
Anytime Solution of Constrained Nonlinear Programs via Control
Barrier Functions

Ahmed Allibhoy Jorge Cortés

Abstract— This paper considers the problem of designing a
dynamical system to solve constrained nonlinear optimization
problems such that the feasible set is forward invariant and
asymptotically stable. The invariance of the feasible set makes
the dynamics anytime, when viewed as an algorithm, meaning
that it is guaranteed to return a feasible solution regardless of
when it is terminated. Such property is of critical importance
in feedback control since controllers are often implemented as
solutions to constrained programs that must be solved in real
time. The proposed design builds on the basic insight of following
the gradient flow of the objective function while keeping the state
evolution within the feasible set using techniques from the theory
of control barrier functions. We show that the resulting closed-
loop system can be interpreted as a continuous approximation of
the projected gradient flow, establish the monotonic decrease of
the objective function along the feasible set, and characterize the
asymptotic convergence properties to the set of critical points.
Various examples illustrate our results.

I. INTRODUCTION

Optimization problems arise naturally in many engineering
applications and much research effort in applied mathematics
and engineering is devoted to finding efficient methods that
scale well with the problem dimension. This is of particular
importance in control applications since feedback controllers
are often implemented as the solution to an optimization
that must solved in real time. Real-time implementations
create additional challenges in the design of optimization
methods when the program involves constraints on the
decision variables. This is because an algorithm solving the
problem may be terminated at any time, and hence feasibility
must be maintained at all times. This paper addresses these
challenges by adopting a novel control-theoretic approach
that combines continuous-time gradient flows to optimize
the objective function with techniques from control barrier
functions to keep the evolution within the feasible set.

Literature Review: Dynamical systems and optimization
often go hand in hand [1], [2], [3], going back all the
way to the use of gradient descent techniques to solve
unconstrained optimization problems. Of particular relevance
to the present paper are works that have explored the use
of dynamical systems to solve constrained optimization
problems while ensuring that the evolution remains feasible.
For problems involving only equality constraints, [4] employs
differential geometric techniques to design a vector field that
maintains feasibility along the flow, makes the constraint
set asymptotically stable, and whose solutions converge
to critical points of the objective function. The work [5]
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introduces a generalized form of this vector field to deal with
inequality constraints in the form of a differential algebraic
equation (DAE), and explores links between the DAE and
sequential quadratic programming (SQP). Recently, this work
has been extended in [6] to study the region of attraction of
local minima, showing that the introduction of a stochastic
perturbation allows solutions to escape sharp local minimizers.

An alternative approach for solving optimization problems
in continuous time makes use of projected dynamical sys-
tems [7] by projecting the gradient of the objective function
onto the cone of feasible descent directions, see e.g., [8], [9].
Such projection ensures feasibility at all times, which is partic-
ularly useful in applications where the optimization problem
is in a feedback loop with a plant (e.g, providing setpoints,
specifying optimization-based controller). Examples of this
setting are numerous in power systems [10], [11], network
congestion control [12], and transportation [13]. However,
projected dynamical systems are, in general, discontinuous,
which from an analysis viewpoint requires properly dealing
with notions and existence of solutions, cf. [14], and from a
practical viewpoint raises challenges for implementation. Our
approach here uses techniques from safety-critical control,
namely the concept of control barrier function [15], [16].
The typical formulation of a safety-critical control problem
involves a subset of the state-space that represents the region
where the system can operate safety. The concept of control
barrier function allows to identify the range of inputs that keep
the state safe without overconstraining the system evolution,
leading to the synthesis of feedback controller that enforce
forward invariance and asymptotic stability of the safe set.

