingly, considering instead the evolution of the y-
variable and applying similar arguments to the ones in [12],
one instead obtains

ÿ + 2
√
µẏ + (1 +

√
µs)∇f

(
y +

√
s

1 +
√
µs
ẏ
)

= 0, (11)

which corresponds to the continuous heavy-ball dynamics
in (4) evaluated with a displaced gradient, i.e., (9). Even
further, if we Taylor expand the last term in (11) as

∇f(y +

√
s

1 +
√
µs
ẏ) = ∇f(y) +∇2f(y)

√
s

1 +
√
µs
ẏ +O(s)

and disregard the O(s) term, we recover (10). This shows
that (11) is just (10) with extra higher-order terms in s, and
provides evidence of the role of gradient displacement in
enlarging the modeling capabilities of high-resolution ODEs.
•

A. Asymptotic Convergence of Heavy-Ball Dynamics with
Displaced Gradient

In this section, we study the asymptotic convergence of
heavy-ball dynamics with displaced gradient. Interestingly, for
a sufficiently small, this dynamics enjoys the same conver-
gence properties as the dynamics (4), as the following result
shows.

Theorem IV.2. (Global asymptotic stability of heavy-ball
dynamics with displaced gradient). Let β1, . . . , β4 > 0 be

β1 =
√
µsµ, β2 =

√
µsL√
µ
,

β3 =
13
√
µ

16
, β4 =

4µ2
√
s+ 3L

√
µ
√
µs

8L2
,

where, for brevity,
√
µs = 1 +

√
µs, and define

a∗1 =
2

β2
2

(
β1β4 +

√
β2

2β3β4 + β2
1β

2
4

)
. (12)

Then, for 0 ≤ a ≤ a∗1, V̇ ≤ −
√
µ

4 V along the dynamics (9)
and, as a consequence, p∗ = [x∗, 0]T is globally asymptoti-
cally stable. Moreover, for s ≤ 1/L, the exponential decrease
of V implies (6) holds along the trajectories of Xa

hb.

Proof: Note that

〈∇V (p), Xa
hb(p)〉+

√
µ

4
V (p) =

= (1+
√
µs)〈∇f(x), v〉−√µ ‖v‖2−√µs〈∇f(x+av), v〉

− √µ√µs〈∇f(x+ av), x− x∗〉+

√
µ

4
V (x, v)

= −√µ ‖v‖2 −√µ√µs〈∇f(x), x− x∗〉+

√
µ

4
V (x, v)︸ ︷︷ ︸

Term I

−√µs〈∇f(x+ av)−∇f(x), v〉︸ ︷︷ ︸
Term II
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−√µ√µs〈∇f(x+ av)−∇f(x), x− x∗〉︸ ︷︷ ︸
Term III

,

where in the second equality, we have added and subtracted√
µ
√
µs〈∇f(x), x − x∗〉. Observe that “Term I” corresponds

to 〈∇V (p), Xhb(p)〉 +
√
µ

4 V (p) and is therefore negative by
Theorem III.1. From [21], this term can be bounded as

Term I ≤
−13
√
µ

16
‖v‖2

+
(4µ2

√
s+ 3L

√
µ
√
µs

8L2

)
‖∇f(x)‖2 .

Let us study the other two terms. By strong convexity, we have
−〈∇f(x+ av)−∇f(x), v〉 ≤ −aµ ‖v‖2, and therefore

Term II ≤ −a√µsµ ‖v‖2 ≤ 0.

Regarding Term III, one can use the L-Lipschitzness of ∇f
and strong convexity to obtain

Term III ≤ a

µ

√
µ
√
µsL ‖v‖ ‖∇f(x)‖ .

Now, using the notation in the statement, we can write

〈∇V (p), Xa
hb(p)〉+

√
µ

4
V (p) (13)

≤ a
(
−β1 ‖v‖2 + β2 ‖v‖ ‖∇f(x)‖

)
−β3 ‖v‖2−β4 ‖∇f(x)‖2 .

If −β1 ‖v‖2 + β2 ‖v‖ ‖∇f(x)‖ ≤ 0, then the RHS of (13) is
negative for any a ≥ 0. If −β1 ‖v‖2 + β2 ‖v‖ ‖∇f(x)‖ > 0,
the RHS of (13) is negative if and only if

a ≤ β3 ‖v‖2 + β4 ‖∇f(x)‖2

−β1 ‖v‖2 + β2 ‖v‖ ‖∇f(x)‖
.

The RHS of this equation corresponds to g(‖∇f(x)‖/‖∇v‖),
with the function g defined in (A.3). From Lemma A.1, as
long as −β1 ‖v‖2 + β2 ‖v‖ ‖∇f(x)‖ > 0, this function is
lower bounded by

a∗1 =
β3 + β4(z+

root)
2

−β1 + β2z
+
root

> 0,

where z+
root is defined in (A.4). This exactly corresponds

to (12), concluding the result.

Remark IV.3. (Adaptive displacement along the trajectories
of heavy-ball dynamics with displaced gradient). From the
proof of Theorem IV.2, one can observe that if (x, v) is
such that n ≤ ‖∇f(x)‖ < n and m ≤ ‖v‖ < m, for
n, n,m,m ∈ R>0, then one can upper bound the LHS
of (13) by

a(−β1m
2 + β2mn)− β3m

2 − β4n
2.

If −β1m
2 + β2mn ≤ 0, any a ≥ 0 makes this expression

negative. If instead −β1m
2 + β2mn ≥ 0, then a must satisfy

a ≤
∣∣∣ β3m

2 + β4n
2

−β1m2 + β2mn

∣∣∣. (14)

This argument shows that over the region R = {(x, v) | n ≤
‖∇f(x)‖ < n and m ≤ ‖v‖ < m}, any a ≥ 0 satisfying (14)
ensures that V̇ ≤ −

√
µ

4 V , and hence the desired exponential
decrease of the Lyapunov function. This observation opens

the way to modify the value of the parameter a adaptively
along the execution of the heavy-ball dynamics with displaced
gradient, depending on the region of state space visited by its
trajectories. •

B. Triggered Design of Variable-Stepsize Algorithms

In this section we propose a discretization of the continuous
heavy-ball dynamics based on resource-aware control. To do
so, we employ the approaches to trigger design described
in Section II-B on the dynamics Xa

hb, whose forward-Euler
discretization corresponds to the modified zero-order hold (8)
of the heavy-ball dynamics.

Our starting point is the characterization of the asymptotic
convergence properties of Xa

hb developed in Section IV-A. The
trigger design necessitates of bounding the evolution of the
Lyapunov function V in (5) for the continuous-time heavy-
ball dynamics with displaced gradient along its zero-order
hold implementation. However, this task presents the challenge
that the definition of V involves the minimizer x∗ of the
optimization problem itself, which is unknown (in fact, finding
it is the ultimate objective of the discrete-time algorithm we
seek to design). In order to synthesize computable triggers, this
raises the issue of bounding the evolution of V as accurately
as possible while avoiding any requirement on the knowledge
of x∗. The following result, whose proof is presented in
Appendix A, addresses this point.

