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Abstract— This paper investigates the problem of regu-
lating in real time a linear dynamical system to the solution
trajectory of a time-varying constrained convex optimiza-
tion problem. The proposed feedback controller is based on
an adaptation of the saddle-flow dynamics, modified to take
into account projections on constraint sets and output-
feedback from the plant. We derive sufficient conditions on
the tunable parameters of the controller (inherently related
to the time-scale separation between plant and controller
dynamics) to guarantee exponential and input-to-state sta-
bility of the closed-loop system. The analysis is tailored
to the case of time-varying strongly convex cost functions
and polytopic output constraints. The theoretical results
are further validated in a ramp metering control problem in
a network of traffic highways.

I. INTRODUCTION

THIS paper investigates the problem of online optimization
of linear time-invariant (LTI) systems. The objective is to

design an output feedback controller that steers the inputs and
outputs of the plant towards the solution trajectory of a time-
varying optimization problem (see Fig. 1). Such problems cor-
respond to scenarios with cost and constraints that may change
over time to reflect dynamic performance objectives or simply
take into account time-varying unknown exogenous inputs to
the system (henceforth, the term “static” is used to refer to
optimization problems with time-invariant cost and constraints,
and with a constant disturbance in the system). This setting
emerges in many engineering applications, including power
systems, transportation networks, and communication systems.

The design of feedback controllers inspired from opti-
mization algorithms has received significant attention during
the last decade [1]–[10]. While most of the existing works
focus on the design of optimization-based controllers for
static problems [1]–[4], [6], [8], [9], or consider unconstrained
time-varying problems [7], [10], an open research question
is whether controllers can be synthesized to track solutions
trajectories of time-varying problems with input and output
constraints. Towards this direction, this paper focuses on the
synthesis of output-feedback controllers by leveraging online
primal-dual dynamics. In this context, even though [11]–[14]
show that primal-dual dynamics for time-invariant optimiza-
tion problems have an exponential rate of convergence, the
main challenges here are to derive exponential stability results
for problems that are time-varying and where primal-dual
dynamics (and the projected counterpart) are interconnected
with a dynamical system subject to unknown exogenous
disturbances, as in Fig. 1.
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Fig. 1. Online saddle-flow optimizer used as an output feedback
controller for LTI systems subject to unknown time-varying disturbances.

We consider problems with a time-varying strongly convex
cost, time-varying linear constraints on the output, and convex
constraints on the input. We present exponential stability and
input-to-state stability (ISS) analysis of online saddle-flow
controllers interconnected with a stable LTI system (with
unknown exogenous inputs); in particular, we leverage tools
from singular perturbation theory [15] to provide sufficient
conditions on the tunable parameters of the controller (related
to the time-scale separation between plant and controller) to
guarantee exponential stability and tracking of the optimal
solution trajectory.

Prior works. Asymptotic stability results are provided for
static optimization problems using gradient flows in [3], [4],
[6], [8], and semi-global practical results are presented in
[16] for general hybrid model-free controllers; constraints on
the inputs are dealt with projected gradient flows in [17],
[18]. Controllers conceptually related to the continuous-time
Arrow-Hurwicz-Uzawa algorithm are used for static problems
with convex constraints on the system outputs in [1], whereas
saddle-point flows are studied in [2], [8], [9], [19] and [20, Sec.
3]. For time-varying unconstrained optimization problems,
prediction-correction algorithms are used in [7]. On the other
hand, exponential stability results for dynamic controllers
based on gradient flows and accelerated hybrid algorithms
are presented in [10]. When considering constraints on the
output, primal-dual dynamics based on the Moreau envelope
are studied in [5]. In terms of classes of plants, stable LTI
systems are considered in e.g., [5], [6], [10], stable nonlinear
systems in [8], input-linearizable systems in [7], and input
affine nonlinear system in [2]. We also acknowledge recent
works in online implementations of model predictive control
(MPC); see [21], [22].

Contributions. The main contributions of this work can be
summarized as follows: C1) We design an output feedback
controller, inspired on primal-dual dynamics, able to steer the
plant inputs and outputs to the solution trajectory of the time-
varying optimization problem without requiring information or
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measurements of the external disturbances acting on the plant
dynamics. For problems with equality constraints, the primal-
dual controller is designed based on the standard Lagrangian
function. Instead, for problems with inequality constraints,
we employ a regularized Lagrangian, cf. [23], to achieve
exponential stability of the approximate KKT trajectory; C2)
we incorporate input constraints by designing a novel pro-
jected primal-dual output feedback controller; in particular,
our controllers are Lipschitz continuous and have continuously
differentiable trajectories, which simplifies their analysis and
allows us to directly establish additional robustness certifi-
cates; C3) we show that the proposed framework is applicable
to more general LTI systems, including switched systems
with common quadratic Lyapunov functions; and finally, C4)
we apply the proposed controllers to solve ramp metering
problems for the control of traffic systems. We compare our
results with state-of-the-art controllers, including ALINEA
[24] and MPC, illustrating the advantages of our method.