Statement of Contributions: In this paper we introduce
a continuous-time dynamical system to solve constrained
optimization problems such that feasible set is forward
invariant and asymptotically stable. Our technical approach
demonstrates that the framework of safety-critical control nat-
urally carries over to the setting of constrained optimization.
The basic intuition is to combine the standard gradient flow
to optimize the objective function with the idea of keeping
the collection of feasible points safe. To maintain safety, we
augment the gradient flow with an input whose role is to
make sure the feasible set remains safe. We do this by using
a control barrier function approach to design an optimization-
based feedback controller that ensures forward invariance and
asymptotic stability of the feasible set. The proposed approach
can handle both equality and inequality constraints. We show
that the resulting closed-loop system is locally Lipschitz,
is well defined on an open set containing the feasibility
region, and is a continuous approximation of the projected



gradient flow. Further, we establish that its equilibria exactly
correspond to the critical points of the optimization problem,
the objective function is monotonically decreasing along the
feasible set, and identify conditions for convergence to and
stability of the minimizers. Finally, we illustrate the proposed
approach on both convex and nonconvex example problems.
For reasons of space, the proofs are omitted and will appear
elsewhere.

II. PRELIMINARIES

We introduce here the notation and stability definitions,
and recall basic facts from control barrier functions.

Notation: For v, w ∈ Rn, v ≤ w (resp. v < w) denotes
vi ≤ wi (resp. vi < wi) for all i = 1, 2, . . . , n. Given g :
Rn → Rm, we denote its Jacobian by ∂g

∂x . In case where
m = 1, we denote the gradient by ∇g. We let I0(x) =
{1 ≤ i ≤ m | gi(x) = 0} denote the active constraint
set. The matrix whose rows are ∇gi(x)> for i ∈ I0(x) is
denoted ∂gI(x)

∂x . The Lie derivative of g : Rn → R along
a vector field F : Rn → Rn is LF g : Rn → R defined
by LF g(x) = ∇g(x)>F (x). Given A ∈ Rn×m, the Moore-
Penrose pseudoinverse of A is denoted A†.

Invariance and Stability Notions: We recall basic defini-
tions from the theory of ordinary differential equations [17].
Let F : Rn → Rn be a locally Lipschitz continuous vector
field and consider the dynamical system ẋ = F (x). Local
Lipschitz continuity ensures that for every initial condition
x0 ∈ Rn, there exists a T > 0 and a unique function
x : [0, T ] → Rn such that x(0) = x0 and ẋ(t) = F (x(t)).
The system is forward complete if it admits a solution on the
interval [0,∞) for all initial conditions. The flow map is the
function Φt : Rn → Rn such that Φt(x) = x(t) where x(t)
is the unique solution with x(0) = x.

A point x∗ ∈ Rn such that F (x∗) = 0 is an equilibrium.
A set M⊂ Rn is forward invariant if x ∈M implies that
Φt(x) ∈ M for all t ≥ 0. If M is forward invariant and
x∗ ∈ M is an equilibrium, we say that x∗ is Lyapunov
stable relative to M if for every open set U containing x,
there exists an open set Ũ also containing x such that for all
y ∈ Ũ ∩M, Φt(y) ∈ U ∩M for all t > 0. We say that x∗ is
asymptotically stable relative to M if it is Lyapunov stable
relative toM and Φt(y)→ x∗ as t→∞ for all y ∈ Ũ ∩M.
Analogous definitions of relative stability can be made for
subsets.

Control Barrier Functions: We recall here basic notions
on control barrier functions, and refer the reader to [16] for
further details. Consider the control affine system

ẋ = F0(x) +

m∑
i=1

uiFi(x) (1)

where Fi : Rn → Rn, 0 ≤ i ≤ m are locally Lipschitz.
Let S ⊂ Rn be the safe set, representing the set of states
where the system can operate safely. Let U be an open set
containing S and u : U → Rm a locally Lipschitz feedback
controller. The closed loop system is called safe with respect
to S if S is forward invariant.

Let g : Rn → Rm and define S = {x ∈ Rn | g(x) ≤ 0}.
For α > 0, define the admissible control set at x ∈ Rn as,

K(x) =
{
u ∈ Rm | LF0

g(x)+

m∑
i=1

uiLFig(x)+αg(x) ≤ 0
}
.

