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Abstract

This paper introduces a control strategy to simultaneously achieve asymptotic stabilization and transient frequency regulation of power
networks. The control command is generated by iteratively solving an open-loop control cost minimization problem with stability and
transient frequency constraints. To deal with the non-convexity of the stability constraint, we propose a convexification strategy that uses
a reference trajectory based on the system’s current state. We also detail how to employ network partitions to implement the proposed
control strategy in a distributed way, where each region only requires system information from neighboring regions to execute its controller.
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1 Introduction

To maintain system security and integrity [Kundur et al., 2004],
power networks are required to operate around their nominal
frequencies in the presence of disturbances, and recover syn-
chronization as disturbances disappear. However, such a tran-
sient frequency requirement faces fundamental challenges due
to the deeper frequency nadir caused by higher penetration of
renewable generators with lower inertia [Milano et al., 2018,
Fang et al., 2018]. This motivates our focus here on develop-
ing methods to actively attenuate transient frequency deviations
while preserving network synchronization.

Literature review: Work in [Chiang, 2011, Dörfler et al., 2013]
investigates power network synchronization conditions and
their relations to system dynamics and initial conditions. How-
ever, such ideal conditions face challenges in practical sce-
narios with desired safe limits that transient frequencies may
violate. On the other hand, various control schemes have been
proposed to enhance transient frequency behavior, including
power dispatch [Alam and Makram, 2006], power system sta-
bilizer [Kundur, 1994], feedback linearization excitation [Mah-
mud et al., 2014], and virtual inertial placement [Borsche et al.,
2015]. Nonetheless, these strategies do not provide guarantees
that the transient frequency will only evolve within safe limits.
To address this point, our previous work [Zhang and Cortés,
2019] has combined Lyapunov stability and invariance analysis
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to propose a distributed controller simultaneously guaranteeing
synchronization and transient frequency safety; however, the
proposed controller does not actively forecast the disturbance
evolution and its impact on transient frequency. As a result, it
might result in significant control efforts that could otherwise
have been avoided if the control action had been exerted earlier,
something we address here through a model predictive control
(MPC) architecture. A related body of work [Venkat et al.,
2008, Mayne et al., 2000, Jia and Krogh, 2002] looks at reduc-
ing control effort while respecting performance requirements,
and investigates distributed MPC for networked systems. How-
ever, the proposed distributed implementations may jeopardize
network stability. Particularly, Jia and Krogh [2002] treats each
subsystem as an independent system by considering the effect
of other subsystems as bounded uncertainty, which compli-
cates obtaining stability guarantees for the whole system. In
fact, Venkat et al. [2008] show that, if each subsystem has no
knowledge of other subsystems’ cost functions [Camponogara
et al., 2002], this leads to a noncooperative game, and the
control input trajectory may even diverge. In addition, some
MPC approaches [Venkat et al., 2008, Nazari et al., 2014] re-
strict the predicted horizon to a single step in order to obtain
distributed strategies, since otherwise the control signal may
require global state or global system parameter information.

Statement of contribution: This paper develops a distributed
receding-horizon control strategy that is able to simultaneously
maintain local asymptotic stability of the system and regulate
transient frequency. Specifically, for any given bus of interest, a
safe frequency region is both invariant and attractive under the
proposed design. For each state, we first formulate a non-convex
finite-horizon open-loop optimal control problem whose solu-
tion is the control trajectory minimizing the overall cost under
stability and transient frequency constraints. We then propose
a reference trajectory technique for convexification. The cen-
tralized closed-loop control signal for each state is defined as

Preprint submitted to Automatica November 11, 2019



the first-step solution of the optimal control problem. To enable
distributed control, we partition the network into different re-
gions and apply the centralized control for each region, while
taking into account the dynamics of transmission lines connect-
ing different regions. The resulting control signal for each bus
only relies on system information of the region to which the
bus belongs to and its neighboring regions.

2 Problem statement

In this section we introduce the model for the power network
dynamics and state the control goals 1 . Consider a power net-
work described by a connected undirected graph, cf. [Bullo
et al., 2009], G = (I ,E ), where I = {1,2, · · · ,n} is the col-
lection of buses and E = {e1,e2, · · · ,em} ⊆I ×I is the col-
lection of transmission lines. For each node i∈I , let Mi ∈R>,
Ei ∈ R>, ωi ∈ R and pi ∈ R denote its inertia, damping coef-
ficient, shifted voltage frequency relative to the nominal fre-
quency, and active power injection, resp. Note that we ex-
plicitly allow some buses to have zero inertia, and we as-
sume that at least one bus possesses strictly positive inertia.
For compactness, define M , diag(M1,M2, · · · ,Mn) ∈ Rn×n,
E , diag(E1,E2, · · · ,En) ∈ Rn×n, ω , (ω1,ω2, · · · ,ωn)

T ∈ Rn

and p , (p1, p2, · · · , pn)
T ∈Rn. For each edge ek ∈ E with ver-

tices i, j, an orientation consists of choosing one node, say i,
to be the positive end of ek and the other vertex, j, to be the
negative end. Let D = (dki) ∈ Rm×n be the incidence matrix
corresponding to the chosen orientation (i.e., dki = 1 if i is the
positive end of ek, dki = −1 if i is the negative end of ek, and
dki = 0 otherwise). Two nodes i and j are neighbors if there is an
edge connecting them, and we let λi j denote the voltage angle
difference between i and j. Let λ ∈Rm denote the collection of
λi j and Yb ∈Rm×m be the diagonal matrix whose kth entry rep-
resents the susceptance of the transmission line ek connecting
bus i and j, i.e., [Yb]k,k = bi j, for k = 1,2, · · · ,m. We partition
buses into I u and I \I u, depending on whether an additional
control input is available to regulate transient frequency behav-
ior. The swing equations [Machowski et al., 2008] describe the
evolution of voltage angle difference and frequencies as

λ̇ (t) = Dω(t), (1a)

Mω̇(t) =−Eω(t)−DTYb sinλ (t)+ p(t)+u(t), (1b)

u(t) ∈ U,

{
u ∈ Rn∣∣ ∀w ∈ [1,n]N, [u]w =

{
uw if w ∈I u

0 otherwise

}
,

where sinλ (t)∈Rm is taken component-wise. For convenience,
we use x , (λ ,ω)∈Rm+n to denote the collection of all states.

1 We use the following notation. N, R, R>, and R> denote the set
of natural, real, positive, and nonnegative real numbers, resp. Vari-
ables are assumed to belong to Euclidean space if not specified oth-
erwise. Let 1n and 0n be the vector of all ones and zeros, resp. De-
note ∂Q as the boundary of a set Q. We let d·e denote the ceil-
ing operator and ‖ · ‖ denote the 2-norm on Rn. For any c,d ∈ N,
let [c,d]N =

{
x ∈ N

∣∣c 6 x 6 d
}

. For µ ∈ {0,1} and amin < amax,
the saturation function is sat(a; µ,amin,amax) = amin if µ = 0 and
a 6 amin, sat(a; µ,amin,amax) = amax if µ = 0 and a > amax, and
sat(a; µ,amin,amax) = a otherwise. For b ∈ Rn, bi denotes its ith en-
try and for A ∈ Rm×n, [A]i and [A]i, j denote its ith row and (i, j)th
element. We denote by A† and range(A) its unique Moore-Penrose
pseudoinverse and column space, resp.