We emphasize that, relative to [5], our sufficient conditions
are markedly easier to check a priori and do not require to
numerically solve a linear matrix inequality. Moreover, our
treatment also accounts for input constraints and does not
require the computation of the Moreau envelope. Relative to,
e.g., [1], [2], [8], [9], we consider time-varying problems and
system disturbances, and we offer exponential stability and
ISS results. Relative to [25], [26], we investigate the stability
of saddle-point flows when interconnected with an LTI system.

The rest of this paper is organized as follows. Section II
presents the problem formulation. Section III develops a
projected primal-dual output feedback controller for problems
with input constraints and output inequality constraints based
on a regularized Lagrangian function. Section IV considers
problems with output equality constraints. Section V presents
numerical results by addressing on a traffic ramp metering
problem. Finally, we present our conclusions in Section VI.1

II. PROBLEM FORMULATION

We consider LTI dynamical systems given by:

ẋ = Ax+Bu+ Ewt,

y = Cx+Dwt,
(1)

where x : R≥0 → Rn is the state, u : R≥0 → Rm is the input,
y : R≥0 → Rp is the output, and t 7→ wt ∈ Rq is an unknown
and time-varying exogenous input or disturbance (the notation
wt emphasizes the dependence on time). Throughout the paper,
we make the following stability assumption on the plant.

Assumption 2.1: There exists positive definite matrices
Px, Qx ∈ Rn×n such that ATPx + PxA = −Qx. Moreover,
the columns of C are linearly independent. �

Under Assumption 2.1, matrix A is Hurwitz and, given
constant vectors ueq ∈ Rm, weq ∈ Rq , system (1) has a unique

1Notation. Given two vectors x and u, we use (x, u) ∈ Rn+m to
denote their concatenation. We use λ̄(P ) and λ(P ) to denote the largest,
and the smallest, eigenvalues of a square matrix P , respectively. We also use
ess sup to denote that essential supremum. Finally, PΩ : Rσ → Rσ denotes
the Euclidean projection of z onto a closed convex set Ω ⊆ Rσ , namely
PΩ(z) := arg minv∈Ω ‖z − v‖. For u ∈ Rn, we denote by [u]i the i-th
entry of u, where i ∈ {1, . . . , n}; for a matrix U ∈ Rn×m, we use [U ]ij
to denote the entry (i, j) of U .

exponentially stable equilibrium point xeq = −A−1(Bueq +
Eweq). Moreover, at equilibrium, the relationship between sys-
tem inputs and outputs is given by the algebraic relationship:

yeq = −CA−1B︸ ︷︷ ︸
:=G

ueq + (D − CA−1E)︸ ︷︷ ︸
:=H

weq. (2)

Given any time-varying and unknown exogenous input wt to
(1), we focus on the problem of regulating the plant to the
solutions of the time-varying optimization problem:

(u∗t , y
∗
t ) ∈ arg min

ū∈U, ȳ∈Rp
φt(ū) + ψt(ȳ) (3a)

s.t. ȳ = Gū+Hwt (3b)
Kt ȳ ≤ et, (3c)

where for all t ∈ R≥0, φt : Rm → R, ψt : Rp → R, t 7→
Kt ∈ Rr×p and t 7→ et ∈ Rr describe a time-varying output
constraint, and U ⊆ Rm is a convex set describing an input
constraint. Problem (3) formalizes a regulation problem, where
the objective is to select an optimal input-output pair (u∗t , y

∗
t )

that minimizes the cost specified by the functions φt and ψt.
We note that, because the cost functions and constraints are
time-varying, the optimal solutions of (3) describe optimal
trajectories. We impose the following regularity assumptions
on the temporal evolution of problem (3).

Assumption 2.2: The following properties hold.
(a) For all t ∈ R≥0, the functions u 7→ φt(u) and y 7→

ψt(y) are continuously differentiable.
(b) The function u 7→ φt(u) is µu-strongly convex, uni-

formly in t.
(c) There exist `u, `y > 0 such that for every u, u′ ∈ Rm

and y, y′ ∈ Rp, ‖∇φt(u) − ∇φt(u′, t)‖ ≤ `u‖u − u′‖,
‖∇ψt(y)−∇ψt(y′)‖ ≤ `y‖y − y′‖, uniformly in t.

(d) For all u ∈ Rm, y ∈ Rp, t 7→ ∇φt(u) and t 7→ ∇ψt(y)
are locally Lipschitz. �

Assumption 2.3: Problem (3) is feasible, and Slater’s con-
dition holds for each t ∈ R≥0. �

Assumption 2.4: The map t 7→ wt is absolutely continuous
and locally Lipschitz. �

Assumption 2.5: The functions t 7→ [Kt]ij and t 7→ [et]i
i = 1, . . . , r, j = 1, . . . , p, are locally Lipschitz. There exists
K ∈ R≥0, ē ∈ R≥0, such that ‖Kt‖ < K̄ and ‖et‖ < ē. �

Under Assumptions 2.2-2.3, the minimizers (u∗t , y
∗
t ) of (3)

are unique for any t ∈ R≥0. Assumptions 2.4–2.5 guarantee
that the exogenous inputs and the constraints of (3) vary
continuously with time. Moreover, we let z∗t := (u∗t , λ

∗
t )

denote the saddle-point of the Lagrangian function associated
with problem (3) or its regularized version, as explained
shortly, and we impose the following regularity requirement.