If there exists an α > 0 and an open set U containing S
such that K(x) is nonempty for all x ∈ S, we say that g is
a zeroing control barrier function (ZCBF) of S on U . With
a feedback controller u : U → Rm satisfying u(x) ∈ K(x)
for all x ∈ U , it follows that ġ(x(t)) ≤ −αg(x(t)) along
the trajectories of the closed-loop system and the set S is
forward invariant and asymptotically stable.

Remark 2.1: (Standard notion of control barrier function):
The original definition [15] of a ZCBF considers safe sets
parameterized by real-valued functions but can be readily
extended to safe sets parameterized by vector-valued ones.
Additionally, the use of a positive constant α here is a specific
instance of the more general notion of class K function
employed in [15]. •

A similar strategy can be employed to ensure safety when
S is parameterized by both equality and inequality constraints.
Let g : Rn → Rm, h : Rn → Rk and define

S = {x ∈ Rn | g(x) ≤ 0, h(x) = 0}. (2)

For α > 0, the admissible control set at x ∈ Rn is

K(x) =
{
u |LF0g(x) +

m∑
i=1

uiLFig(x) + αg(x) ≤ 0,

LF0h(x) +

m∑
i=1

uiLFih(x) + αh(x) = 0
}
.

For a feedback u : U → Rm satisfying u(x) ∈ K(x), it
follows that ḣ(x(t)) = −αh(x(t)), and ġ(x(t)) ≤ −αg(x(t))
along the solutions of the closed-loop system. Note that when
x(0) ∈ S then h(x(t)) = 0 for solutions of (1) and when
x(0) ∈ U \ S, solutions converge exponentially to S, so
once again S is forward invariant and asymptotically stable.
This is summarized in the following result, which is a slight
adaptation of [16, Theorem 2].

Theorem 2.2 (Safe Feedback Control): Consider the sys-
tem (1) with safety set S. Suppose there exist α > 0 and
an open set U containing S such that K(x) is nonempty for
all x ∈ U . Then a Lipschitz continuous feedback controller
u : U → Rm satisfying u(x) ∈ K(x) renders S forward
invariant and asymptotically stable.

While Theorem 2.2 gives sufficient conditions for the
existence of a safe feedback controller, it does not specify
how to synthesize it. A common technique [15] is to define,
for each x ∈ U , u(x) as the minimum-norm element of K(x).
Alternatively, one may consider

u(x) ∈ argmin
u∈K(x)


∥∥∥∥∥
m∑
i=1

uiFi(x)

∥∥∥∥∥
2
 . (3)

This has the interpretation of finding a controller which
guarantees safety while modifying the drift term in (1) as
little as possible. Because the equations parameterizing K
are affine as a function of u, (3) is a quadratic program in u.



III. PROBLEM FORMULATION

Given f : Rn → R, g : Rn → Rm, h : Rn → Rk, consider
the constrained nonlinear programming problem

minimize
x∈Rn

f(x)

subject to g(x) ≤ 0

h(x) = 0.

(4)

We let M = {x ∈ Rn | g(x) ≤ 0, h(x) = 0} denote the
feasible set. We make the following assumption.

Assumption 1: (Linear Independence Constraint Qualifi-
cation Condition): For all x ∈ Rn, f , g, and h are continu-
ously differentiable and {∇gi(x)}i∈I0(x) ∪ {∇hi(x)}1≤i≤k
is linearly independent.

We call x∗ ∈ Rn a Karash-Kuhn-Tucker (KKT) point if
there exist u∗ ∈ Rm and v∗ ∈ Rp such that

∇f(x∗) +
∂g(x∗)

∂x

>
u∗ +

∂h(x∗)

∂x

>
v∗ = 0 (5a)

g(x∗) ≤ 0 (5b)
h(x∗) = 0 (5c)

u∗ ≥ 0 (5d)

(u∗)>g(x∗) = 0 (5e)

We denote by XKKT the collection of all KKT points. Under
the LICQ condition, the KKT conditions are necessary
conditions for optimality of (4).