Note that (1) is in fact a set of differential-algebraic equations
if at least one node has zero inertia. In addition, although in the
model we generally consider a time-varying power injection p,
some results developed later depend on a stricter assumption
stated as follows.

Assumption 2.1 (Time-invariant power injection). The power
injection is constant, i.e., p(t) = p∗ ∈ R for all t > 0.

Under this assumption, let ω∞ , ∑
n
i=1 p∗i

∑
n
i=1 Ei

and p̃ = p∗−ω∞E1n.

Consider L,DTYbD the Laplacian matrix of the network graph
and define ‖z‖E ,∞ , max(i, j)∈E |zi−z j| for vector z∈Rn. Then,
one can show [Dörfler et al., 2013, Lemma 2 and inequality
(S17)] that, for the system (1) with u≡ 0n, if

‖L† p̃‖E ,∞ < 1, (2)

then there exists an equilibrium point (λ ∞,ω∞1n)∈Rm+n that is
locally asymptotically stable. Specifically, λ ∞ ∈ϒ and is unique
in its closure ϒcl, where ϒ ,

{
λ
∣∣ |λi|< π/2, ∀i ∈ [1,m]N

}
.

The term ‖L† p̃‖E ,∞ represents the maximum steady-state volt-
age angle difference between adjacent nodes for the linearized
dynamics of (1) by replacing sinλ by λ .

We aim to design state-feedback controllers ui for each bus
i ∈I u that stabilize the system, cooperatively ensure that the
frequencies of a targeted set of buses stay within safe bounds,
and force them to enter the safe bounds if they are initially
outside. We next list these requirements formally.

Safe frequency invariance requirement: Given I ω ⊆ I u, for
each i ∈I ω , let ω i, ω̄i ∈ R with ω i < ω̄i be lower and upper
safe frequency bounds. We require that the interval [ω i, ω̄i] is
invariant and attractive: if ωi(0) ∈ [ω i, ω̄i], then ωi(t) ∈ [ω i, ω̄i]
for every t > 0 and, if ωi(0) 6∈ [ω i, ω̄i], then ωi enters the interval
in finite time, never to leave it afterwards.

Asymptotic stability requirement: We require that the controller
only shapes transients so that the (λ ∞,ω∞1n) remains locally
asymptotically stable for the closed-loop system.

Coordination requirement: Each controller ui, i ∈ I u, should
cooperate with others to lower the overall control effort, as
measured by some given cost function.

Our design strategy is to first set up an open-loop optimization
problem with control cost as objective function, and with fre-
quency and stability requirements as constraints. Then, we de-
sign a centralized controller by solving this optimization prob-
lem in a receding horizon fashion. Finally, the distributed con-
troller comes from partitioning the network into several regions,
and treating each region as an independent network.

3 Open-loop optimal control

We start by formulating an optimization problem whose goal
is to minimize a cost function measuring control input effort
subject to the system dynamics, safe frequency invariance, and
asymptotic stability constraints. As this problem turns out to
be non-convex and non-smooth, we propose a convexification
strategy by generating a set of linear constraints. Later, we build
on this to design centralized and distributed controllers.
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3.1 Open-loop finite-horizon optimal control

We introduce a robust asymptotic stability condition with re-
spect to the open-loop equilibrium point and estimate the re-
gion of attraction. Let G ∈ I denote the collection of node
indexes with strictly positive inertia, and ωg ∈R|G| be the cor-
responding collection of frequencies of these nodes. Consider
the energy function [Zhang and Cortés, 2019, Vu et al., 2018,
Monshizadeh and Persis, 2017]

V (λ ,ωg),
1
2 ∑

i∈G
Mi(ωi−ω

∞)2 +
m

∑
j=1

[Yb] j, ja(λ j,λ
∞
j ),

where a(λ j,λ
∞
j ), cosλ ∞

j −cosλ j−λ j sinλ ∞
j +λ ∞

j sinλ ∞
j . Fur-

thermore, let r̄ , min
λ̃∈∂ϒcl

V (λ̃ ,ω∞1|G|). Roughly speaking,
the first and second terms in V represent the stored kinetic en-
ergy and elastic potential energy, respectively. The following
result is a generalization of [Zhang and Cortés, 2019, Lemma
4.1].

Lemma 3.1 (Robust asymptotic stability condition). For sys-
tem (1), suppose that the solution exists and is unique. For every
i∈I u, let ω̄ thr

i > 0 and ω thr
i < 0 be threshold values satisfying

ω thr
i < ω∞ < ω̄ thr

i . If for every t ∈ R>,

ωi(t)ui(x(t), p(t))6 0, if ωi(t) 6∈ (ω thr
i , ω̄ thr

i ), (3a)

ui(x(t), p(t)) = 0, if ωi(t) ∈ (ω thr
i , ω̄ thr

i ), (3b)

then under Assumption 2.1 and condition (2), (λ ∞,ω∞1n) is
locally asymptotically stable. Furthermore, define

Φ(r),
{
(λ ,ωg)

∣∣ λ ∈ ϒcl, V (λ ,ωg)6 r
}
. (4)

Then for every (λ (0),ωg(0)) ∈ Φ(r) with 0 < r < r̄, it holds
that (λ (t),ωg(t)) ∈ Φ(r) for every t > 0 and (λ (t),ω(t))→
(λ ∞,ω∞1n).

PROOF. We prove that if p(t)≡ p∗, then (3) implies

(ωi(t)−ω
∞)ui(x(t), p∗)6 0, if ωi(t) 6= ω

∞, (5a)
ui(x(t), p∗) = 0, if ωi(t) = ω

∞. (5b)

If ωi(t)> ω̄ thr
i , then (3) is equivalent to asking ui(x(t), p∗)> 0,

which guarantees (5) by noticing ωi(t)−ω∞ > ω̄ thr
i −ω∞ > 0.

A similar argument works when ωi(t)<ω thr
i . Finally, if ωi(t)∈

(ω thr
i , ω̄ thr

i ), then (3) requires ui(x(t), p∗) = 0, ensuring (5).
From [Monshizadeh and Persis, 2017, Theorem 1], one has

V̇ (λ (t),ωg(t)) =−∑
i∈G

Ei(ωi(t)−ω
∞)2−∑

i∈I u/G

Ei(ωi(t)−ω
∞)2

− ∑
i∈I u

(ωi(t)−ω∞)ui(x(t), p∗)6 0, (6)

where ωi(t) with i ∈ I u/G is a function of (λ (t),ωg(t)).
Specifically, by (1b), one has Eiωi(t)=−[DTYb]i sinλ (t)+ p∗i +
ui(t). Furthermore, one has that i) Φ(r) is compact and non-
empty, ii) V (λ ,ωg)> 0 for every (λ ,ωg)∈Φ(r), and the equal-
ity holds only when (λ ,ωg) = (λ ∞,ω∞1|G|). These two prop-
erties, together with (6), imply the convergence of (λ ,ω) to

(λ ∞,ω∞1n) by the LaSalle Invariance Principle [Khalil, 2002,
Theorem 4.4]. 2

Notice that the dependence of the robust asymptotic stability
condition (3) on the equilibrium point (λ ∞,ω∞1n) is limited to
an approximate knowledge of ω∞. This reflects a practical con-
sideration under which the controller should still ensure asymp-
totic stability: although ideally ω∞ is 0 when load and supply
are balanced (i.e., ∑

n
i=1 p∗i = 0), due to imperfect estimation on

the load side and transmission losses, ω∞ tends to slightly de-
viate from 0.