Proposition IV.4. (Upper bound for derivative-based trigger-
ing with zero-order hold). Let a ≥ 0 and define

bdET(p̂, t; a) = AET(p̂, t; a) +BET(p̂, t; a) + CET(p̂; a),

bdST(p̂, t; a) = BqST(p̂; a)t2 + (AST(p̂; a) +BlST(p̂; a))t

+ CST(p̂; a),

where

AET(p̂, t; a) = 2µt ‖v̂‖2 +
√
µs
(
〈∇f(x̂+ tv̂)−∇f(x̂), v̂〉

+ 2t
√
µ〈∇f(x̂+ av̂), v̂〉+ t

√
µs ‖∇f(x̂+ av̂)‖2

)
,

BET(p̂, t; a) =

√
µt2

16
‖2√µv̂ +

√
µs∇f(x̂+ av̂)‖2

− tµ

4
‖v̂‖2 +

√
µ
√
µs

4

(
f(x̂+ tv̂)− f(x̂)+

− t〈v̂,∇f(x̂+ av̂)〉+
t2
√
µs

4
‖∇f(x̂+ av̂)‖2

−
t
√
µ

L
‖∇f(x̂+ av̂)‖2 + t

√
µ〈av̂,∇f(x̂+ av̂)〉

)
,

CET(p̂; a) = −
13
√
µ

16
‖v̂‖2 − µ2

√
s

2

‖∇f(x̂)‖2

L2

+
√
µs
(−3
√
µ

8L
‖∇f(x̂)‖2

+
√
µ(f(x̂)− f(x̂+ av̂)) +

√
µ ‖∇f(x̂)‖ ‖av̂‖

− µ3/2

2
‖av̂‖2 − 〈∇f(x̂+ av̂)−∇f(x̂), v̂〉

+
√
µ〈∇f(x̂+ av̂), av̂〉

)
,

AST(p̂; a) = 2µ ‖v̂‖2 +
√
µs
(
L ‖v̂‖2 + 2

√
µ〈∇f(x̂+ av̂), v̂〉

+
√
µs ‖∇f(x̂+ av̂)‖2

)
,
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BlST(p̂; a) =

√
µ

4

(
−√µ ‖v̂‖2 +

√
µs(〈∇f(x̂)−∇f(x̂+ av̂), v̂〉

−
√
µ

L
‖∇f(x̂+ av̂)‖2 +

√
µ〈av̂,∇f(x̂+ av̂)〉)

)
,

BqST(p̂; a) =

√
µ

16
‖2√µv̂ +

√
µs∇f(x̂+ av̂)‖2

+

√
µ
√
µs

4

(L
2
‖v̂‖2 +

√
µs

4
‖∇f(x̂+ av̂)‖2

)
,

CST(p̂; a) = CET(p̂; a).

Let t 7→ p(t) = p̂+tXa
hb(p̂) be the trajectory of the zero-order

hold dynamics ṗ = Xa
hb(p̂), p(0) = p̂. Then, for t ≥ 0,

d

dt
V (p(t)) +

√
µ

4
V (p(t)) ≤ bdET(p̂, t; a) ≤ bdST(p̂, t; a).

The importance of Proposition IV.4 stems from the fact
that the triggering conditions defined by bd#, # ∈ {ET,ST},
can be evaluated without knowledge of the optimizer x∗. We
build on this result next to establish an upper bound for the
performance-based triggering condition.

Proposition IV.5. (Upper bound for performance-based trig-
gering with zero-order hold). Let a ≥ 0 and

bp#(p̂, t; a) =

∫ t

0

e
√
µ

4 ζbd#(p̂, ζ; a)dζ,

for # ∈ {ET,ST}. Let t 7→ p(t) = p̂ + tXa
hb(p̂) be the

trajectory of the zero-order hold dynamics ṗ = Xa
hb(p̂),

p(0) = p̂. Then, for t ≥ 0,

V (p(t))−e−
√
µ

4 tV (p̂)≤e−
√
µ

4 tbpET(p̂, t; a)≤e−
√
µ

4 tbpST(p̂, t; a).

Proof: We rewrite V (p(t)) − e−
√
µ

4 tV (p̂) =

e−
√
µ

4 t(e
√
µ

4 tV (p(t))− V (p̂)), and note that

e
√
µ

4 tV (p(t))− V (p̂)

=

∫ t

0

d

dζ

(
e
√
µ

4 ζV (p(ζ))− V (p̂)
)
dζ

=

∫ t

0

e
√
µ

4 ζ
( d
dζ
V (p(ζ)) +

√
µ

4
V (p(ζ)

)
dζ.

Note that the integrand corresponds to the derivative-based
criterion bounded in Proposition IV.4. Therefore,

e
√
µ

4 tV (p(t))− V (p̂) ≤
∫ t

0

e
√
µ

4 ζbdET(p̂, ζ; a)dζ

= bpET(p̂, t; a) ≤ bpST(p̂, t; a)

for t ≥ 0, and the result follows.
Propositions IV.4 and IV.5 provide us with the tools

to determine the stepsize according to the derivative- and
performance-based triggering criteria, respectively. For con-
venience, and following the notation in (3), we define the
stepsizes

stepd
#(p̂; a) = min{t > 0 | bd#(p̂, t; a) = 0}, (15a)

stepp
#(p̂; a) = min{t > 0 | bp#(p̂, t; a) = 0}, (15b)

for # ∈ {ET,ST}. Observe that, as long as p̂ 6= p∗ = [x∗, 0]T

and 0 ≤ a ≤ a∗1, we have C#(p̂; a) < 0 for # ∈ {ST,ET}
and, as a consequence, bd#(p̂, 0; a) < 0. The ET/ST termi-
nology is justified by the following observation: in the ET

case, the equation defining the stepsize is in general implicit
in t. Instead, in the ST case, the equation defining the stepsize
is explicit in t. Equipped with this notation, we define the
variable-stepsize algorithm described in Algorithm 1, which
consists of following the dynamics (8) until the exponential
decay of the Lyapunov function is violated as estimated by
the derivative-based (� = d) or the performance-based (� = p)
triggering condition. When this happens, the algorithm re-
samples the state before continue flowing along (8).

Algorithm 1: Displaced-Gradient Algorithm
Design Choices: � ∈ {d,p}, # ∈ {ET,ST}
Initialization: Initial point (p0), objective function (f ),
tolerance (ε), a ≥ 0, k = 0
while ‖∇f(xk)‖ ≥ ε do

Compute stepsize ∆k = step�#(pk; a)
Compute next iterate pk+1 = pk + ∆kX

a
hb(pk)

Set k = k + 1
end

C. Convergence Analysis of Displaced-Gradient Algorithm
Here we characterize the convergence properties of the

derivative- and performance-based implementations of the
Displaced-Gradient Algorithm. In each case, we show that
algorithm is implementable (i.e., it admits a MIET) and
inherits the convergence rate from the continuous-time dy-
namics. The following result deals with the derivative-based
implementation of Algorithm 1.