Assumption 2.6: The (possibly regularized) saddle-point
t 7→ z∗t is absolutely continuous and locally Lipschitz. �

Under Assumptions 2.4 and 2.6, the maps t 7→ wt, t 7→ z∗t
are differentiable almost everywhere (a.e.), and their deriva-
tives are essentially bounded. In what follows, ż∗t and ẇt de-
note the distributional derivatives of z∗t and of wt, respectively.

We focus on the problem of developing a dynamical output
feedback controller with state z := (u, λ) and dynamics:

ż = C(z, y),
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with the following behavior when interconnected in closed-
loop with the system (1); see Fig. 1.

Problem 1: Let ξ := (x, u, λ) denote the plant and con-
troller state, and let ξ∗t := (x∗t , u

∗
t , λ
∗
t ) where (u∗t , λ

∗
t ) is the

saddle-point of (3) and x∗t = −A−1(Bu∗t +Hwt). Design an
output-feedback controller C(z, y) such that for any t0 ∈ R≥0:

‖ξ(t)− ξ∗t ‖ ≤ a‖ξ(t0)− ξ∗t0‖e
−b(t−t0) (4)

+ γz ess sup
τ≥t0
‖ż∗τ‖+ γw ess sup

τ≥t0
‖ẇτ‖,

for all t ≥ t0, and for some a, b, γz, γw > 0. �

The bound (4) establishes exponential tracking of the time-
varying signal ξ∗t , implicitly defined as the solution of (3), up
to an asymptotic error that depends on the temporal variability
of both the optimal trajectory and the unknown disturbance.
Finally, we observe that when the optimization problem is
static and wt is constant, ż∗t = 0 and ẇt = 0 at all times, and
thus (4) boils down to an exponential stability bound.

III. CLOSED-LOOP PROJECTED SADDLE-POINT FLOWS

To solve problem (3), we consider the following augmented
Lagrangian function:

Lν,t(u, λ) :=Lt(u, λ)− ν

2
‖λ‖2, (5)

where Lt(u, λ) = φt(u) + ψt(Gu + Hwt) + λT(Kt(Gu +
Hwt) − et) is the Lagrangian function and ν ∈ R>0 is a
tunable parameter. In what follows, we distinguish between
z∗t = (u∗t , λ

∗
t ) (the unique saddle-point of Lt(u, λ)) and

z∗ν,t := (u∗ν,t, λ
∗
ν,t) (the unique saddle point of (5)). The main

benefit of using an augmented Lagrangian is that it induces a
saddle-point map that is strongly monotone, uniformly in time,
which allows us to prove exponential convergence. However,
the use of an augmented Lagrangian comes at the cost of
shifting the saddle-points of the Lagrangian Lt(u, λ). The
following lemma, adapted from [23, Prop. 3.1], provides a
bound (point-wise in time) for the regularization error.

Lemma 3.1: Let Assumptions 2.2-2.3 hold. For each t ∈
R≥0, the following bound holds:

µu‖u∗ν,t − u∗t ‖2 +
ν

2
‖λ∗ν,t‖2 ≤

ν

2
‖λ∗t ‖2. (6)

In particular, it holds that ‖u∗ν,t − u∗t ‖ ≤
√

ν
2µu
‖λ∗t ‖.

Remark 3.2: Lemma 3.1 asserts that the error induced by
the regularization term is bounded by the norm of the opti-
mal multipliers of the non-regularized problem. Consequently,
when the optimal solution strictly satisfies the constraints, then
λ∗t = 0 and the solution u∗ν,t coincides with u∗t .
To solve Problem 1, we consider the following modification
of the gradients of the augmented Lagrangian:

Lu,t(u, y, λ) := ∇ψt(u) +GT∇φt(y) +GTKT
t λ, (7a)

Lλ,t(y, λ) := Kty − et − νλ, (7b)

where we note that, with respect to the gradients of Lν,t,
in Lu,t and Lλ,t the steady-state map Gu + Hwt has been

Fig. 2. Comparison between trajectories of (9) and of the smooth
projection (8) for a 2-D vector field. Black arrows show the vector field.

replaced by the variable y. Using (7), we propose the following
online projected primal-dual controller for (1), cf. Fig. 1:

εẋ = Ax+Bu+ Ewt, y = Cx+Dwt, (8a)

u̇ = PU
(
u− ηLu,t(u, y, λ)

)
− u, (8b)

λ̇ = PC
(
λ+ ηLλ,t(y, λ)

)
− λ, (8c)

where ε, η > 0 are plant and controller gains that induce a
time-scale separation between the plant and the controller, v 7→
PΩ(v) denotes the Euclidean projection onto the convex set Ω,
and C := Rr≥0. Three important observations on (8b)-(8c) are
in order. First, the proposed controller utilizes instantaneous
output-feedback from the plant. Second, the controller does
not require any knowledge regarding the exogenous distur-
bance wt. Third, even when the LTI system and the saddle-
flow dynamics are stable in an open-loop configuration, the
interconnection (8) is not guaranteed to be stable.