With the stability condition being set, we now are ready to for-
mally introduce the finite-horizon optimal control problem. As
the power injection p may not be precisely predicted a priori,
instead, for every t ∈R>, we consider a piece-wise continuous
signal p f cst

t : [t, t + t̃]→ Rn forecasting its value for the first t̃
seconds starting from t. When convenient, we invoke the fol-
lowing assumption in our technical analysis.

Assumption 3.2 (Forecast reveals true value at current time).
For any t ∈ R>, p f cst

t (t) = p(t).

The open-loop finite-horizon optimal control problem is defined
in (7), where constraints (7a)-(7c) represent system dynamics
and initial state. Notice that we linearize the dynamics in (7b),
which contributes to the convexification of the open-loop opti-
mization with a slight loss of optimality (in Section 4, we show
that employing this linearization for controller design does not
jeopardize the asymptotic stability or safe frequency invari-
ance requirements in the closed-loop system); constraint (7d)
reflects the availability of control signal at each node; con-
straints (7e) and (7f) delimit the control magnitude bounds, in
which ξ ∈ {0,1} indicates the magnitude constraint type, i.e.,
if ξi = 1 for i ∈I u, then the constraint is soft as ui(τ) could
exceed umax

i ∈ R or umin
i ∈ R, but penalized by βi(τ) in the

objective function, and if ξi = 0 then it is a hard constraint;
constraints (7g) and (7h) refer to the safe frequency invariance
requirement, in which

κi(ω0,ξi) =

{
0 if ωi,0 ∈ [ω i, ω̄i] and ξi = 1,
1 otherwise.

(8)

Intuitively, these two constraints require that ωi stays in [ω i, ω̄i]
provided that it is initially inside and the magnitude constraint
on the controller is soft, and penalize through γi if not. The
parameterδi with 0 < δi < ω̄i −ω i is tunable, forcing ωi(τ)
approach the interval [ω i +δi, ω̄i−δ ], and hence enter [ω i, ω̄i]
in finite time; constraint (7i) is the asymptotic stability condition
established in Lemma 3.1, where

Φcont ,
{
(ω,u)

∣∣ (3) holds ∀t ∈ [τ0.τ0 + t̃], ∀i ∈I u} .
Finally, ci,di,ei ∈ R> refer to the weight coefficient on con-
trol effort, control magnitude penalty, and frequency invariance
penalty, resp.

We refer to (7) as Qcont(G ,I u,I ω , p f cst
t ,λ0,ω0,τ0) to empha-

size its dependence on the graph topology, controlled node in-
dexes, transient-frequency-constrained node indexes, forecasted
power injection, initial state, and initial time. If the context is
clear, we use Qcont . We use the same notational logic for other
optimization problems in the rest of the paper.
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(Qcont) min
λ ,ω,u,β ,γ

∑
i∈I u

∫
τ0+t̃

τ0

ciu2
i (τ)+diβ

2
i (τ)dτ + ∑

i∈I ω

∫
τ0+t̃

τ0

eiγ
2
i (τ)dτ

s.t. λ̇ (τ) = Dω(τ), (7a)

Mω̇(τ) =−Eω(τ)−DTYbλ (τ)+ p f cst
t (τ)+u(τ), (7b)

λ (τ0) = sinλ0, ω(τ0) = ω0, (7c)
u(τ) ∈ U, ∀τ ∈ [τ0,τ0 + t̃], (7d)

umin
i −ξiβi(τ)6 ui(τ)6 umax

i +ξiβi(τ), ∀i ∈I u, ∀τ ∈ [τ0,τ0 + t̃], (7e)
βi(τ)> 0, ∀i ∈I u, ∀τ ∈ [τ0,τ0 + t̃], (7f)
ω i−κi(ω0,ξi)(γi(τ)−δ )6 ωi(τ)6 ω̄i +κi(ω0,ξi)(γi(τ)−δ ), ∀i ∈I ω , ∀τ ∈ [τ0,τ0 + t̃], (7g)
γi(τ)> 0, ∀i ∈I ω , ∀τ ∈ [τ0,τ0 + t̃], (7h)
(ω,u) ∈Φcont , (7i)

In practice, a convenient way to approximate the functional
solution for Qcont is by discretization. Specially, here we dis-
cretize the system periodically with time length T ∈ R>, and
denote N , dt̃/Te as the total number of steps. For every
k ∈ [0,N]N, denote λ̂ (k), ω̂(k), û(k), p̂ f cst(k) as the approxima-
tion of λ (τ0 +kT ),ω(τ0 +kT ), u(τ0 +kT ) and p f cst

t (τ0 +kT ),
resp., and let

Λ̂ , [λ̂ (0), λ̂ (1), · · · ,λ (N)], (9a)

Ω̂ , [ω̂(0), ω̂(1), · · · , ω̂(N)], (9b)

P̂ f cst , [p̂ f cst(0), p̂ f cst(1), · · · , p̂ f cst(N−1)], (9c)

Û , [û(0), û(1), · · · , û(N−1)], (9d)

B̂ , [β̂ (0), β̂ (1), · · · , β̂ (N−1)], (9e)

Γ̂ , [γ̂(0), γ̂(1), · · · , γ̂(N)], (9f)

be the collection of voltage angle difference, frequency, pre-
dicted power injection, and control input discrete trajectories,
resp. We formulate the discrete version of Qdisc in (11), where

Φdisc ,
{
(Ω̂,Û)

∣∣ ∀i ∈I u, ∀k ∈ [0,N−1]N, it holds that

ω̂i(k)ûi(k)6 0, if ω̂i(k) 6∈ (ω thr
i , ω̄ thr

i ),

ûi(k) = 0, if ω̂i(k) ∈ (ω thr
i , ω̄ thr

i )
}
.(10)

Note that this set is nonlinear and non-smooth.

3.2 Constraint convexification

The major obstacle to solve Qdisc is dealing with the set Φdisc
in constraint (11h) 2 . To this end, we propose a convexification
method that seeks to identify a subset of Φdisc consisting of only
linear constraints. This method relies on the notion of reference
trajectory, which is a trajectory (Λ̂,Ω̂,Û) of the system state
and input for which there exist B̂ and Γ̂ such that (11) are
satisfied. The next result details this.

2 In fact, the non-smoothness of the set Φdisc makes standard meth-
ods in nonlinear optimization (e.g., interior point method, sequential
quadratic programming, trust region method) occasionally fail to re-
turn even a feasible solution (let along a local optimizer) since they
require the existence of a gradient for every constraint [fmincon func-
tion documentation].