Theorem IV.6. (Convergence of derivative-based implemen-
tation of Displaced-Gradient Algorithm). Let β̂1, . . . , β̂5 > 0
be

β̂1 =
√
µs(

3
√
µ

2
+ L), β̂2 =

√
µ
√
µs

3

2
,

β̂3 =
13
√
µ

16
, β̂4 =

4µ2
√
s+ 3L

√
µ
√
µs

8L2
,

β̂5 =
√
µs
(5
√
µL

2
− µ3/2

2

)
,

and define

a∗2 = αmin
{−β̂1 +

√
β̂2

1 + 4β̂5β̂3

2β̂5

,
β̂4

β̂2

}
, (16)

with 0 < α < 1. Then, for 0 ≤ a ≤ a∗2, � = d, and # ∈
{ET,ST}, the variable-stepsize strategy in Algorithm 1 has
the following properties

(i) the stepsize is uniformly lower bounded by the positive
constant MIET(a), where

MIET(a) = −ν +
√
ν2 + η, (17)

η = min{η1, η2}, ν = max{ν1, ν2}, and

η1 =
8a
√
µs

(
a(µ− 5L)− 2L√

µ − 3
)

+ 13

2
√
µsL

(
3a2√µsL+ 1

)
+ 8µ

,

η2 = −
3
√
µs
√
µL(4aL− 1)− 4µ2

√
s

3µs
√
µL2

,
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ν1 =
µ
(
2a3√µsL2 + a

√
µs + 16

)
+ 8
√
µsL

(
2a2√µsL+ 1

)
2
√
µ
(√
µsL

(
3a2√µsL+ 1

)
+ 4µ

)
+

√
µs(aL(8aL+ 1) + 4)

√
µsL

(
3a2√µsL+ 1

)
+ 4µ

,

ν2 =
aµ+ 8

√
µs + 8

√
µ

3
√
µs
√
µ

;

(ii) d
dtV (pk + tXa

hb(pk)) ≤ −
√
µ

4 V (pk + tXa
hb(pk)) for all

t ∈ [0,∆k] and k ∈ {0} ∪ N.

As a consequence, f(xk+1)− f(x∗) = O(e−
√
µ

4

∑k
i=0 ∆i).

Proof: Regarding fact (i), we prove the result for the
ST-case, as the ET-case follows from stepd

ET(p̂; a) ≥
stepd

ST(p̂; a). We start by upper bounding CST(p̂; a) by a
negative quadratic function of ‖v̂‖ and ‖∇f(x̂)‖ as follows,

CST(p̂; a) = −
13
√
µ

16
‖v̂‖2 +

√
µs
−3
√
µ

8L
‖∇f(x̂)‖2

− µ2
√
s

2L2
‖∇f(x̂)‖2 +

√
µs
(√
µ (f(x̂)− f(x̂+ av̂))︸ ︷︷ ︸

(a)

+
√
µ ‖∇f(x̂)‖ ‖av̂‖︸ ︷︷ ︸

(b)

−µ
3/2

2
‖av̂‖2

+ 〈∇f(x̂)−∇f(x̂+ av̂), v̂〉︸ ︷︷ ︸
(c)

+
√
µ 〈∇f(x̂+ av̂), av̂〉︸ ︷︷ ︸

(d)

)
.

Using the L-Lipschitzness of the gradient and Young’s in-
equality, we can easily upper bound

(a) ≤ 〈∇f(x̂+ av̂),−av̂〉+
L

2
a2 ‖v̂‖2︸ ︷︷ ︸

Using (A.1c)

= 〈∇f(x̂+ av̂)−∇f(x̂),−av̂〉+
L

2
a2 ‖v̂‖2

+ 〈∇f(x̂),−av̂〉

≤ La2 ‖v̂‖2 +
L

2
a2 ‖v̂‖2 + a

(‖∇f(x̂)‖2

2
+
‖v̂‖2

2

)
=

3La2 + a

2
‖v̂‖2 +

a

2
‖∇f(x̂)‖2 ,

(b) ≤ a
(‖∇f(x̂)‖2

2
+
‖v̂‖2

2

)
,

(c) ≤ La ‖v̂‖2 ,
(d) = 〈∇f(x̂+ av̂)−∇f(x̂) +∇f(x̂), av̂〉
≤ La2 ‖v̂‖2 + 〈∇f(x̂), av̂〉

=
2La2 + a

2
‖v̂‖2 +

a

2
‖∇f(ẑ)‖2 .

Note that, with the definition of the constants β̂1, . . . , β̂5 > 0
in the statement, we can write

CST(p̂; a) ≤ aβ̂1 ‖v̂‖2 + a2β̂5 ‖v̂‖2 + aβ̂2 ‖∇f(x̂)‖2

− β̂3 ‖v̂‖2 − β̂4 ‖∇f(x̂)‖2 .

Therefore, for a ∈ [0, a∗2], we have

aβ̂1 + a2β̂5 − β̂3 ≤ a∗2β̂1 + (a∗2)2β̂5 − β̂3 = −γ1 < 0

aβ̂2 − β̂4 ≤ a∗2β̂2 − β̂4 = −γ2 < 0,

and hence CST(p̂; a) ≤ −γ1 ‖v̂‖2 − γ2 ‖∇f(x̂)‖2. Similarly,
introducing

γ3 = 2a2µsL
2 + 2a2√µs

√
µL2 +

√
µs
√
µ+
√
µsL+ 2µ,

γ4 = 2µs + 2
√
µs
√
µ, γ5 =

1

8
a
√
µs
(
2a2µL2 + µ+ 2

√
µL
)
,

γ6 =
aµ
√
µs

4
, γ7 =

3

8
a2µs

√
µL2 +

1

8

√
µs
√
µL+

µ3/2

2
,

γ8 =
3µs
√
µ

8
,

one can show that

AST(p̂; a) ≤ ÂST(p̂; a) = γ3 ‖v̂‖2 + γ4 ‖∇f(x̂)‖2 ,
BlST(p̂; a) ≤ B̂lST(p̂; a) = γ5 ‖v̂‖2 + γ6 ‖∇f(x̂)‖2 ,
BqST(p̂; a) ≤ B̂qST(p̂; a) = γ7 ‖v̂‖2 + γ8 ‖∇f(x̂)‖2 .

Thus, from (15a), we have

stepd
ST(p̂; a) ≥ −(ÂST(p̂; a) + B̂lST(p̂; a))

2B̂qST(p̂; a)
(18)

+

√√√√( ÂST(p̂; a) + B̂lST(p̂; a)

2B̂qST(p̂; a)

)2

− CST(p̂; a)

B̂qST(p̂; a)
.

Using now [21, supplementary material, Lemma 1], we deduce

η ≤ −CST(p̂; a)

B̂qST(p̂; a)
,

ÂST(p̂; a) + B̂lST(p̂; a)

2B̂qST(p̂; a)
≤ ν,

where

η = min{γ1

γ7
,
γ2

γ8
}, ν = max{γ3 + γ5

2γ7
,
γ4 + γ6

2γ8
}.

With these elements in place and referring to (18), we have

stepd
ST(p̂; a) ≥ −(ÂST(p̂; a) + B̂lST(p̂; a))

2B̂qST(p̂; a)

+

√√√√( ÂST(p̂; a) + B̂lST(p̂; a)

2B̂qST(p̂; a)

)2

+ η.

We observe now that z 7→ g(z) = −z +
√
z2 + η is

monotonically decreasing and lower bounded. So, if z is
upper bounded, then g(z) is lower bounded by a positive
constant. Taking z =

(ÂST(p̂;a)+B̂lST(p̂;a))

2B̂qST(p̂;a)
≤ ν gives the bound

of the stepsize. Finally, the algorithm design together with
Proposition IV.4 ensure fact (ii) throughout its evolution.

It is worth noticing that the derivative-based implementation
of the Displaced-Gradient Algorithm generalizes the algorithm
proposed in our previous work [21] (in fact, the strategy pro-
posed there corresponds to the choice a = 0). The next result
characterizes the convergence properties of the performance-
based implementation of Algorithm 1.

Theorem IV.7. (Convergence of performance-based imple-
mentation of Displaced-Gradient Algorithm). For 0 ≤ a ≤ a∗2,
� = p, and # ∈ {ET,ST}, the variable-stepsize strategy in
Algorithm 1 has the following properties

(i) the stepsize is uniformly lower bounded by the positive
constant MIET(a);
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(ii) V (pk + tXa
hb(pk)) ≤ e−

√
µ

4 tV (pk) for all t ∈ [0,∆k]
and k ∈ {0} ∪ N.