Remark 3.3: We note that the choice of dualizing the con-
straint Kty ≤ et allows us to naturally enforce constraints that
are time-varying. In contrast, when Kty ≤ et is recast as a
convex constraint of the form u ∈ U (by substituting (3b)),
the presence of a time-varying pair (Kt, et) as well as the
lack of knowledge of wt imply that the constraint set becomes
unknown and time-varying (and, even when wt is known, time-
varying projections may be computationally expensive). �

Remark 3.4: Given a closed convex set Ω ⊆ Rσ and a
vector field F : Ω → Rσ , the standard projected dynamical
system [27] associated with F (v) is given by:

v̇ = lim
δ→0+

PΩ(v + δF (v))− v
δ

. (9)

We note that, in general, (9) is a discontinuous dynamical
system. On the contrary, the vector field in (8b)-(8c) is
Lipschitz continuous. For static optimization problems, similar
dynamics have been studied in e.g. [28], [29]. However, to the
best of our knowledge, (8b)-(8c) is the first projected output
feedback controller that is Lipschitz-continuous. �

Fig. 2 provides a representative example of the trajecto-
ries produced by the considered projected output feedback
controllers, and compares them with those generated by a
controller with a discontinuous projection of the form (9).

A. Stability and Tracking Analysis

In this section we characterize convergence properties of (8).
We begin by characterizing the existence of solutions.

Lemma 3.5: Let Assumptions 2.2–2.5 hold. For each ξ0 =
(x0, u0, λ0) ∈ Rn+m+r, there exists a unique solution ξ(t) of
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(8) with ξ(0) = ξ0. Moreover, ξ is continuously differentiable
and maximal.

Proof: This claim follows by noting that: (i) the pro-
jection mapping is globally Lipschitz [28], [29], (ii) under
Assumptions 2.2–2.5, the maps Lu,t(u, y, λ) and Lλ,t(y, λ)
are globally Lipschitz in (u, y, λ) uniformly in t, and locally
Lipschitz with respect to t, and (iii) under Assumption 2.4 the
plant dynamics are locally Lipschitz in t.

Lemma 3.5 guarantees that the trajectories of (8) are contin-
uously differentiable (see Fig. 2). Moreover, since trajectories
are maximal, Lemma 3.5 guarantees that trajectories have no
finite escape time. The latter property is harnessed to prove the
following lemma, which establishes attractivity and forward
invariance of the feasible set (similarly to [29, Thm 3.2]).

Lemma 3.6: Let Assumptions 2.2–2.5 hold. If u(0) 6∈ U
(resp. λ(0) 6∈ C), then the trajectory u (resp. λ) approaches
exponentially the set U (resp. the set C). If u(t0) ∈ U (resp.
λ(t0) ∈ C) for some t0 ≥ 0, then u(t) ∈ U (resp. λ(t) ∈ C)
for all t ≥ t0.

The following lemma establishes a relationship between the
saddle-point of the regularized Lagrangian and the equilibria
of (8). The proof is omitted due to space limitations.

Lemma 3.7: Let Assumptions 2.1-2.5 hold. For any wt ∈
Rq and t ∈ R≥0, let ξeq := (xeq, ueq, λeq) denote an equi-
librium of (8), let (u∗ν,t, λ

∗
ν,t) denote the unique saddle-point

of (5), and let x∗ν,t := −A−1(Bu∗ν,t + Hwt). Then, ξeq is
unique. Moreover, xeq = x∗ν,t, ueq = u∗ν,t, and λeq = λ∗ν,t.

To study the stability properties of (8), we begin by showing
that, when the dynamics of the plant (1) are infinitely fast
(i.e., when (2) is satisfied at all times), the controller (8b)-(8c)
converges exponentially fast to the unique saddle-point of the
regularized Lagrangian, modulo a residual error proportional
to the time-variation of the optimal trajectory z∗t . We recall
that, in what follows, we use the notation z̃ν(t) = z(t)− z∗t ,
where z := (u, λ), and z∗ν,t := (u∗ν,t, λ

∗
ν,t).

Proposition 3.8: Let Assumptions 2.1-2.6 hold, µ :=
min{µu, ν}, ` =:

√
2(K + max{`u + ‖G‖2`y, ν}). If ε = 0

and the controller gain satisfies η < 4µ
`2 , then for any t0 ∈ R≥0:

‖z̃ν(t)‖ ≤ e− 1
2ρz(t−t0)‖z̃ν(t0)‖+

2

ρz
ess sup

τ≥t0
‖ż∗ν,τ‖, (10)

for all t ≥ t0, where ρz = η(µ− η`2

4 ).

The proof is presented in Section III-B. We note that the
rate of convergence ρz can be tuned by properly choosing
the controller gain η. Next, we provide a sufficient condition
on the time-scale separation between the plant dynamics (8a)
and the feedback controller (8b)-(8c) to ensure tracking of
the optimal trajectory. In what follows, we use the compact
notation ξ̃ν(t) = ξ(t)− ξ∗ν,t, where ξ := (x, u, λ), and ξ∗ν,t :=

(−A−1(Bu∗ν,t + Ewt), u
∗
ν,t, λ

∗
ν,t).