Lemma 3.3 (Convexification of non-convex constraints). For
any reference trajectory (Λ̂ref,Ω̂ref,Û ref), let

Φcvx ,
{
(Ω̂,Û)

∣∣ ∀i ∈I u, ∀k ∈ [0,N−1]N, it holds that

ω̂i(k)> ω̄
thr
i , ûi(k)6 0, if ω̂

ref
i (k)> ω̄

thr
i ;

ω̂i(k)6 ω
thr
i , ûi(k)> 0, if ω̂

ref
i (k)6 ω

thr
i ;

ûi(k) = 0, if ω
thr
i < ω̂

ref
i (k)< ω̄

thr
i

}
. (12)

Then, Φcvx is convex and satisfies /0 6= Φcvx ⊆Φdisc.

PROOF. The non-emptiness holds by simply noticing that
(Ω̂ref,Û ref) ∈Φcvx. We show the inclusion by classifying each
k ∈ [0,N−1]N into three types regarding the value of ω̂ ref

i (k).
If ω̂ ref

i (k) > ω̄ thr
i , then at step k, only the first constraint in

Φcvx is active, which satisfies the first constraint in Φdisc, as
well as the second one trivially, since in this case ω̂i(k) /∈
(ω thr

i , ω̄ thr
i ). Similar analysis holds if ω̂ ref

i (k)6 ω thr
i . Finally, if

ω thr
i < ω̂ ref

i (k) < ω̄ thr
i , then only the last constraint in Φcvx is

active, which satisfies both two constraints in Φdisc. Finally, the
convexity of Φcvx follows by noting that it corresponds to the
intersection of finitely many linear constraints over all i ∈I u

and k ∈ [0,N−1]N. To see this, notice that for each i and k, as
the value of ω̂ ref

i (k) is given a priori by the reference trajec-
tory, one and only one of the three constraints in Φcvx is active,
leading to linearity. 2

In light of Lemma 3.3, given a reference trajectory, we solve a
convexified version of Qdisc, replacing Φdisc by Φcvx,

(Qcvx) min
F̂ ,Ω̂,Û

g(Û , B̂, Γ̂)

s.t. (11a)− (11g) hold, (13a)

(Ω̂,Û) ∈Φcvx. (13b)

Since the convexification reduces the set Φdisc to Φcvx, the
optimal value of Qdisc is less than or equal to that of Qcvx. For
consistency, if the reference trajectory is the optimal solution
of Qdisc, then both problems have the same optimal value.
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(Qdisc) min
Λ̂,Ω̂,Û ,B̂,Γ̂

g(Û , B̂, Γ̂), ∑
i∈I u

N−1

∑
k=0

(
ciû2

i (k)+diβ
2
i (k)

)
+ ∑

i∈I ω

N

∑
k=1

eiγ
2
i (k)

s.t. λ̂ (k+1) = λ̂ (k)+T Dω̂(k),

M(ω̂(k+1)− ω̂(k))/T =−Eω̂(k)−DTYbλ̂ (k)+ p̂ f cst(k)+ û(k), ∀k ∈ [0,N−1]N, (11a)

λ̂ (0) = sinλ0, ω̂(0) = ω0, (11b)
û(k) ∈ U, ∀k ∈ [0,N−1]N, (11c)

umin
i −ξiβi(k)6 ûi(k)6 umax

i +ξiβi(k), ∀i ∈I u, ∀k ∈ [0,N−1]N, (11d)
βi(k)> 0, ∀i ∈I u,∀k ∈ [0,N−1]N, (11e)
ω i−κi(ω0,ξi)(γi(k)−δ )6 ω̂i(k)6 ω̄i +κi(ω0,ξi)(γi(k)−δ ), ∀i ∈I ω , ∀k ∈ [1,N]N, (11f)
γi(k)> 0, ∀i ∈I ω ,∀k ∈ [1,N]N, (11g)

(Ω̂,Û) ∈Φdisc, (11h)

3.3 Generation of reference trajectory

Here we introduce a method to generate the reference trajec-
tory required by the convexification process of Φdisc. Our next
result shows that the discretization (14) of the continuous-time
feedback controller designed in [Zhang and Cortés, 2019, equa-
tion (16)] (which is able to guarantee safe frequency invariant
requirement for the continuous-time system (1)) generates a
valid reference trajectory for the discretized system (11a).

Proposition 3.4 (Generation of reference trajectory). For ev-
ery i ∈ I u and every k ∈ [0,N − 1]N, suppose ω i < ω thr

i <

ω∞ < ω̄ thr
i < ω̄i, and γ̄i, γ

i
∈R>. Let ûref be defined as in (14)

and set Û ref , [ûref(0), ûref(1), · · · , ûref(N−1)]. Let (Λ̂ref,Ω̂ref)
be the sate trajectory uniquely determined by (11a) and (11b)
using ûref as input. Then there exists T̄ ∈ R> such that for any
0 < T 6 T̄ , (Λ̂ref,Ω̂ref,Û ref) is a reference trajectory.

PROOF. From the definition of (Λ̂ref,Ω̂ref,Û ref) one can easily
see that it naturally satisfies constraints (11a)-(11c) and (11h).
We next show that the other constraints hold with each possible
ξ ∈ {0,1}|I u| by pointing out a specific B̂ and Γ̂ associated
with (Λ̂ref,Ω̂ref,Û ref). For any i ∈I u, if ξi = 0, one can easily
check that (11d)-(11e) holds by the definition of ûref

i with a
trivial choice of βi(k)≡ 0. Notice that since we assume that λi
is always 1 if ξi = 0, there always exists γi(k) sufficiently large
such that (11f)-(11g) hold.

If ξi = 1 for some i ∈ I u instead, then one can have βi(k)
sufficiently large to meet (11d)-(11e). Further if ωi,0 6∈ [ω i, ω̄i],
resulting in λi(ω0,ξi) = 1, then one can still choose γi(k) suffi-
ciently large so that (11f)-(11g) hold. Finally, if ωi,0 ∈ [ω i, ω̄i],
then we show that (11f)-(11g) also hold with a trivial choice of
γi(k) = 0 for every k ∈ [1,N]N. We first claim that there exists
c ∈ R> such that, for every k ∈ [0,N−1]N and i ∈I ,

|ω̂ ref
i (k+1)− ω̂

ref
i (k)|6 cT. (15)

Note that x̂ref(k) , (λ̂ ref(k), ω̂ ref(k)) ∈ Rm+n, obtained by
substituting ûref into (11a)-(11b), satisfies x̂ref(k + 1) =
x̂ref(k) + T h(x̂ref(k), p̂ f cst(k)), which correspond to the
Euler approximation of the continuous-time dynamics
ẋref(t) = h(xref(t), p f cst

t (t)). Here, for simplicity, we omit
the explicit expression of h, but one can see that it is Lip-

schitz in its first component, and hence the solution of the
continuous-time dynamics exists and is unique for any t > 0,
and ‖xref(t)‖ 6 r1 for sufficiently large r1 ∈ R>. By [Butcher,
2008, Theorem 212A], there exists c1 ∈ R> such that

‖xref(τ0 + kT )− x̂ref(k)‖6 c1T, ∀k ∈ [0,N−1]N.