As a consequence, f(xk+1)− f(x∗) = O(e−
√
µ

4

∑k
i=0 ∆i).

Proof: To show (i), notice that it is sufficient to prove
that stepp

ST is uniformly lower bounded away from zero.
This is because of the definition of stepsize in (15b) and
the fact that bpET(p̂, t; a) ≤ bpST(p̂, t; a) for all p̂ and all
t. For an arbitrary fixed p̂, note that t 7→ bdST(p̂, t; a) is
strictly negative in the interval [0, stepd

ST(p; a)) given the
definition of stepsize in (15a). Consequently, the function
t 7→ bpST(p̂, t; a) =

∫ t
0
e
√
µ

4 ζbdST(p̂; ζ, a)dζ is strictly negative
over (0, stepd

ST(p̂; a)). From the definition of stepp
ST, it then

follows that stepp
ST(p̂; a) ≥ stepd

ST(p̂; a). The result now
follows by noting that stepd

ST is uniformly lower bounded
away from zero by a positive constant, cf. Theorem IV.6(i).

To show (ii), we recall that ∆k = stepp
#(pk; a) for # ∈

{ET,ST} and use Proposition IV.5 for p̂ = pk to obtain, for
all t ∈ [0,∆k],

V (p(t))− e−
√
µ

4 tV (pk) ≤ e−
√
µ

4 tbp#(pk, t; a)

≤ e−
√
µ

4 tbp#(pk,∆k; a) = 0,

as claimed.
The proof of Theorem IV.7 brings up an interesting geo-

metric interpretation of the relationship between the stepsizes
determined according to the derivative- and performance-based
approaches. In fact, since

d

dt
bp#(p̂, t; a) = e

√
µ

4 tbd#(p̂, t; a),

we observe that stepd
#(p̂; a) is precisely the (positive) critical

point of t 7→ bp#(p̂, t; a). Therefore, stepp
ST(p̂; a) is the

smallest nonzero root of t 7→ bp#(p̂, t; a), whereas stepd
ST(p̂; a)

is the time where t 7→ bp#(p̂, t; a) achieves its smallest value,
and consequently is furthest away from zero. This confirms
the fact that the performance-based approach obtains larger
stepsizes than the derivative-based approach.

V. EXPLOITING SAMPLED INFORMATION TO ENHANCE
ALGORITHM PERFORMANCE

Here we describe two different refinements of the imple-
mentations proposed in Section IV to further enhance their
performance. Both of them are based on further exploiting the
sampled information about the system. The first refinement,
cf. Section V-A, looks at the possibility of adapting the value
of the gradient displacement as the algorithm is executed.
The second refinement, cf. Section V-B, develops a high-order
hold that more accurately approximates the evolution of the
continuous-time heavy-ball dynamics with displaced gradient.

A. Adaptive Gradient Displacement

The derivative- and performance-based triggered implemen-
tations in Section IV-B both employ a constant value of
the parameter a. Here, motivated by the observation made
in Remark IV.3, we develop triggered implementations that
adaptively adjust the value of the gradient displacement de-
pending on the region of the space to which the state belongs.

Rather than relying on the condition (14), which would require
partitioning the state space based on bounds on ∇f(x) and v,
we seek to compute on the fly a value of the parameter a
that ensures the exponential decrease of the Lyapunov func-
tion at the current state. Formally, the strategy is stated in
Algorithm 2.

Algorithm 2: Adaptive Displaced-Gradient Algorithm
Design Choices: � ∈ {d,p}, # ∈ {ET,ST}
Initialization: Initial point (p0), objective function (f ),
tolerance (ε), increase rate (ri > 1), decrease rate
(0 < rd < 1), stepsize lower bound (τ ), a ≥ 0, k = 0
while ‖∇f(xk)‖ ≥ ε do

increase = True
exit = False
while exit = False do

while C#(pk; a) ≥ 0 do
a = ard
increase = False

end
if step�#(pk; a) ≥ τ then

exit = True
else

a = ard
increase = False

end
Compute stepsize ∆k = step�#(pk; a)
Compute next iterate pk+1 = pk + ∆kX

a
hb(pk)

Set k = k + 1
if increase = True then

a = ari
end

Proposition V.1. (Convergence of Adaptive Displaced-
Gradient Algorithm). For � ∈ {d,p}, # ∈ {ET,ST}, and
τ ≤ mina∈[0,a∗2 ] MIET(a), the variable-stepsize strategy in
Algorithm 2 has the following properties:

(i) it is executable (i.e., at each iteration, the parameter a
is determined in a finite number of steps);

(ii) the stepsize is uniformly lower bounded by τ ;
(iii) it satisfies f(xk+1)−f(x∗)=O(e−

√
µ

4

∑k
i=0 ∆i), for k ∈

{0} ∪ N.

Proof: Notice first that the function a 7→ MIET(a) > 0
defined in (17) is continuous and therefore attains its minimum
over a compact set. At each iteration, Algorithm 2 first ensures
that C#(p̂; a) < 0, decreasing a if this is not the case. We
know this process is guaranteed as soon as a < a∗2 (cf. proof
of Theorem IV.6) and hence only takes a finite number of
steps. Once C#(p̂; a) < 0, the stepsize could be computed to
guarantee the desired decrease of the Lyapunov function V .
The algorithm next checks if the stepsize is lower bounded
by τ . If that is not the case, then the algorithm reduces a and
re-checks if C#(p̂; a) < 0. With this process and in a finite
number of steps, the algorithm eventually either computes a
stepsize lower bounded by τ with a > a∗2 or a decreases
enough to make a ≤ a∗2, for which we know that the stepsize
is already lower bounded by τ . These arguments establish facts
(i) and (ii) at the same time. Finally, fact (iii) is a consequence



9

of the prescribed decreased of the Lyapunov function along the
algorithm execution.

B. Discretization via High-Order Hold

The modified zero-order hold based on employing dis-
placed gradients developed in Section IV is an example of
the possibilities enabled by more elaborate uses of sampled
information. In this section, we propose another such use
based on the observation that the continuous-time heavy-ball
dynamics can be decomposed as the sum of a linear term and
a nonlinear term. Specifically, we have

Xa
hb(p) =

[
v

−2
√
µv

]
+

[
0

−√µs∇f(x+ av)

]
.

Note that the first term in this decomposition is linear, whereas
the other one contains the potentially nonlinear gradient term
that complicates finding a closed-form solution. Keeping this
in mind when considering a discrete-time implementation, it
would seem reasonable to perform a zero-order hold only
on the nonlinear term while exactly integrating the resulting
differential equation. Formally, a zero-order hold at p̂ = [x̂, v̂]
of the nonlinear term above yields a system of the form[

ẋ
v̇

]
= A

[
x
v

]
+ b, (19)

with p(0) = p̂, and where

A =

[
0 1
0 −2

√
µ

]
, b =

[
0

−√µs∇f(x̂+ av̂)

]
.