Theorem 3.9: Let Assumptions 2.1-2.6 hold, let ` =:√
2(K + max{`u + ‖G‖2`y, ν}) and µ := min{µu, ν}. If

η <
4µ

`2
and ε <

ρzλ(Qx)

4η‖PA−1B‖Ψ
, (11)

where ρz = η(µ− η`2

4 ), Ψ = ρz`y‖C‖‖G‖+
√

2‖C‖(`y‖G‖+
K̄)k0 and k0 = max{2 + η(`u + `y‖G‖2), ‖G‖K̄}, then for
any t0 ∈ R≥0:

‖ξ̃ν(t)‖ ≤
√
κ‖ξ̃ν(t0)‖e− 1

2ρξ(t−t0) +
2

ρz
ess sup

τ≥t0
‖ż∗ν,τ‖

+
4ε‖PA−1E‖

λ(Qx)
ess sup

τ≥t0
‖ẇτ‖, (12)

for all t ≥ t0, where ρξ = 1
2 min

{
2ρz,

1
4ε
λ(Qx)

λ̄(Px)

}
, and κ =

max{ 1
2 , λ̄(Px)}/min{ 1

2 , λ(Px)}.
The proof of Theorem 3.9 is provided in Section III-B. The
result shows that, under a sufficient separation between the
time scales of the plant and the controller, the trajectories of
(8) globally exponentially converge to ξ∗t (which we recall
is the trajectory of the unique saddle-point of the regularized
Lagrangian). Two important observations are in order. First,
the upper bound for ε is an increasing function of λ(Qx)
and ρz , that are interpreted as the convergence rate of the
open-loop plant and of the controller with ε = 0, respectively.
Moreover, the bound is a decreasing function of ‖PxA−1B‖.
Since ‖A−1‖ → 0 when the eigenvalues of A are approaching
the open right complex plane, the latter term takes into account
the margin of stability of the open-loop plant. Second, we note
that the rate of convergence ρξ is governed by the quantities ρz
and ε (as well as matrices Px and Qx), which are interpreted
as the rate of convergence of the controller with ε = 0 and
the rate of convergence of the open-loop plant.

Remark 3.10: The bound (12) depends on two main quan-
tities: ess supτ≥t0 ‖ż

∗
ν,τ‖, which captures the time-variability

of z∗ν,t, and ess supτ≥t0 ‖ẇτ‖, which captures the variation
of the equilibrium of (1) induced by the presence of a time-
varying exogenous input wt. Notably, in case of a static
problem, (12) boils down to the exponential stability result
‖ξ̃ν(t)‖ ≤

√
κ‖ξ̃ν(t0)‖e− 1

2ρξ(t−t0). �

B. Proofs of the Results
In this section, we present the proof of Proposition 3.8 and

Theorem 3.9. For the subsequent analysis, it is convenient to
define the following time-varying map:

Ft(z) :=

[
∇φt(u) +GT∇ψt(Gu+Hwt) +GTKT

t λ
− (K(Gu+Hwt)− e− νλ)

]
. (13)

1) Proof of Proposition 3.8: Recall that z := (u, λ). We note
that, when ε = 0, the dynamics (8) can be rewritten as:

ż = PΩ

(
z − ηFt(z)

)
− z, (14)

where Ω := U × C. Proposition 3.8 leverages this structure as
well as four auxiliary lemmas. Below, Lemma 3.11 follows
directly from [30, Lemma 6] and [13].

Lemma 3.11: Let Assumption 2.2 hold. Then, for any t ≥
0, u, u′ ∈ Rm and y, y′ ∈ Rp, there exist symmetric matrices
Tu,t ∈ Rm×m and Ty,t ∈ Rp×p, which satisfy µuI � Tu,t �
`uI and 0 � Ty,t � `yI , such that ∇Jt(u) − ∇Jt(u′) =
Tu,t(u− u′) and ∇It(y)−∇It(y′) = Ty,t(y − y′).

Although the time-varying matrices Tu,t and Ty,t are a
functions of u, u′ and y, y′, respectively, this result allows
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us to leverage the relationships µuI � Tu,t � `uI and
0 � Ty,t � `yI . Next, we show that Ft(z) is strongly
monotone and globally Lipschitz continuous, uniformly in t.

Lemma 3.12: Let Assumption 2.2 hold. Then, (13) satisfies:

(z − z′)T(Ft(z)− Ft(z′)) ≥ min{µu, ν}‖z − z′‖2, (15)

for all z, z′ ∈ Rm+r, and all t ∈ R≥0.
Proof: By expanding the left-hand side of (15), and by

using Lemma 3.11:

(z − z′)T(Ft(z)− Ft(z′)) = (u− u′)T
(
∇φt(u)−∇φt(u′)

)
+ (u− u′)TGT(∇ψt(Gu+Hwt)−∇ψt(Gu′ +Hwt))

+ ν‖λ− λ′‖2

= (u− u′)T(Tu,t +GTTy,tG)(u− u′) + ν‖λ− λ′‖2

≥ µu‖u− u′‖2 + ν‖λ− λ′‖2 ≥ min{µu, ν}‖z − z′‖2,

which proves the claim.
Lemma 3.13: Let Assumptions 2.2 and 2.3 hold. Then, the

mapping (13) satisfies:

‖Ft(z)− Ft(z′)‖ ≤ `‖z − z′‖, (16)

for all z, z′ ∈ Rm+r, and all t ∈ R≥0, where ` =:√
2 max{`u + `y‖G‖2 +K, ν +K}).