Our goal is to design a locally Lipschitz-continuous vector
field F : Rn → Rn such that the feasible set M is forward
invariant and asymptotically stable with respect to ẋ = F (x),
and all trajectories converge to XKKT. This dynamical system
is then an anytime algorithmic solution to (4), meaning that it
is guaranteed to return a feasible solution regardless of when
it is terminated. The anytime property is particularly important
for real-time applications when a feasible solution must be
obtained within a fixed time horizon. Further, the anytime
property is desirable for settings where the optimization
algorithm is in a feedback loop with a dynamical process,
such as in model predictive control.

IV. DESIGN OF SAFE GRADIENT DESCENT

In this section we propose a solution to the synthesis
problem described in Section III. We refer to it as the safe
gradient flow for reasons that will become clear in the
course of its design. Our strategy is to identify a control
barrier function to enforce forward invariance and asymptotic
stability of the feasible setM and then synthesize a feedback
controller using a quadratic program. In the next section, we
analyze the continuity properties of the proposed design. For
clarity of exposition, we first consider the case with only
equality constraints and then we move on to the general case.

A. Design with Only Equality Constraints

Here, we consider the special case where there are only
equality constraints in (4). Consider the control-affine system

ẋ = −∇f(x)−
k∑
i=1

ui∇hi(x) = −∇f(x)− ∂h(x)

∂x

>
u. (6)

One can view this dynamics as the standard gradient flow of
f modified by an “input”. The intuition is that the gradient
direction takes care of optimizing f towards a minimizer
inside the feasible set, and this direction only needs to be
modified if the state gets close to the boundary of the feasible
set. Following Section II, the admissible control set is

K(x) =
{
u ∈ Rk | −L∇fh(x)−

k∑
i=1

L∇hih(x) = −αh(x)
}

=
{
u ∈ Rk | −∂h

∂x
∇f(x)− ∂h

∂x

∂h

∂x

>
u = −αh(x)

}
.

Note that in this case, the admissible control set is a singleton,
and the control can be expressed in closed form as

u(x) = −
(∂h(x)

∂x

∂h(x)

∂x

>)−1(∂h(x)

∂x
∇f(x)− αh(x)

)
.

Remark 4.1: (Connection with the Literature): The prob-
lem with equality constrains has also been considered in [4]
from a differential geometric perspective, and extended in [5],
[6], and in fact, the proposed solution exactly corresponds
to the one here, as we explain next. Under the assumption
that h ∈ Cr and LICQ holds, the feasible set M = {x ∈
Rn | h(x) = 0} is an embedded Cr submanifold of Rn of
codimension k. For each x ∈ M, let TxM = ker ∂h

∂x be
the tangent space to M. The approach in [4] proceeds by
identifying a vector field F : Rn → Rn satisfying: (i) F ∈ Cr
and F (x) ∈ TxM for all x ∈ M; and (ii) ḣ(x) = −αh(x)
along the trajectories of ẋ = F (x). The vector field satisfying
both properties is

F (x) = −
(
I− ∂h(x)

∂x

†
∂h(x)

∂x

)
∇f(x)−α∂h(x)

∂x

†
h(x). (7)

Under Assumption 1, all bounded trajectories of ẋ = F (x)
converge to KKT points, and M is forward invariant and
asymptotically stable. Note that (6) with the controller u∗ is
exactly (7). This provides an alternative interpretation of the
design in [4] from a control-theoretic perspective. •

B. Design with Equality and Inequality Constraints

Here we consider the general case with both inequality
and equality constraints in (4). Consider

ẋ = −∇f(x)− ∂g(x)

∂x

>
u− ∂h(x)

∂x

>
v. (8)

This has the same interpretation as before: the gradient of
f to minimize the function along with additional inputs to
ensure the feasible set M remains safe. In this case, the
admissible control set is

K(x) =
{

(u, v) ∈ Rm × Rk
∣∣∣

− ∂g

∂x

∂g

∂x

>
u− ∂g

∂x

∂h

∂x

>
v ≤ ∂g

∂x
∇f(x)− αg(x)

− ∂h

∂x

∂g

∂x

>
u− ∂h

∂x

∂h

∂x

>
v =

∂h

∂x
∇f(x)− αh(x)

}
.