Equation (19) is an in-homogeneous linear dynamical sys-
tem, which is integrable by the method of variation of con-
stants [30]. Its solution is given by p(t) = eAt

( ∫ t
0
e−Aζbdζ+

p(0)
)
, or equivalently,

x(t) = x̂−
√
µs∇f(x̂+ av̂)t

2
√
µ

(20a)

+ (1− e−2
√
µt)

√
µs∇f(x̂+ av̂) + 2

√
µv̂

4µ
,

v(t) = e−2
√
µtv̂ + (e−2

√
µt − 1)

√
µs∇f(x̂+ av̂)

2
√
µ

. (20b)

We refer to this trajectory as a high-order-hold integrator. In
order to develop a discrete-time algorithm based on this type of
integrator, the next result provides a bound of the evolution of
the Lyapunov function V along the high-order-hold integrator
trajectories. The proof is presented in Appendix A.

Proposition V.2. (Upper bound for derivative-based triggering
with high-order hold). Let a ≥ 0 and define

bd
ET(p̂, t; a) = AET(p̂, t; a) + BET(p̂, t; a)

+ CET(p̂; a) + DET(p̂, t; a),

bd
ST(p̂, t; a) = (AqST(p̂; a) + Bq

ST(p̂; a))t2 + (AlST(p̂; a)

+ Bl
ST(p̂; a) + DST(p̂; a))t+ CST(p̂; a),

where

AET(p̂, t; a) =
√
µs(〈∇f(x(t))−∇f(x̂), v(t)〉

− 〈v(t)− v̂,∇f(x̂+ av̂)〉

− √µ〈x(t)− x̂,∇f(x̂+ av̂)〉)
−√µ〈v(t)− v̂, v(t)〉,

BET(p̂, t; a) =

√
µ

4

(√
µs(f(x(t))− f(x̂))

−√µ√µst
‖∇f(x̂+ av̂)‖2

L

+
√
µ
√
µst〈∇f(x̂+ av̂), av̂〉+

1

4
(‖v(t)‖2 − ‖v̂‖2)

+
1

4
‖v(t)− v̂ + 2

√
µ(x(t)− x̂)‖2

+
1

2
〈v(t)− v̂ + 2

√
µ(x(t)− x̂), v̂〉

)
,

CET(p̂; a) = CET(p̂; a),

DET(p̂, t; a) =
√
µs〈∇f(x̂), v(t)− v̂〉

− √µ〈v̂, v(t)− v̂〉,

and

AlST(p̂; a) = ‖2√µv̂ +
√
µs∇f(x̂+ av̂)‖

(√
µ ‖v̂‖

+
L
√
µs

2
√
µ
‖v̂‖+

3
√
µs

2
‖∇f(x̂+ av̂)‖

)
+
µs
2
‖∇f(x̂+ av̂)‖

( L
√
µ
‖v̂‖+ ‖∇f(x̂+ av̂)‖

)
,

AqST(p̂; a) = ‖2√µv̂ +
√
µs∇f(x̂+ av̂)‖

·
((L√µs

2
√
µ

+
√
µ
)
‖2√µv̂ +

√
µs∇f(x̂+ av̂)‖

+
Lµs
2
√
µ
‖∇f(x̂+ av̂)‖

)
,

Bl
ST(p̂; a) =

√
µ
√
µs

4

(√µs
2
√
µ
‖∇f(x̂+ av̂)‖ ‖∇f(x̂)‖

+
1

2
‖2√µv̂+

√
µs∇f(x̂+ av̂)‖

(‖∇f(x̂)‖
√
µ

+
‖v̂‖
√
µs

)
−√µ‖∇f(x̂+ av̂)‖2

L
+ (a
√
µ− 1

2
)〈∇f(x̂+ av̂), v̂〉

)
,

Bq
ST(p̂; a) =

10µ2 + L2√µs
32µ3/2

· ‖2√µv̂ +
√
µs∇f(x̂+ av̂)‖2

+
µs
(
4µ2 + L2√µs

)
32µ3/2

‖∇f(x̂+ av̂)‖2

+

√
µs
(
4µ2 + L2√µs

)
16µ3/2

‖2√µv̂ +
√
µs∇f(x̂+ av̂)‖

· ‖∇f(x̂+ av̂)‖),
CST(p̂; a) = CST(p̂; a),

DST(p̂; a) = ‖2√µv̂ +
√
µs∇f(x̂+ av̂)‖ ·(√

µs ‖∇f(x̂)‖+
√
µ ‖v̂‖

)
.

Let t 7→ p(t) be the high-order-hold integrator trajectory (20)
from p(0) = p̂. Then, for t ≥ 0,

d

dt
V (p(t)) +

√
µ

4
V (p(t)) ≤ bd

ET(p̂, t; a) ≤ bd
ST(p̂, t; a).

Analogously to what we did in Section IV-B, we build on
this result to establish an upper bound for the performance-
based triggering condition with the high-order-hold integrator.
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Proposition V.3. (Upper bound for performance-based trig-
gering with high-order hold). Let 0 ≤ a and

bp
#(p̂, t; a) =

∫ t

0

e
√
µ

4 ζbd
#(p̂, ζ; a)dζ, (21)

for # ∈ {ET,ST}. Let t 7→ p(t) be the high-order-hold
integrator trajectory (20) from p(0) = p̂. Then, for t ≥ 0,

V (p(t))−e−
√
µ

4 tV (p̂)≤e−
√
µ

4 tbp
ET(p̂, t; a)≤e−

√
µ

4 tbp
ST(p̂, t; a).

Using Proposition V.2, the proof of this result is analogous
to that of Proposition IV.5, and we omit it for space reasons.
Propositions V.2 and V.3 are all we need to fully specify the
variable-stepsize algorithm based on high-order-hold integra-
tors. Formally, we set

step�#(p̂; a) = min{t > 0 | b�#(p̂, t; a) = 0}, (22)

for � ∈ {d,p} and # ∈ {ET,ST}. With this in place, we
design Algorithm 3, which is a higher-order counterpart to
Algorithm 2, and whose convergence properties are character-
ized in the following result.

Algorithm 3: Adaptive High-Order-Hold Algorithm
Design Choices: � ∈ {d,p}, # ∈ {ET,ST}
Initialization: Initial point (p0), objective function (f ),
tolerance (ε), increase rate (ri > 1), decrease rate
(0 < rd < 1), stepsize lower bound (τ ), a ≥ 0, k = 0
while ‖∇f(xk)‖ ≥ ε do

increase = True
exit = False
while exit = False do

while C#(pk; a) ≥ 0 do
a = ard
increase = False

end
if step�#(pk; a) ≥ τ then

exit = True
else

a = ard
increase = False

end
Compute stepsize ∆k = step�#(pk; a)
Compute next iterate pk+1 using (20)
Set k = k + 1
if increase = True then

a = ari
end

Proposition V.4. (Convergence of Adaptive High-Order-Hold
Algorithm). For � ∈ {d,p}, and # ∈ {ET,ST}, there exists
MIET� such that for τ ≤ MIET�, the variable-stepsize
strategy in Algorithm 3 has the following properties:

(i) it is executable (i.e., at each iteration, the parameter a
is determined in a finite number of steps);

(ii) the stepsize is uniformly lower bounded by τ ;
(iii) it satisfies f(xk+1)−f(x∗)=O(e−

√
µ

4

∑k
i=0 ∆i), for k ∈

{0} ∪ N.

We omit the proof of this result, which is analogous to that
of Proposition V.1, with lengthier computations.

VI. SIMULATIONS

Here we illustrate the performance of the methods result-
ing from the proposed resource-aware discretization approach
to accelerated optimization flows. Specifically, we simulate
in two examples the performance-based implementation of
the Displaced Gradient algorithm (denoted DGp) and the
derivative- and performance-based implementations of the
High-Order-Hold (HOHd and HOHp respectively) algorithms.
We compare these algorithms against the Nesterov’s accel-
erated gradient and the heavy-ball methods, as they still
exhibit similar or superior performance to the discretization
approaches proposed in the literature, cf. Section I.