Proof: Using (7), we directly obtain the bounds:

‖Lu,t(u,Gu+Hw, λ)− Lu,t(u′, Gu′ +Hw, λ′)‖
≤ (`u + `y‖G‖2)‖u− u′‖+K‖λ− λ′‖,

‖Lλ,t(Gu+Hw, λ)− Lλ,t(Gu′ +Hw, λ′)‖
≤ K‖u− u′‖+ ν‖λ− λ′‖.

Finally, the claim follows by using the relationship: ‖u−u′‖+
‖λ− λ′‖ ≤

√
2‖z − z′‖.

The following lemma, which is a particular case of [15,
Ch. 4] (see also [26]) will be used to prove Proposition 3.8.

Lemma 3.14: Consider the system ẋ = f(t, x, u), where
f : R≥0×Rn×Rm → Rn is locally Lipschitz in t, x, and u,
and t 7→ u(t) is measurable and essentially bounded. If there
exists a continuously differentiable V : R≥0 × Rn → R s.t.:

a‖x‖2 ≤ V (t, x) ≤ ā‖x‖2, (17a)
d

dt
V (t, x) ≤ −bV (t, x), ∀‖x‖ ≥ b0 > 0, (17b)

hold a.e., then, for all t0 ∈ R≥0 and x(0) ∈ Rn:

‖x(t)‖ ≤
√
ā/a(‖x(t0)‖e− 1

2 b(t−t0) + b0), ∀t ≥ 0. (18)

Using the results above, we now present the proof of
Proposition 3.8. In particular, we show that the function
V (z̃ν) = 1

2‖z(t)− z
∗
ν,t‖2 satisfies the assumptions of Lemma

3.14, where we recall that z̃ν := z − z∗ν,t and we let ẑ :=
PΩ(z − αFt(z)). Expand the derivative along the trajectory
of (14) as:

d

dt
V (z̃ν) = −z̃Tν (z − ẑν)− z̃Tν ż∗ν,t, (19)

where we recall that ż∗ν,t exists a.e.. Next, we recall that the
projection operator is the unique vector PΩ(z) that satisfies:

(v′ − PΩ(v))T(PΩ(v)− v) ≥ 0, for all v′ ∈ Ω. (20)

By using (20) with v′ = z∗ν,t and v = ẑ, we have (z̃ν +
ηFt(z))

T(z− ẑ) ≥ ‖z− ẑ‖2−η(z−z∗ν,t)TFt(z), and thus the
first term in (19) satisfies:

−z̃Tν (z − ẑ) ≤ −‖z − ẑ‖2 − η(ẑ − z∗)TFt(z)
≤ −‖z − ẑ‖2 − η(ẑ − z∗ν,t)T(Ft(z)− Ft(z∗ν,t))
− η(ẑ − z∗ν,t)TFt(z∗ν,t)

= −‖z − ẑ‖2 − ηz̃Tν (Ft(z)− Ft(z∗ν,t))
+ η(z − ẑ)T(Ft(z)− Ft(z∗ν,t))

≤ −‖z − ẑ‖2 + η`‖z − ẑ‖‖z̃ν‖ − ηµ‖z̃ν‖2

≤ −η
(
µ− η`2/4

)
‖z̃ν‖2, (21)

where the second inequality follows by adding and subtracting
η(ẑ−z∗ν,t)TFt(z∗ν,t), the third inequality follows by expanding
ẑ−z∗ν,t = (z−z∗ν,t)−(z−z̃ν) and by using (ẑ−z∗ν,t)TFt(z) ≥
0, the fourth inequality follows from Lemmas 3.12 and 3.13,
and the last inequality follows by using the relationship 2ab ≤
a2 + b2 with a = ‖z − ẑ‖ and b = 1

2α`‖z̃ν‖. By substituting
into (19):

d

dt
V (z̃ν) ≤ −η(µ− η`2

4
)‖z̃ν‖2 + ‖z̃ν‖‖ż∗ν,t‖

≤ −η
2

(µ− η`2

4
)‖z̃ν‖2,

where the last inequality holds when ‖z̃ν‖ ≥
2

η(µ−η`2/4) ess supτ≥t0 ‖ż
∗
ν,τ‖. Finally, the claim follows by

application of Lemma 3.14 with ā = a = 1
2 , b = (µ−η`2/4),

and b0 = 2
η(µ−η`2/4) ess supτ≥t0 ‖ż

∗
ν,τ‖. �

2) Proof of Theorem 3.9: We begin by performing a change
of variables for (8). Let z := (u, λ), x̃ := x + A−1Bu +
A−1Ewt, and

Ft(z, x̃) :=

[
Lu,t(u,Cx̃+Gu+Hwt, λ)
Lλ,t(Cx̃+Gu+Hwt, λ)

]
.