Further, the Lipschitz property of h and the uniform bound-
edness of xref(t) imply that there exists r2 ∈ R> such that
‖ẋref(t)‖ 6 r2 for any t > τ0. Therefore, it holds for all k ∈
[0,N−1]N and all i ∈I that

|ω̂ ref
i (k+1)− ω̂

ref
i (k)|6 ‖x̂ref(k+1)− x̂ref(k)‖

6 ‖x̂ref(k+1)− xref(τ0 +(k+1)T )‖+‖x̂ref(k)− xref(τ0 + kT )‖
+‖xref(τ0 +(k+1)T )− xref(τ0 + kT )‖

6 2c1T +‖
∫ (k+1)T

kT
ẋref(τ)dτ‖

6 2c1T +
√

m+n
∫ (k+1)T

kT
‖ẋref(τ)‖dτ = (2c1 + r2

√
m+n)T.

Hence, (15) follows by letting c , 2c1 + r2
√

m+n.

Now we first prove (11f) holds for any i∈I u such that Mi = 0.
For every k ∈ [0,N], let

ϑi(k), vi(k)+Eiω̂
ref
i (k)

= ∑
j: j→i

b jiλ̂
ref
ji (k)− ∑

l:i→l
bil λ̂

ref
il (k)+ p̂ f cst

i (k),

and note that ϑi(k) does not depend on ω̂ ref(k). Now, from the
system dynamics, for each i ∈I u such that Mi = 0,

0 = ϑi(k)−Eiω̂
ref
i (k)+ ûref

i (k), (16)

and one can check that (16) possesses three possible solu-
tions: a) ω̂ ref

i (k) = ϑi(k)/Ei with ω̂ ref
i (k) < ω̄ thr

i , b) ω̂ ref
i (k) =

ϑi(k)/Ei with ω̄ thr
i 6 ω̂ ref

i (k) 6 ω̄i, and c) ω̂ ref
i (k) = ω̄i with

ω̂ ref
i (k)6 ϑi(k)/Ei. Now it is easy to see that, depending on the

value of ϑi(k)/Ei, the solution of ω̂ ref
i (k) is unique and always

satisfies ω̂ ref
i (k)6 ω̄i.

At last, we prove (11f) holds for any i ∈I u such that Mi > 0
by induction, i.e., for any i ∈ I ω , if ω̂ ref

i (k) ∈ [ω i, ω̄i] for

5



ûa
i (k),


min{0, γ̄i(ω̄i−ω̂ ref

i (k))
ω̂ ref

i (k)−ω̄ thr
i
− vi(k)} if ω̂ ref

i (k)> ω̄ thr
i ,

0 if ω thr
i 6 ω̂ ref

i (k)6 ω̄ thr
i ,

max{0, γ i(ω i−ω̂ ref
i (k))

ω thr
i −ω̂ ref

i (k)
− vi(k)} if ω̂ ref

i (k)< ω thr
i ,

∀i ∈I ω , ∀k ∈ [0,N−1]N, (14)

ûref
i (k), sat(ûa

i (k);ξi,umin
i ,umax

i ), ∀i ∈I ω , ∀k ∈ [0,N−1]N,

ûref
i (k), 0, ∀i ∈I \I ω , ∀k ∈ [0,N−1]N,

vi(k), ∑
j: j→i

b jiλ̂
ref
ji (k)− ∑

l:i→l
bil λ̂

ref
il (k)+ p̂ f cst

i (k)−Eiω̂
ref
i (k), ∀i ∈I ω , ∀k ∈ [0,N−1]N.

some k ∈ [0,N − 2]N, then it also holds by replacing k by
k+ 1. Note that by (15), if ω̂ ref

i (k) ∈ [ω i + cT, ω̄i− cT ], then
ω̂ ref

i (k+1) ∈ [ω i, ω̄i]. Therefore, we only need to consider the
case when ω̂ ref

i (k) ∈ (ω̄i− cT, ω̄i] and ω̂ ref
i (k) ∈ (ω i,ω i + cT ].

For simplicity, we only prove the first case (the other holds sim-
ilarly). Without loss of generality, we choose T small enough
so that cT < ω̄i− ω̄ thr

i for every i ∈ I ω , ensuring ω̂ ref
i (k) >

ω̄ thr
i . From the system dynamics, one has Miω̂

ref
i (k + 1) =

Miω̂
ref
i (k)+T

(
vi(k)+ ûref

i (k)
)
. Substituting (14), one has

Miω̂
ref
i (k+1)6 Miω̂

ref
i (k)+T

γ̄i(ω̄i− ω̂ ref
i (k))

ω̂ ref
i (k)− ω̄ thr

i

6 Miω̂
ref
i (k)+T

γ̄i(ω̄i− ω̂ ref
i (k))

ω̄i− cT − ω̄ thr
i

.

By substituting b( j), ω̂ ref
i ( j)− ω̄i for j = k and k+1 into the

above inequality, it holds

Mib(k+1)6
(

Mi−
T γ̄i

ω̄i− cT − ω̄ thr
i

)
b(k).

Since b(k) 6 0, let T̄ be such that Mi− T̄ γ̄i
ω̄i−cT̄−ω̄ thr

i
> 0. Then,

b( j+1)6 0 for 0 < T 6 T̄ , i.e., if ω̂ ref
i (k)6 ω̄i, then ω̂ ref

i (k+
1)6 ω̄i, and the induction holds. 2

Notice that a small sampling length T reduces the discretization
gap between Qcont and Qdisc, as well as guarantees the qual-
ification of (F̂ ref,Ω̂ref,Û ref) in Proposition 3.4 as a reference
trajectory. On the other hand, the number of constraints appear-
ing in Qcvx grows linearly with respect to 1/T . Hence, there is
a trade-off among discretization accuracy, reference trajectory
qualification, and computational complexity.

4 From centralized to distributed closed-loop receding
horizon feedback

In this section we design a feedback controller in a reced-
ing horizon fashion by having the input at a given state
(λ (t),ω(t)) at time t with a forecasted power injection p f cst

t
be the first step of the optimal control input trajectory of
Qcvx(G ,I u,I ω , P̂ f cst ,λ (t),ω(t), t). We first consider a cen-
tralized implementation, where a single operator gathers global
state information, computes the control law, and broadcasts it.
Building on it, we propose a distributed strategy, where several
independent operators are responsible for computing control
signals within its own region using only regional information.

4.1 Centralized control with stability and frequency invari-
ance

Formally, at time t, the centralized controller measures the cur-
rent output ( f (t),ω(t)) and forecasts a power injection profile
p f cst

t (τ) with τ ∈ [t, t+ t̃] as well as its corresponding discretiza-
tion P̂ f cst , cf. (9c). Let (Λ̂∗cvx,Ω̂

∗
cvx,Û

∗
cvx) be the optimal solution

of Qcvx(G ,I u,I ω , P̂ f cst , f (t),ω(t), t). The centralized control
law is then given by

u(x(t), p f cst
t ), û∗cvx(0), (17)

where u∗cvx(0) is the first column of Û∗cvx. The next result states
that the controller is able to stabilize the system without chang-
ing its open-loop equilibrium point, and, at the same time, guar-
antees safe frequency region invariance and attractivity.