In the presence of both inequality and equality constraints,
the set of admissible controls is no longer a singleton. To



synthesize a feedback control, we use a controller of the
form (3), resulting in the following quadratic program:[

u(x)
v(x)

]
= argmin
u,v∈K(x)


∥∥∥∥∥∂g(x)

∂x

>
u+

∂h(x)

∂x

>
v

∥∥∥∥∥
2
 (9)

Unlike the case with only equality constraints, the feed-
back controller (9) no longer has a convenient closed-form
expression. However, we remark that the computation of
u∗ and projected gradient methods are similar in terms of
computational complexity. Furthermore, we show in our
ensuing discussion that, under mild assumptions on f, g, h,
the controller (9) is Lipschitz continuous and implemented
over the dynamics (8) makes all trajectories converge to
KKT points while rendering M forward invariant and
asymptotically stable.

Remark 4.2: (Inequality Constraints via Quadratic Slack
Variables): The parallelism outlined in Remark 4.1 between
the differential geometric and control-theoretic approaches
justifies interpreting (8) with the controller (9) as the natural
extension of the treatment in [4] to the case with inequality
and equality constraints. The work [5] pursues a different
approach and instead of dealing with inequality constraints
directly, reduces them to equality constraints by introducing
quadratic slack variables. Formally, one replaces the con-
straints gi(x) ≥ 0 with equality constraints gi(x) = −y2i , and
solves the equality-constrained optimization problem in the
variables (x, y) ∈ Rn+m with a flow of the form (7). While
this method can be expressed in closed-form, there are several
drawbacks with it. First, this increases the dimensionality of
the problem. Second, adding quadratic slack variables also
introduces equilibrium points to the resulting flow which do
not correspond to KKT points of the original problem. •

V. ANALYSIS OF SAFE GRADIENT DESCENT

In this section we analyze the properties of the safe
gradient flow introduced in Section IV. We first show that
the system (8) with the controller (9) can be interpreted as a
continuous approximation of the projected gradient flow. This
alternative interpretation is then used to analyze the stability
and convergence properties of the closed-loop system.

A. Relationship with Projected Gradient Flow

Here we show how the safe gradient descent can be thought
of as a continuous approximation of the projected gradient
flow. The latter is a discontinuous dynamical system obtained
by projecting the gradient of the objective function onto the
set of feasible descent directions.

When Assumption 1 is satisfied and f, g ∈ Cr, the feasible
setM is an embedded Cr submanifold with boundary of Rn,
cf. [18], having codimension k [19, Lemma 3.1.12]. Given
x ∈M, the tangent cone at x is defined as

TxM =
{
ξ ∈ Rn

∣∣∣∣∂h∂xξ = 0,
∂gI
∂x

ξ ≤ 0
}
.

For x ∈M, the projection onto TxM is defined by Πx(ξ) =
arg minξ′∈TxM{‖ξ′ − ξ‖}. For a general set, the projection

operator is a set-valued map, but the fact that TxM is closed
and convex makes the projection onto TxM unique in this
case. The projected gradient flow is the dynamical system

ẋ = Πx(−∇f(x))

= argmin
ξ∈Rn

1

2
‖ξ +∇f(x)‖2

subject to
∂gI(x)

∂x
ξ ≤ 0,

∂h(x)

∂x
ξ = 0.

(10)

In general, this system is discontinuous, so one must resort to
appropriate notions of solution trajectories and establish their
existence, see e.g., [14]. Here, we consider Carathéodory
solutions, which are absolutely continuous functions that
satisfy (10) almost everywhere. When Carathéodory solutions
exist in M, then the local minimizers of (4) are equilibria
of (10). Additionally, the asymptotically stable equilibria are
strict local minimizers, and strict local minimizers are always
stable (though not necessarily asymptotically stable, cf. [20]).