Optimization of Ill-Conditioned Quadratic Objective Function

Consider the optimization of the objective function f :
R2 → R defined by f(x) = 10−2x2

1 + 102x2
2. Note that

µ = 2 · 10−2 and L = 2 · 102. We use s = µ/(36L2) and
initialize the velocity according to (4b). For DGp, HOHd, and
HOHp, we set a = 0.1 and implement the event-triggered
approach (at each iteration, we employ a numerical zero-
finding routine to explicitly determine the stepsizes stepp

ET,
stepd

ET, and stepp
ET, respectively).

Figure 1(a) illustrates how the stepsize of HOHp changes
during the first 1000 iterations. After the tuning of the stepsize
during the first iterations, it becomes quite steady (likely due
to the simplicity of quadratic functions) until the trajectory
approaches the minimizer. After 5 iterations, the algorithm
stepsize becomes almost equal to the optimal stepsize.

Figure 1(b) compares the performance of DGp, HOHd,
and HOHp against the continuous heavy-ball method and
the discrete Nesterov method for strongly convex functions.
The DGp algorithm takes large stepsizes following the evo-
lution of the continuous heavy-ball along the straight lines
p(t) = pk + tXa

hb(pk). Meanwhile, the higher-order nature
of the hold employed by HOHd and HOHp makes them
able to leap over the oscillations, yielding a state evolution
similar to Nesterov’s method. Figure 2 shows the evolution of
the objective and Lyapunov functions. We observe that after
some initial iterations, HOHp outperforms Nesterov’s method.
Eventually, also DGp catches up to Nesterov’s method.

Logarithmic Regression

Consider the optimization of the regularized logistic re-
gression cost function f : R4 → R defined by f(x) =∑10
i=1 log(1+e−yi〈zi,x〉)+ 1

2 ‖x‖
2, where the points {zi}10

i=1 ⊂
R4 are generated randomly using a uniform distribution in
the interval [−5, 5], and the points {yi}10

i=1 ⊂ {−1, 1} are
generated similarly with quantized values. This objective func-
tion is 1-strongly convex and one can also compute the value
L = 177.49. We use a = 0.025 and s = µ/(36L2), and
initialize the velocity according to (4b). Figure 3(a) and (b)
show the evolution of the stepsize along HOHp, which changes
as a function of the state looking to satisfy the desired decay
of the Lyapunov function. Figure 4 shows the evolution of
the objective and Lyapunov functions. We observe how HOHd

and HOHp outperform Nesterov’s method, although eventually
the heavy-ball algorithm performs the best. The Lyapunov
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Fig. 1. Ill-conditioned quadratic objective function example. (a) Evolution
of the stepsize along the execution of HOHp during the first 1000 iter-
ations. (b) State evolution along DGp, HOHd, HOHp, continuous heavy-
ball dynamics, and Nesterov’s method starting from x = (50, 50) and
v = (−0.0023,−4.7139).

function decreases at a much faster rate along HOHd and
HOHp than along DGp.

VII. CONCLUSIONS

We have introduced a resource-aware control framework
to the discretization of accelerated optimization flows that
specifically takes advantage of their dynamical properties.
We have exploited fundamental concepts from opportunistic
state-triggering related to the various ways of encoding the
notion of valid Lyapunov certificates, the use of sampled-
data information, and the construction of state estimators
and holders to synthesize variable-stepsize optimization al-
gorithms that retain by design the convergence properties of
their continuous-time counterparts. We believe these results
open the way to a number of exciting research directions.
Among them, we highlight the design of adaptive learning
schemes to refine the use of sampled data and optimize the
algorithm performance with regards to the objective function,
the characterization of accelerated convergence rates, employ-
ing tools and insights from hybrid systems for analysis and
design, enriching the proposed designs by incorporating re-
start schemes as triggering conditions to avoid overshooting
and oscillations, and developing distributed implementations
for network optimization problems.
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Fig. 2. Ill-conditioned quadratic objective function example. (a) Evolution
of the logarithm of the objective function under DGp, HOHd, HOHp, the
heavy-ball method, and Nesterov’s method starting from x = (50, 50) and
v = (−0.0023,−4.7139). (b) Corresponding evolution of the logarithm of
the Lyapunov function along DGp, HOHd, and HOHp.
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APPENDIX A
Throughout the appendix, we make use of a number of basic

facts that we gather here for convenience,

f(x∗)− f(x) ≤ −‖∇f(x)‖2

2L
(A.1a)

‖∇f(x)‖
L

≤ ‖x− x∗‖ ≤
‖∇f(x)‖

µ
(A.1b)

f(y)− f(x)− 〈∇f(x), y − x〉 ≤ L

2
‖y − x‖2 (A.1c)

1

L
‖∇f(x)−∇f(y)‖2 ≤ 〈∇f(x)−∇f(y), x− y〉

(A.1d)

f(y)− f(x)− 〈∇f(x), y − x〉 ≤ 1

2µ
‖∇f(y)−∇f(x)‖2

(A.1e)

We also resort at various points to the expression of the
gradient of V ,

∇V (p) =

[√
µs∇f(x) +

√
µv + 2µ(x− x∗)

v +
√
µ(x− x∗)

]
. (A.2)

The following result is used in the proof of Theorem IV.2.

Lemma A.1. For β1, . . . , β4 > 0, the function

g(z) =
β3 + β4z

2

−β1 + β2z
(A.3)

is positively lower bounded on (β1/β2,∞).

Proof: The derivative of g is

g′(z) =
−β2β3 + β4z(−2β1 + β2z)

(β1 − β2z)2
.

The solutions to g′(z) = 0 are then given by

z±root =
β1β4 ±

√
β2

2β3β4 + β2
1β

2
4

β2β4
. (A.4)

Note that z−root < 0 < β1/β2 < z+
root, g

′ is negative
on (z−root, z

+
root), and positive on (z+

root,∞). Therefore the
minimum value over (β1/β2,∞) is achieved at z+

root, and
corresponds to g(z+

root) > 0.
Proof of Proposition IV.4: We break out d

dtV (p(t)) +√
µ

4 V (p(t)) as follows

d

dt
V (p̂+ tXa

hb(p̂)) +

√
µ

4
V (p̂+ tXa

hb(p̂)) =

= 〈∇V (p̂), Xa
hb(p̂)〉+

√
µ

4
V (p̂)︸ ︷︷ ︸

Term I + II + III

+ 〈∇V (p̂+ tXa
hb(p̂))−∇V (p̂), Xa

hb(p̂)〉︸ ︷︷ ︸
Term IV + V

+

√
µ

4
(V (p̂+ tXa

hb(p̂))− V (p̂)︸ ︷︷ ︸
Term VI

),

and bound each term separately.
Term I + II + III. From the definition (5) of V and the

fact that ‖y1 + y2‖2 ≤ 2 ‖y1‖2 + 2 ‖y2‖2, we have

V (p̂) =
√
µs(f(x̂)− f(x∗)) +

1

4
‖v̂‖2

+
1

4
‖v̂ + 2

√
µ(x̂− x∗)‖2

≤ √µs(f(x̂)− f(x∗))

+
1

4
‖v̂‖2 +

2

4
‖v̂‖2 +

2

4
‖2√µ(x̂− x∗)‖2

=
√
µs(f(x̂)− f(x∗)) +

3

4
‖v̂‖2 + 2µ ‖x̂− x∗‖2 .