Theorem 4.1 (Centralized control with stability and frequency
constraints). Under Assumption 3.2 and for any initial state
(λ (0),ω(0)), the closed-loop system (1) with controller (17)
and sufficiently small sampling length T satisfies:

(i) For any i ∈ I u with any ξi ∈ {0,1} and any t ∈ R>,
ui(x(t), p f cst

t ) = 0 if ωi(t) ∈ (ω thr
i , ω̄ thr

i );
(ii) For any i∈I ω with ξi = 1, if ωi(0)∈ [ω i, ω̄i], then ωi(t)∈

[ω i, ω̄i] for any t > 0.

Furthermore, if in addition Assumption 2.1 and condition (2)
hold, and (λ (0),ω(0)) ∈Φ(r) with some 0 6 r < r̄, then:

(iii) For any ξ ∈ {0,1}|I u|, (λ ∞,ω∞1n) is locally asymptot-
ically stable, (λ (t),ω(t)) ∈ Φ(r) for every t > 0, and
(λ (t),ω(t))→ (λ ∞,ω∞1n);

(iv) For any i ∈ I u with any ξi ∈ {0,1}, ui(x(t), p f cst
t ) con-

verges to 0 in finite time;
(v) For any i ∈I ω with ξi = 1, if ωi(0) 6∈ [ω i, ω̄i], then there

exists a finite t1 such that ωi(t) ∈ [ω i, ω̄i] for any t > t1.

PROOF. We first show that u is well-defined by proving that
û∗cvx(0) exists and is unique. Notice that (Λ̂ref,Ω̂ref,Û ref) defined
in Proposition 3.4 always qualifies as a reference trajectory for
sufficiently small T . Hence the feasible set of Qcvx is non-empty,
and thus there exists at least one optimal solution. Unique-
ness follows from the strict convexity of the objective func-
tion. For (i), note that in Qcvx(G ,I u,I ω , P̂ f cst ,λ (t),ω(t), t),
if ωi(t) ∈ (ω thr

i , ω̄ thr
i ) for some i ∈I u, then by (13b) and the

fact that ω̂ ref
i (0) = ωi(t), one has û∗i,cvx(0) = 0, and hence the

statement follows by (17).
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The statement in (ii) is equivalent [Zhang and Cortés, 2019,
Lemma 4.3] to

ω̇i(t)6 0, if ωi(t) = ω̄i, (18a)
ω̇i(t)> 0, if ωi(t) = ω i. (18b)

For simplicity, here we only prove (18a). Since (Λ̂∗cvx,Ω̂
∗
cvx,Û

∗
cvx)

is feasible for Qcvx(G ,I u,I ω , P̂ f cst , λ (t),ω(t), t), it satis-
fies constraint (11). Extracting the ith equation with k = 1
from (11a), it holds

Miω̂
∗
i,cvx(1) = Miω̂

∗
i,cvx(0)+T

{
−Eiω̂

∗
i,cvx(0)− [DTYb]iλ̂

∗
cvx(0)

+ p̂ f cst
i (0)+ û∗i,cvx(0)

}
. (19)

Note first, by (11b), λ̂ ∗cvx(0) = sinλ (t) and ω̂∗i,cvx(0) = ωi(t);

secondly, ui(x(t), p f cst
t ) = û∗i,cvx(0); thirdly, p̂ f cst

i (0), p f cst
i,t (t),

which by assumption equals pi(t); fourthly, by (11f), ω̂∗i,cvx(1)6
ω̄i. These four facts imply that, when ωi(t) = ω̄i,

−Eiω̄i(t)− [DT ]iYb sinλ (t)+ pi(t)+ui(x(t), p f cst
t )6 0. (20)

From (1b), one sees that (20) is exactly (18a), concluding our
reasoning.

To prove statement (iii), since (Λ̂∗cvx,Ω̂
∗
cvx,Û

∗
cvx) ∈ Φcvx, by

Lemma 3.3, one has (Λ̂∗cvx,Ω̂
∗
cvx,Û

∗
cvx) ∈ Φdisc, which further

implies that for every i ∈I u,

ω̂
∗
i,cvx(0)û

∗
i,cvx(0)6 0, if ω̂

∗
i,cvx(0) 6∈ (ω thr

i , ω̄ thr
i ),

û∗i,cvx(0) = 0, if ω̂
∗
i,cvx(0) ∈ (ω thr

i , ω̄ thr
i ).

Since ω̂∗i,cvx(0) = ωi(t), together with the definition of con-
troller (17) and Lemma 3.1, it holds that the closed-loop system
is asymptotically stable.

To prove statement (iv), since we have already shown the con-
verge of (λ (t),ω(t)), it holds that for arbitrarily small δ ∈R>,
there exists t̃ ∈ R> such that |ωi(t)−ω∞|< δ for any i ∈I u

at any t > t̃. Let δ , mini∈I u{min(ω̄ thr
i −ω∞,ω∞−ω thr

i )}> 0.
Now consider any t > t̃, one has ωi(t) ∈ (ω thr

i , ω̄ thr
i ), which, by

statement (i), implies ui(x(t), p f cst
t ) = 0.

Finally, to prove statement (v), by (iii), since every ωi ultimately
converges to ω∞, it must first enter [ω i, ω̄i], which, by (ii),
cannot leave the safe region afterwards. 2

Remark 4.2 (Independence of stability on prediction model).
Since the prediction model (11a) is linearized and discretized
based on the true nonlinear dynamics (1), it naturally brings
state prediction error into the feedback control design; how-
ever, this does not jeopardize closed-loop asymptotic stability
because we impose the stability constraint (13b) which is in-
dependent of the prediction model. That being said, the model
mismatch could lead to loss of optimality. •

Theorem 4.1(v) states the finite-time recovery of frequency
property to the safe interval within time t1. However, it is chal-
lenging to derive an analytical expression for how depends on
the design parameters (e.g., ci, di, ei and γi). A basic observa-
tion is that, since ei represents the penalty coefficient of the pre-
dicted frequency violation in the objective function in (Qcvx),

larger ei yields faster convergence from outside the safe inter-
val, leading to smaller t1.

Note that to compute the centralized control signal in (17), the
operator should complete the following steps at every time:
a) collect state information and forecast power injection of the
entire network, b) determine the optimal trajectory Û∗cvx by solv-
ing Qcvx, and c) broadcast the control signals to the correspond-
ing controllers. The time to complete any of these three steps
grows with the size of the network, which motivates the devel-
opments of our next section.

4.2 Distributed control using regional information

Here we describe our approach to design a distributed control
strategy that takes advantage of cooperation to optimize control
effort while ensuring stability and frequency invariance. The
idea is to divide the power network into regions, and have each
controller make decisions based on the state and power injection
prediction information within its region. The network partition
relies on the following assumption.