Then, the dynamics (8) can be rewritten as:

ε ˙̃x = Ax̃+ εA−1BSż +A−1Eẇt

ż = PΩ(z − αFt(z, x̃))− z, (22)

where S = [Im, 0], and Ω = U × C. Moreover, we let b :=
η‖C‖(`y‖G‖ + K̄)), and g := 2

√
2‖PA−1B‖k0. To prove

this claim we will show that

U(z̃ν , x̃) := (1− θ)V (z̃ν) + θW (z), (23)

where V (z̃ν) = 1
2‖z(t) − z

∗
ν,t‖2, W (z) = x̃TPxx̃, and θ =

b/(b+ g) satisfies the assumptions of Lemma 3.14. We recall
that z̃ν := z − z∗ν,t and ẑ := PΩ(z − αFt(z)). The time-
derivative of V (t, z) along the trajectory of (22) reads:

d

dt
V (z̃ν) = z̃Tν (ẑ − z)− z̃Tν ż∗ν,t (24)

almost everywhere. The first term satisfies:

zT(ẑ − z) = z̃Tν (PΩ(z − ηFt(z, 0))− z)
+ z̃Tν (PΩ(z − ηFt(z, x̃))− PΩ(z − ηFt(z, 0)))

≤ z̃Tν (PΩ(z − ηFt(z, 0))− z)
+ η‖z̃ν‖‖Ft(z, x̃)− Ft(z, 0)‖

≤ −η(µ− η`2

4
)‖z̃ν‖2 + η‖z̃ν‖‖Ft(z, x̃)− Ft(z, 0))‖,
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where the first inequality follows from the non-expansiveness
of the projection operator, and the second inequality follows
from (21). Moreover, by expanding the terms:

‖Ft(z, x̃))− Ft(z, 0))‖

≤
∥∥∥∥[GT(∇fy(Cx̃+Gu+Hwt)−∇fy(Gu+Hwt)

−KtCx̃

]∥∥∥∥
≤ ‖C‖(`y‖G‖+ K̄)‖x̃‖.

Hence, by recalling the definition of b and ρz , (24) satisfies:
d

dt
V (z̃ν) ≤ −ρz‖z̃ν‖2 + b‖x̃‖‖z̃ν‖+ ‖z̃ν‖‖ż∗ν,t‖

≤ −ρz
2
‖z̃ν‖2 + b‖x̃‖‖z̃ν‖, (25)

where the last inequality holds when ‖z̃ν‖ ≥ 2
ρz

ess sup ‖ż∗ν,t‖.
The time-derivative of W (x̃) along the trajectories of (22):

d

dt
W (z) = ε−1x̃T(ATPx + PxA)x̃

+ 2x̃TPxA
−1BSż + 2x̃TPxA

−1Eẇt

≤ −ε−1λ(Qx)‖x̃‖2 + 2‖PxA−1B‖‖x̃‖‖Sż‖
+ 2‖PxA−1B‖‖x̃‖‖ẇt‖. (26)

By expanding the terms:

‖Sż‖ = ‖S(PΩ(z − ηFt(z, x̃))− z)‖
= ‖S(PΩ(z − ηFt(x, x̃))− z − PΩ(z − ηFt(z∗, 0)) + z∗)‖
≤ η‖Lu,t(u,Cx̃+Gu+Hwt, λ)

− Lu,t(u∗, Gu∗ +Hwt, λ
∗)‖+ 2‖u− u∗‖

≤
√

2 max{2 + η(`u + `y‖G‖2), ‖KtG‖}‖z̃ν‖
+ η`y‖C‖‖G‖‖x̃‖,

where the first inequality follows from the non-expansiveness
of the projection operator and the second inequality follows
from Assumption 2.2. By recalling the definition of g, letting
d = 2η`y‖PA−1B‖‖C‖‖G‖, by substituting into (26):

d

dt
W (x̃) ≤ −ε−1λ(Qx)‖x̃‖2 + d‖x̃‖2

+ g‖x̃‖‖z̃ν‖+ 2‖PxA−1B‖‖x̃‖‖ẇt‖

≤ −λ(Qx)

2ε
‖x̃‖2 + d‖x̃‖2 + g‖x̃‖‖z̃ν‖, (27)

where the last inequality holds if ‖x̃‖ ≥
4ε‖PxA−1E‖

λ(Qx) ess sup ‖ẇt‖. By combining (25)-(27):

d

dt
U(x̃, z̃ν) ≤ −ξ̂TΛξ̂ − 1

2
min{2ρz,

λ(Qx)

2ελ̄(Px)
},

where

Λ :=

[
(1− θ)ρz4 − 1

2 ((1− θ)b+ θg)
1
2 ((1− θ)b+ θg) θ(λ(Qx)

4ε − d)

]
.