To derive a continuous approximation of (10), let α > 0
and define Fα : Rn → Rn by

Fα(x) = argmin
ξ∈Rn

1

2
‖ξ +∇f(x)‖2

subject to
∂g(x)

∂x
ξ ≤ −αg(x)

∂h(x)

∂x
ξ = −αh(x)

(11)

Note that (11) has a similar form to (10), with the key
difference that Πx(−∇f) is defined only on M whereas,
as we show below, Fα is well defined on an open set
U containing M, allowing for infeasible initial conditions.
Furthermore, under mild regularity assumptions on f, g, and
h, the vector field Fα is Lipschitz continuous.

Proposition 5.1: (Feasibility and regularity of Fα): Sup-
pose f, g and h are continuously differentiable, and their
derivatives are locally Lipschitz. Then

(i) there exists an open neighborhood U containing M
such that (11) is well defined;

(ii) Fα is locally Lipschitz on U .
Remark 5.2: (Global Feasibility of Continuous Approxi-

mation): The open neighborhood U where (11) is well defined
depends on the choice of α. In many examples, we observe
that these parameters can be chosen so that the domain of
the controller is U = Rn. •

Next, we show that Fα approximates the projected gradient
in the sense that, for x ∈ M, Fα(x) → Πx(−∇f(x))
as α → ∞. Intuitively, this is because for inactive con-
straints j /∈ I0(x), one has gj(x) < 0 and hence the jth
inequality constraint in (11),∇gj(x)>ξ ≤ −αgj(x), becomes
∇gj(x)>ξ ≤ ∞ as α→∞ and the constraint is effectively
removed, reducing the problem to (10).

Proposition 5.3: (Fα approximates the projected gradi-
ent): For all x ∈ M, Fα(x) ∈ TxM and limα→∞ Fα(x) =
Πx(−∇f(x)).

Next, we show that the vector field Fα is equivalent
to the closed-loop system resulting from implementing the
controller (9) over the system (8).



Proposition 5.4: (Equivalence between Control Barrier
QP-Controller and Continuous Approximation to Projected
Gradient): Let U be an open set containing M on which
(11) is well-defined. We have the following for all x ∈ U :

(i) If u ∈ Rm and v ∈ Rk are Lagrange multipliers of
(11) corresponding to x, then (u, v) solves (9)

(ii) For any (u, v) that solves (9) we have

Fα(x) = −∇f(x)− ∂g(x)

∂x

>
u− ∂h(x)

∂x

>
v.

We note that because both (10) and (11) are least-squares
problems of the same dimension subject to affine constraints,
the computational complexity of computing either is equiv-
alent. Furthermore, there are several distinct advantages of
Fα as compared to the projected gradient flow. First, by
Proposition 5.1, Fα is locally Lipschitz, so classical solutions
to the dynamics ẋ = Fα(x) are guaranteed to exist, and
the continuous-time flow can be numerically solved using
standard ODE discretization schemes. Secondly, Fα(x) is
defined for initial conditions outside M, allowing us to
guarantee convergence to a local minimizer starting from
infeasible initial conditions.

B. Stability Properties of Safe Gradient Descent

Here we establish the stability properties of the safe
gradient flow. We first show that the that set of equilibria
of Fα is exactly XKKT. This can be seen by comparing the
KKT conditions of (11) with (5)

Proposition 5.5: (Equilibria of Safe Gradient Flow Corre-
spond to KKT Points): Fα(x∗) = 0 if and only if x∗ ∈ XKKT.

Next, by Proposition 5.4 the safe gradient flow satisfies
the conditions in Theorem 2.2, from which it follows that
M is safe.

Proposition 5.6 (Asymptotic Stability of M): The feasi-
ble set M is forward invariant, and M is asymptotically
stable on U .

To show stability, we first note that f is monotonically
decreasing along the safe gradient flow on M.

Lemma 5.7: (Objective function decreases on M): For
x ∈M, LFαf(x) ≤ 0 with equality if and only if x ∈ XKKT.

Finally, by combining the monotonic decrease of the
objective function on the feasible set along with Proposition
5.5, we can show the stability of isolated local minimizers
using f as a Lyapunov function.