Assumption 4.3 (Controlled nodes in induced subgraphs). Let
Gβ = (Iβ ,Eβ ), β ∈ [1,d]N be induced subgraphs of G (i.e.,
Iβ ⊆I , Eβ ⊆ E , and (i, j) ∈ Eβ if (i, j) ∈ E with i, j ∈Iβ ).
We assume that each controlled node is contained in one and
only one region, i.e.,

I u ⊆
d⋃

β=1

Iβ , (21a)

Iα

⋂
Iβ

⋂
I u = /0, ∀α,β ∈ [1,d]N with α 6= β . (21b)

The induced subgraphs represent the regions of the network.
Our distributed control strategy consists of implementing the
centralized control for every induced subgraph Gβ , where for
every line (i, j) ∈ E ′

β
⊆Iβ × (I \Iβ ) connecting Gβ and the

rest of the network, we treat its power flow fi j(τ) as an external
power injection whose forecasted value is a constant equaling
its current value fi j(t) for τ ∈ [t, t + t̃]. Formally,

p f cst, f
t,β ,i (τ), ∑

j→i
(i, j)∈E ′

fi j(t)− ∑
i→ j

(i, j)∈E ′

fi j(t), ∀τ ∈ [t, t + t̃], (22)

as the forecasted (starting from the current time t) power flow
from transmission lines in E ′

β
injecting into node i ∈ Iβ . Let

p f cst, f
t,β : [t, t+ t̃]→R|Iβ | be the collection of all such p f

t,β ,i’s with

i ∈Iβ . Also, let p f cst
t,β : [t, t+ t̃]→R|Iβ | be the collection of all

p f cst
t,i ’s with i ∈ Iβ , and denote p f cst,o

t,β , p f cst, f
t,β + p f cst

t,β as the

overall forecasted power injection for Gβ . Denote P̂ f cst,o
β

as its

discretization. Define I u
β
, I u⋂Iβ (resp. I ω

β
, I ω

⋂
Iβ )

as the collection of nodes within Gβ with available controllers
(resp. with frequency constraints). Let ( fβ ,ωβ )∈R|Iβ |+|Eβ | be
the collection of states within Gβ .

Similarly to (17), let (Λ̂∗cvx,β ,Ω̂
∗
cvx,β ,Û

∗
cvx,β ) be the optimal so-

lution of Qcvx(Gβ ,I
u

β
,Gβ , P̂

f cst,o
β

, fβ (t),ωβ (t), t). The control
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law is given by

ui(x(t), p f cst
t ), û∗i,cvx,β (0), ∀i ∈I u, (23)

where u∗i,cvx,β (0) is the ith entry of u∗cvx,β (0) (the first column
of Û∗cvx,β ).

To implement the controller (23) in a distributed fashion, each
region Gβ with β ∈ [1,d]N, independently of the rest, measures
system information within itself and power flows across its
boundary. After this, each region solves its own optimization
problem Qcvx(Gβ ,I

u
β
,Gβ , P̂

f cst,o
β

, fβ (t),ωβ (t), t) and broad-
casts the solution û∗i,cvx,β (0) to each node i ∈ I u within Gβ .
The next result details the properties of this strategy.

Proposition 4.4 (Distributed control with stability and fre-
quency constraints). Given power injection p and any initial
state ( f (0),ω(0)) ∈ Γ, under Assumptions 3.2 and 4.3 with
sufficiently small sampling length T , the following statements
hold for the closed-loop system (1) under controller (23):

(i) For any i ∈ I u with any ξi ∈ {0,1} and any t ∈ R>,
ui(x(t), p f cst

t ) = 0 if ωi(t) ∈ (ω thr
i , ω̄ thr

i );
(ii) For any i∈I ω with ξi = 1, if ωi(0)∈ [ω i, ω̄i], then ωi(t)∈

[ω i, ω̄i] for any t > 0.

Furthermore, if in addition Assumption 2.1 and condition (2)
hold, and (λ (0),ω(0)) ∈Φ(r) with some 0 6 r < r̄, then:

(iii) (λ ∞,ω∞1n) is locally asymptotically stable, (λ (t),ω(t))∈
Φ(r) for every t > 0, and (λ (t),ω(t))→ (λ ∞,ω∞1n);

(iv) For any i ∈ I u with any ξi ∈ {0,1}, ui(x(t), p f cst
t ) con-

verges to 0 within a finite time;
(v) For any i ∈I ω with ξi = 1, if ωi(0) 6∈ [ω i, ω̄i], then there

exists a finite t1 such that ωi(t) ∈ [ω i, ω̄i] for any t > t1.

PROOF. First notice that each ui is well-defined, as by As-
sumption 4.3, for every i ∈I u, ui is assigned to one and only
one subgraph, and hence û∗i,cvx,β (0) is determined uniquely by a

single Qcvx(Gβ ,I
u

β
,Gβ , P̂

f cst
β

,λβ (t),ωβ (t), t). The proofs of all
statements follow similar arguments as the ones in Theorem 4.1.
For statement (ii), similar to the way we have (20), it holds that
when ωi(t) = ω̄i, −Eiω̄i(t)− [DT

β
]i fβ (t)+ p f cst, f

t,β ,i (t)+ pi(t)+

ui(x(t), p f cst
t ) 6 0, where Dβ is the incidence matrix for Gβ .

Notice that this inequality is equivalent to (20) as [DT
β
]i fβ (t)+

p f cst, f
t,β ,i (t) = −[DT ]i f (t) by (22), implying frequency invari-

ance. 2

Although the statements in Theorem 4.1 and Proposition 4.4
are similar, their corresponding controllers (17) and (23) are
in general not equivalent. To see this point, note that each ui
with i ∈I u defined in (17) is a function of the entire system
information; however, each ui in (23) only depends on local in-
formation within the region node i belongs to. Such a local de-
pendence allows each region to independently compute its own
optimization problem, which is of a size significantly smaller
than the global optimization. The regional partition, however,
induces less cooperation among different regions (this is illus-
trated in the simulations below).

5 Simulations

We first illustrate the performance of the distributed controller
in the IEEE 39-bus power network displayed in Fig. 1. We take
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Figure 1. IEEE 39-bus power network.

the values of initial power injection pi(0), susceptance bi j, and
rotational inertia Mi from the Power System Toolbox [Cheung
et al., 2009], where nodes 30 to 39 (as generators) possess
strictly positive inertia, and the remaining 29 nodes have no
inertia. The damping parameter is Ei = 1 for all buses. The
initial state (λ (0),ω(0)) is chosen to be the equilibrium with
respect to the initial power injections. Let I ω = {30,31} be
the two generators with transient frequency requirements. As
shown in Fig. 1, we assign each of them a region containing its
2-hop neighbors. Let I u = {3,7,25,30,31} be the collection
of nodal indexes with controllers. Notice that Assumption 4.3
holds in this scenario. To set up the optimization problem Qcvx
so as to define our controller (23), for every i ∈ I u, we set
γ̄i = γ

i
= 1 required in (14), ci = 2 if i ∈ I ω and ci = 1 if

i ∈I u\I ω , T = 0.001s. As a trade-off between computation
complexity and prediction horizon, we select N = 150 so that
t̃ = 0.15s. For simplicity, for every i∈I u, let ξi = 1 and di = 0,
i.e., we impose neither hard nor soft constraints on the control
signal amplitude, and therefore, there is no need to specify umin

i
and umax

i . For every i ∈ I ω , let ei = 500, ω̄i = −ω i = 0.2Hz
and ω̄ thr

i = −ω thr
i = 0.1Hz. The nominal frequency is 60Hz,

and hence the safe frequency region is [59.8Hz, 60.2Hz]. We
take p f cst

t (τ) = (1+ τ − t)p(τ) for every τ ∈ [t, t + t̃], that is,
the forecasted power injection error p f cst

t (τ)− p(τ) satisfies
Assumption 3.2, and grows linearly in time.