Using this bound, we obtain

〈∇V (p̂), Xa
hb(p̂)〉+

√
µ

4
V (p̂)

≤ −√µ ‖v̂‖2 +

√
µ

4

√
µs(f(x̂)− f(x∗)) +

3
√
µ

16
‖v̂‖2

+
µ
√
µ

2
‖x̂− x∗‖2 +

√
µs〈∇f(x̂)−∇f(x̂+ av̂), v̂〉

− √µ√µs〈∇f(x̂+ av̂), x̂− x∗〉.

Writing 0 as 0 = av̂− av̂ and using strong convexity, we can
upper bound 〈∇f(x̂ + av̂), x∗ − x̂〉 in the last summand by
the expression

f(x∗)− f(x̂+ av̂)− µ

2
‖x̂+ av̂ − x∗‖2 + 〈∇f(x̂+ av̂), av̂〉.

Substituting this bound above and re-grouping terms,

〈∇V (p̂), Xa
hb(p̂)〉+

√
µ

4
V (p̂) ≤ −√µ ‖v̂‖2

+
√
µ
√
µs

(1

4
(f(x̂)− f(x∗)) + f(x∗)− f(x̂+ av̂)

)
︸ ︷︷ ︸

(a)

+
3
√
µ

16
‖v̂‖2 +

√
µs〈∇f(x̂)−∇f(x̂+ av̂), v̂〉

+
µ
√
µ

2
‖x̂− x∗‖2 +

√
µ
√
µs(−

µ

2
‖x̂+ av̂ − x∗‖2)︸ ︷︷ ︸

(b)

+
√
µ
√
µs〈∇f(x̂+ av̂), av̂〉.

Observe that

(a) =
√
µ
√
µs
(
− 3

4
(f(x̂)− f(x∗)) + f(x̂)− f(x̂+ av̂)

)
,

(b) ≤ −µ
2
√
s

2
‖x̂− x∗‖2 +

√
µsµ

3/2 ‖x̂− x∗‖ ‖av̂‖

− √µsµ3/2/2 ‖av̂‖2 ,

where, in the expression of (a), we have expressed 0 as
0 = 3/4(f(x̂) − f(x̂)) and, in the expression of (b), we
have expanded the square and used the Cauchy-Schwartz
inequality [31]. Finally, resorting to (A.1), we obtain

〈∇V (p̂), Xa
hb(p̂)〉+

√
µ

4
V (p̂) ≤ CET(p̂; a) = CST(p̂; a).

• Term IV + V. Using (A.2) we have

∇V (p̂+ tXa
hb(p̂)) =
√
µs∇f(x̂+ tv̂) +

√
µv̂ − 2µtv̂

−t√µ√µs∇f(x̂+ av̂) + 2µ(x̂+ tv̂ − x∗)

v̂ − 2t
√
µv̂ − t√µs∇f(x̂+ av̂) +

√
µ(x̂+ tv̂ − x∗)

 .
Therefore, ∇V (p̂+ tXa

hb(p̂))−∇V (p̂) reads[√
µs(∇f(x̂+tv̂)−∇f(x̂))−t√µ√µs∇f(x̂+av̂)

−√µtv̂ − t√µs∇f(x̂+ av̂)

]
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and hence

〈∇V (p̂+ tXa
hb(p̂))−∇V (p̂), Xa

hb(p̂)〉
=
√
µs〈∇f(x̂+ tv̂)−∇f(x̂), v̂〉

+ 2t
√
µ
√
µs〈∇f(x̂+ av̂), v̂〉+ 2tµ ‖v̂‖2

+ tµs ‖∇f(x̂+ av̂)‖2 .

The RHS of the last expression is precisely AET(p̂, t; a). Using
the L-Lipschitzness of ∇f , one can see that AET(p̂, t; a) ≤
AST(p; a)t.
• Term VI. From (5),

V (p̂+ tXa
hb(p̂))− V (p̂) =

√
µs(f(x̂+ tv̂)− f(x∗))

+
1

4
‖v̂ − 2t

√
µv̂ − t√µs∇f(x̂+ av̂)‖2

+
1

4
‖v̂ − 2t

√
µv̂ − t√µs∇f(x̂+ av̂)

+ 2
√
µ(x̂+ tv̂ − x∗)‖2 −

√
µs(f(x̂)− f(x∗))

− 1

4
‖v̂‖2 − 1

4
‖v̂ + 2

√
µ(x̂− x∗)‖2 .

Expanding the squares in the second and third summands, and
simplifying, we obtain

V (p̂+ tXa
hb(p̂))− V (p̂) =

√
µs(f(x̂+ tv̂)− f(x̂))

+
1

4
‖−2t

√
µv̂ − t√µs∇f(x̂+ av̂)‖2

+
1

2
〈v̂,−2t

√
µv̂ − t√µs∇f(x̂+ av̂)〉

+
1

4
‖−t√µs∇f(x̂+ av̂)‖2

+
1

2
〈v̂ + 2

√
µ(x̂− x∗),−t(

√
µs∇f(x̂+ av̂)〉

=
√
µs(f(x̂+ tv̂)− f(x̂))

+
1

4
‖−2t

√
µv̂ − t√µs∇f(x̂+ av̂)‖2

− t√µ ‖v̂‖2 − t√µs〈v̂,∇f(x̂+ av̂)〉

+
1

4
‖−t√µs∇f(x̂+ av̂)‖2

+ 〈√µ(x̂− x∗),−t
√
µs∇f(x̂+ av̂)〉.

Note that

〈x∗ − x̂,∇f(x̂+ av̂)〉
= 〈x∗ − x̂− av,∇f(x̂+ av̂)〉+ 〈av̂,∇f(x̂+ av̂)〉

≤ −‖∇f(x̂+ av̂)‖2

L
+ 〈av̂,∇f(x̂+ av̂)〉,

where in the inequality we have used (A.1d) with x = x̂+ av̂
and y = x∗. Using this in the equation above, one identifies
the expression of BET(p, t; a). Finally, applying (A.1c), one
can show that BET(p, t; a) ≤ BlST(p; a)t + BqST(p; a)t2,
concluding the proof.

Proof of Proposition V.2: For convenience, let

Xa,p̂
hb (p) =

[
v

−2
√
µv −√µs∇f(x̂+ av̂)

]
,

where p̂ = [x̂, v̂]. We next provide a bound for the expression

d

dt
V (p(t))) +

√
µ

4
V (p(t)) = 〈∇V (p̂), Xa,p̂

hb (p̂)〉+

√
µ

4
V (p̂)︸ ︷︷ ︸

Term I + II + III

+ 〈∇V (p(t))−∇V (p̂), Xa,p̂
hb (p(t))〉︸ ︷︷ ︸

Term IV

+ 〈∇V (p̂), Xa,p̂
hb (p(t))−Xa,p̂

hb (p̂)〉︸ ︷︷ ︸
Term V

+

√
µ

4
(V (p(t))− V (p̂))︸ ︷︷ ︸

Term VI

.