Proposition 5.8: (Stability of isolated KKT points):
(i) If x∗ ∈ XKKT is a strict local minimizer of f and an

isolated equilibrium then x∗ is asymptotically stable
relative to M.

(ii) If x∗ is asymptotically stable relative to M, then x∗

is a local minimum.

VI. EXAMPLES

In this section we demonstrate the safe gradient flow on
several example problems. To illustrate the versatility of the
approach outlined here, we consider both convex and non-
convex problems.

A. Quadratic Program

Consider the problem of minimizing a quadratic function
subject to affine constraints:

minimize
x∈R2

[
x1
x2

]> [
0.148 −0.033
−0.033 0.101

] [
x1
x2

]

subject to

−0.756 0.648
0.320 −0.895
0.382 0.263

x ≤
0.659

0.703
0.413


[
−0.908 0.919

]
x = 0.413

(12)

Figure 1(left) shows the phase portrait of the safe gradient
descent, ẋ = Fα(x), with α = 1.0, with the level sets of the
objective function overlaid in green. Figure 1(right) shows a
surface plot of the objective function. In both plots, the blue
shaded region is where the inequality constraints are satisfied.
All trajectories converge to the unique global minimizer.

Fig. 1: (Left) Phase portrait of safe gradient descent with feasible region in
blue and level sets of the objective function overlaid. (Right) Surface plot
of the objective function.

B. Rosenbrock Function With Either Convex or Nonconvex
Constraints

Here we consider two examples with the Rosenbrock
function as objective. First, from [21], let

minimize
x∈R2

(1− x1)2 + 100(x2 − x21)2

subject to x21 + x22 ≤ 2
(13)

Figure 2(left) shows the phase portrait of the safe gradient
descent, ẋ = Fα(x), with α = 1.0 (the parameter α is
irrelevant since there are only inequality constraints). With
this choice of parameter value, the dynamics are well-defined
on U = R2. Figure 2(right) shows a surface plot of the
objective function.

Next, consider from [22]

minimize
x∈R2

(1− x1)2 + 100(x2 − x21)2

subject to (x1 − 1)3 − x2 + 1 ≤ 0

x1 + x2 − 2 ≤ 0

(14)

Figure 3(left) shows the phase portrait of the safe gradient
descent, ẋ = Fα(x), with α = 1.0. With this choice of
parameter value, the dynamics are well-defined on U = R2.
Figure 3(right) shows a surface plot of the objective function.



Fig. 2: (Left) Phase portrait of safe gradient descent with feasible region in
blue and level sets overlaid. Solutions of the flow are plotted in pink, orange,
yellow, green, and blue. (Right) Surface plot of the objective function.

Fig. 3: (Left) Phase portrait of safe gradient descent with feasible region in
blue and level sets overlaid. Solutions of the flow are plotted in pink, orange,
yellow, green, and blue. (Right) Surface plot of the objective function.

Both problems (13) and (14) have a unique strict global
minimizer f(1.0, 1.0) = 0.0. The simulations reveal that the
global minimizer is asymptotically stable. For problem (13),
all trajectories converge to the global minimizer. For prob-
lem (14), stability only holds locally, and its possible for
trajectories with both feasible and infeasible initial conditions
to converge to a local minimizer.

VII. CONCLUSIONS

We have introduced a continuous-time dynamical system
to solve constrained optimization problems while making
the feasible set forward invariant. We showed that the
proposed dynamics is a continuous approximation of the
projected gradient flow, with equilibria corresponding to the
critical points of the optimization problem and monotonically
decreasing the objective function while evolving in the
feasible set. We also established the asymptotic stability of the
feasible set (meaning that the dynamics can be initialized at
infeasible points) and identified conditions that guarantee
convergence to the set of minimizers. Future work will
explore the relationship between the domain of the feedback
controller and the design parameters, study the input-to-state
stability properties of the proposed dynamics, and develop dis-
cretizations and their relationship with discrete-time iterative
methods for nonlinear programming. We also hope to extend
this framework to Newton-like flows for nonlinear programs
which incorporate higher-order information and apply the
results to real-time optimal feedback control problems.
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