(a) (b) (c)

Figure 2. Plot (a) shows the frequency trajectories of generators 30
and 31 without the controller, going beyond the lower safe frequency
bound. With the centralized controller, plot (b) and (c) show the
trajectories of the control inputs and frequency within each region.

We show that the proposed controller is able to maintain the
targeted generator frequencies within the safe region, provided
that these frequencies are initially in the safe region. We per-
turb all non-generator nodes by a sinusoidal power injection
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whose magnitude is proportional to the corresponding node’s
initial power injection. Specifically, for every i∈ {1,2, · · · ,29},
let pi(t) = (1+ δ (t))pi(0), where δ (t) = 0.25sin(πt/20) for
t < 20, and δ (t) = 0 for t > 20. For i ∈ {30,31, · · · ,39}, let
pi(t) ≡ pi(0). Fig. 2(a) shows the open-loop frequency re-
sponses of the two generators without the controller. One can
see that both trajectories exceed the lower bound around 8s.
With the distributed control, Fig. 2(b) and (c) show the fre-
quency and control input responses in the left-top region and
left-bottom region, resp. Both frequency responses stay within
the safe bound all the time and converge to 60Hz. Also, all
control signals vanish to 0 within 20s. In Fig. 2(b), since we
assign a higher cost weight on u30, and the same weight on
u25 and u3, the latter two have almost overlapping trajectory
with magnitude higher than the first one. On the other hand,
notice that for every i ∈I ω , ui is always 0, while ωi is above
the lower frequency threshold denoted by the dashed line. All
these observations are in agreement with the result of Proposi-
tion 4.4(i)-(iv) (even though the time-varying power injection
used here does not satisfy Assumption 2.1).

To illustrate the dependence of the control signal on the tight-
ness of transient frequency bounds, we perform a simulation
where we replace the frequency bound ω̄i = −ω i = 0.2Hz
by ω̄i = −ω i = 0.1Hz and ω̄i = −ω i = 0.05Hz for every i ∈
I ω . Also, we choose ω̄ thr

i =−ω thr
i = ω̄i/2 in each case. Fig-

ure 3 shows the overall power injection deviation ∆ptotal ,
∑i∈I (pi− pi(0)) and overall control signal utotal , ∑i∈I u ui
for the above three cases, where for clarity, we add super-
scripts A,B,C corresponding to 0.05Hz, 0.1Hz, and 0.2Hz, re-
spectively. Note that the control signal trajectory is larger with
tighter frequency bounds, and its shape mimics the trajectory of
the power injection deviation to compensate for it. The overall
control signal are

∫ 40
0 uA

totaldt = 123.2,
∫ 40

0 uB
totaldt = 90.1, and∫ 40

0 uC
totaldt = 36.5 whereas the power deviation is

∫ 40
0 ∆ptotal =

−161.5, suggesting significantly less required control effort as
the frequency bound becomes looser.

Figure 3. Control signal trajectories with different transient frequency
bounds. As the frequency bounds become tighter, the control signal
behaves more alike the negative of power injection deviation for more
accurate compensation.

Next, we simulate the case where generator frequencies are ini-
tially outside the safe frequency region to show how the con-
troller brings the frequencies back to the safe region. We apply
the same setup used in Fig. 2, but only enable the controller af-
ter t = 10s. The plots in Fig. 4 shows the frequency trajectories
and control trajectories of each region. Note that both two fre-
quency trajectories are lower than 59.8Hz at t = 10s. However,
as the controller becomes active after t = 10s, they come back
to the safe region and never leave, in accordance with Proposi-

tion 4.4(v).

Next, we compare the performance of the centralized con-
troller (17), the distributed controller (23), and the controller
we proposed in [Zhang and Cortés, 2019] in the IEEE 9-bus
network with the regional partition shown in Fig. 5. Since the
control framework in [Zhang and Cortés, 2019] requires that
controllers are available only for nodes with transient frequency
constraints, for fairness, we let I ω = I u = {1,2,3} for con-
trollers (17) and (23) (adding nodes with controllers to I u/I ω

would further enhance their performance). We employ a simi-
lar set-up as in the previous simulation, here with T = 0.01s;
pi(t) ≡ pi(0) for i = 1,2,3, and pi(t) = (1 + δ (t))pi(0) for
i = 4,5, · · · ,9, with the coefficient 0.25 replaced by 1.5 in δ (t)
so that the open-loop frequency responses exceed the safe fre-
quency bounds.

(a) (b)

Figure 4. Frequency and control input trajectories with centralized
controller available only after t = 10s, plot (a) for the region with
generator 30, and plot (b) for the region with generator 31.

G2 G3

G1

8

72

5

4

1

6

9 3

Figure 5. IEEE 9-bus power network with network partition.

Fig. 6 shows the input trajectories of the generators indexed
from 1 to 3 for each of the three controllers. Since all of them
achieve frequency invariance and stabilization, we do not show
the state trajectories. In terms of the overall control cost, the
centralized controller performs the best, due to its capability of
accessing the entire network parameters, state, and power injec-
tion information, and hence all three generators cooperatively
reduce the total cost. This capability is, however, weakened in
the distributed controller, as the controller in each region only
considers its regional optimality, losing inter-region coopera-
tion. The controller from [Zhang and Cortés, 2019], which is not
designed by optimizing control effort, tends to have the largest
cost. On the hand, in terms of implementation, the centralized
controller requires global network information as well as solv-
ing a large-scale optimization problem. In comparison, the dis-
tributed controller only accesses network information within
its region, and solves a small-scale optimization problem. The
controller in [Zhang and Cortés, 2019] can be computed the
fastest and only needs information of 1-hop neighbors.

6 Conclusions

We have proposed centralized and distributed model predictive
controllers for nonlinear power networks that ensure stability

9



(a) (b) (c)

Figure 6. Input trajectories of controlled generators in IEEE 9-bus
example under (a) centralized controller, (b) distributed controller,
and (c) controller proposed in [Zhang and Cortés, 2019]. All of them
guarantee stability and frequency invariance.

and safe frequency invariance. We have shown that the closed-
loop system preserves the equilibrium point and local conver-
gence properties of the open-loop system, and that the control
input vanishes in finite time. Future work will quantify the loss
in optimality incurred by the convexification of the open-loop
optimization problem and the distributed control framework,
study the trade-offs between discretization accuracy, reference
trajectory qualification, and computational complexity, and an-
alyze the effect of network properties on the performance and
characteristics of the proposed controllers.
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