Next, we bound each term separately.
• Term I + II + III. Since Xa,p̂

hb (p̂) = Xa
hb(p̂), this term

is exactly the same as Term I + II + III in the proof of
Proposition IV.4, and hence the bound obtained there is valid.
• Term IV. Using (A.2), we have

〈∇V (p(t))−∇V (p̂), Xa,p̂
hb (p(t))〉

=
√
µs〈∇f(x(t))−∇f(x̂), v(t)〉

+
√
µ〈v(t)− v̂, v(t)〉+ 2µ〈x(t)− x̂, v(t)〉

− 2
√
µ〈v(t)− v̂, v(t)〉 − √µs〈v(t)− v̂,∇f(x̂+ av̂)〉

− 2µ〈x(t)− x̂, v(t)〉 − √µs
√
µ〈x(t)− x̂,∇f(x̂+ av̂)〉

=
√
µs〈∇f(x(t))−∇f(x̂), v(t)〉 − √µ〈v(t)− v̂, v(t)〉
− √µs〈v(t)− v̂,∇f(x̂+ av̂)〉
− √µs

√
µ〈x(t)− x̂,∇f(x̂+ av̂)〉,

from where we obtain Term IV ≤ AET(p̂, t; a). Now, using
0 = v̂ − v̂, the L-Lipschitzness of ∇f , and the Cauchy-
Schwartz inequality, we have

|AET(p̂, t; a)| ≤ √µsL ‖x(t)− x̂‖ (‖v(t)− v̂‖+ ‖v̂‖)
+
√
µ ‖v(t)− v̂‖2 +

√
µ ‖v(t)− v̂‖ ‖v̂‖

+
√
µs ‖v(t)− v̂‖ ‖∇f(x̂+ av̂)‖

+
√
µs
√
µ ‖x(t)− x̂‖ ‖∇f(x̂+ av̂)‖ .

Using (20), the triangle inequality, and 1 − e−2
√
µt ≤ 2

√
µt,

we can write

‖x(t)− x̂‖ ≤ t

2
√
µ
‖2√µv̂ +

√
µs∇f(x̂+ av̂)‖

+

√
µst

2
√
µ
‖∇f(x̂+ av̂)‖ , (A.5a)

‖v(t)− v̂‖ ≤ t ‖2√µv̂ +
√
µs∇f(x̂+ av̂)‖ . (A.5b)

Substituting into the bound for |AET(p̂, t; a)| above, we obtain

|AET(p̂, t; a)| ≤ AqST (p̂; a)t2 + AlST(p̂; a)t

as claimed.
• Term V. Using (A.2), we have〈

∇V (p̂), Xa,p̂
hb (p(t))−Xa,p̂

hb (p̂)
〉

= 〈
[√

µs∇f(x̂) +
√
µv̂ + 2µ(x̂− x∗)

v̂ +
√
µ(x̂− x∗)

]
,[

v(t)− v̂
−2
√
µ(v(t)− v̂)

]
〉

=
√
µs〈∇f(x̂), v(t)− v̂〉+

√
µ〈v̂, v(t)− v̂〉

+ 2µ〈x̂− x∗, v(t)− v̂〉 − 2
√
µ〈v̂, v(t)− v̂〉

− 2µ〈x̂− x∗, v(t)− v̂〉 = DET(p̂, t; a).

Taking the absolute value and using the Cauchy-Schwartz
inequality in conjunction with (A.5), we obtain the expression
corresponding to DST.
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• Term VI. From (5),

V (p(t))− V (p̂) =
√
µs(f(x(t))− f(x∗)) +

1

4
‖v(t)‖2

+
1

4
‖v(t) + 2

√
µ(x(t)− x∗)‖2

−√µs(f(x̂)− f(x∗))−
1

4
‖v̂‖2

− 1

4
‖v̂ + 2

√
µ(x̂− x∗)‖2 .

Expanding the third summand (using x(t) = x̂+(x(t)−x̂) and
v(t) = v̂+(v(t)−v̂)) as

∥∥v̂ + 2
√
µ(x̂− x∗)

∥∥2
+2〈v̂+2

√
µ(x̂−

x∗), v(t)−v̂+2
√
µ(x(t)−x̂)〉+

∥∥v(t)− v̂ + 2
√
µ(x(t)− x̂)

∥∥2
,

we obtain after simplification

V (p(t))− V (p̂) =
√
µs(f(x(t))− f(x̂)) (A.6)

+
1

4
(‖v(t)‖2 − ‖v̂‖2) +

1

4
‖v(t)− v̂ + 2

√
µ(x(t)− x̂)‖2

+
1

2
〈v(t)− v̂ + 2

√
µ(x(t)− x̂), v̂ + 2

√
µ(x̂− x∗)〉.

Using (20), we have

〈v(t)− v̂ + 2
√
µ(x(t)− x̂), 2

√
µ(x̂− x∗)〉

= −2
√
µ
√
µst〈∇f(x̂+ av̂), x̂− x∗〉

= −2
√
µ
√
µst〈∇f(x̂+ av̂), x̂+ av̂ − x∗〉

− 2
√
µ
√
µst〈∇f(x̂+ av̂),−av̂〉

≤ −2
√
µ
√
µst
‖∇f(x̂+ av̂)‖2

L
+ 2
√
µ
√
µst〈∇f(x̂+ av̂), av̂〉,

where we have used (A.1d) to derive the inequality. Substitut-
ing this bound into (A.6), we obtain

√
µ

4 (V (p(t)) − V (p̂)) ≤
BET(p̂, t; a). To obtain the ST-expressions, we bound each
remaining term separately as follows. Note that

f(x(t))− f(x̂) ≤︸︷︷︸
(A.1e)

〈∇f(x̂), x(t)− x̂〉+
L2

2µ
‖x(t)− x̂‖2

≤ ‖x(t)− x̂‖ ‖∇f(x̂)‖+
L2

2µ
‖x(t)− x̂‖2

≤ t

2
√
µ
‖2√µv̂ +

√
µs∇f(x̂+ av̂)‖ ‖∇f(x̂)‖

+

√
µst

2
√
µ
‖∇f(x̂+ av̂)‖ ‖∇f(x̂)‖

+
L2

2µ
(
t2

4µ
‖2√µv̂ +

√
µs∇f(x̂+ av̂)‖2

+
µst

2

4µ
‖∇f(x̂+ av̂)‖2

+

√
µst

2

2µ
‖2√µv̂ +

√
µs∇f(x̂+ av̂)‖ ‖∇f(x̂+ av̂)‖),

where we have used (A.5a) to obtain the last inequality. Next,

‖v(t)‖2 − ‖v̂‖2 = ‖v(t)− v̂‖2 + 2〈v(t)− v̂, v̂〉
≤ t2 ‖2√µv̂ +

√
µs∇f(x̂+ av̂)‖2

+ 2t ‖2√µv̂ +
√
µs∇f(x̂+ av̂)‖ ‖v̂‖ ,

where we have used (A.5b) to obtain the last inequality. Using
‖y1 + y2‖2 ≤ 2 ‖y1‖2 + 2 ‖y2‖2, we bound

‖v(t)−v̂+2
√
µ(x(t)−x̂)‖2 ≤ 2 ‖v(t)−v̂‖2+8µ ‖x(t)−x̂‖2

≤ 2t2 ‖2√µv̂ +
√
µs∇f(x̂+ av̂)‖2 + 4

√
µt·

·
(
‖2√µv̂ +

√
µs∇f(x̂+ av̂)‖+

√
µs ‖∇f(x̂+ av̂)‖

)2
,

where we have used (A.5). Finally,

〈v(t)− v̂ + 2
√
µ(x(t)− x̂), v̂〉 ≤ −√µst〈∇f(x̂+ av̂), v̂〉.

Employing these bounds in the expression of BET, we obtain
|BET(p̂, t; a)| ≤ Bq

ST (p̂; a)t2 + Bl
ST(p̂; a)t, as claimed.
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