Matrix Λ is positive definite when

θ(1− θ)ρzλ(Qx)

16ε
>

1

4
((1− θ)b+ θg)2,

which holds when (11) is satisfied. Finally, the claim follows
by application of Lemma 3.14 with ā = max{ 1

2 , λ̄(Px)},
a = min{ 1

2 , λ(Px)}, c3 = 1
2 min{2ρz, λ(Qx)

4ελ̄(Px)
}, and b0 =

max{ 2
ρz

ess sup ‖ż∗ν,t‖,
4ε‖PA−1E‖

λ(Qx) ess sup ‖ẇt‖}. �

C. Extensions

Our analysis suggests that results can be extended in differ-
ent directions. Here, we discuss two possible extensions.

1) Switched LTI Plants with Common Quadratic Lyapunov
Functions: Theorem 3.9 can be extended to consider switched
LTI plants of the form

ẋ = Aσx+Bσu+ Eσwt,

y = Cx+Dwt,
(28)

where σ : R≥0 → Q is a switching signal taking values
in a finite an compact set. If system (28) has a common
equilibrium point x∗eq = A−1

σ Bu + A−1
σ Eσwt for all values

of σ, and a common quadratic Lyapunov function V , the
same construction of the Lyapunov function (23) can be
used to establish exponential ISS for the closed-loop system.
Since in this case, G and H in (2) are also common to all
the subsystems, the bounds of Theorem 3.9 still hold. This
observation is relevant for applications where internal feedback
controllers have been implemented a priori to stabilize the
modes of the plant, such that Assumption 2.1 holds. In this
context, different controller may lead to closed-loop transient
performance, while preserving a common equilibrium point
[31]. Note, however, that having a stable autonomous switched
LTI system does not necessarily imply the existence of a
common quadratic Lyapunov function. However, it implies the
existence of a common Lyapunov function that is homoge-
neous of degree 2, e.g., piece-wise quadratic [32]. When the
matrices Cσ and Dσ are also switching, the exponential ISS
result of Theorem 3.9 is preserved provided the pair (G,H)
remains common, and with suitable modifications of (11) and
(12) using the max and the min of the signals over the
compact set Q.

2) Switched Plants with Average Dwell-Time Constraints:
When the switched system (12) does not have a common
Lyapunov function, it is still possible to obtain a result of the
form (12), provided the switching is slow “on the average”. In
particular, if the switching signal σ satisfies an average dwell-
time constrain of the form

Nσ(t, τ) ≤ η(t− τ) +N0, (29)

where Nσ(t, τ) denotes the number of discontinuities of σ
in the open interval (τ, t), and N0 ≥ 0 is a chatter bound
that allows for a finite number of consecutive switches. In
this case, it is possible to choose η > 0 sufficiently small
such that the exponential stability property of the switched
system is preserved, and the same construction (23) carries
over. This observation follows directly from the Lyapunov
construction presented in [10], which permits the derivation of
a result similar to Proposition 3.8 using quadratic Lyapunov
functions. Characterizations of the conditions that emerge
between η and the time-scale separation parameters (ε, η)
can also be explicitly derived as in [10]. However, unlike the
results of [10], the results of this paper allow to consider online
optimization problems with constraints. To the best knowledge
of the authors, similar results for online optimization with
constraints of switched systems have not been studied before
in the literature.
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IV. ONLINE PRIMAL-DUAL GRADIENT FLOW

In this section we consider the problem of regulating (1) to
the solution of the following optimization problem:

(u∗t , y
∗
t ) := arg min

ū∈Rm, ȳ∈Rp
φt(ū) + ψt(ȳ), (30a)

s.t. ȳ = Gū+Hwt, Ktȳ = et, (30b)

which contains only equality constraints on the system outputs.
As we show next, a controller as described in Problem 1
can be developed in this case by leveraging a non-regularized
Lagrangian function. To this end, we impose, similarly to [11],
the following assumption.

Assumption 4.1: The columns of KtG are linearly inde-
pendent and there exists k, k̄ ∈ R>0 such that kI �
KtGG

TKT
t � k̄I for all t. �

Since problem (30) contains only equality constraints, As-
sumption 4.1 is sufficient to guarantee uniqueness of the
optimal multipliers [11]. In what follows, for notation sim-
plicity we will state the results by considering a time-invariant
constraint matrix K. The stated results directly extend to the
case of time-varying matrices, as noted in pertinent remarks.

The Lagrangian of problem (30) is given by Lt(u, λ) =
φt(u) + ψt(Gu + Hwt) + λT(K(Gu + Hwt) − et), where
λ ∈ Rr is the vector of dual variables. Under Assumptions
2.2 and 4.1, the unique minimizer (u∗t , y

∗
t ) of (30) solves the

following KKT conditions:

0 = ∇φt(u∗t ) +GT∇ψt(Gu∗t +Hwt) +GTKTλ∗t ,

0 = K(Gu∗t +Hwt)− et. (31)

To solve Problem 1, we consider the following modifications
of the gradients of the Lagrangian:

Lu,t(u, y, λ) := ∇ψ(u) +GT∇φ(y) +GTKTλ, (32a)
Lλ,t(y) := Ky − e, (32b)

where (similarly to (7)) with respect to the gradients of
Lt(u, λ), the steady-state map Gu + Hwt has been replaced
by the variable y. The following online primal-dual gradient
controller in feedback with the plant (1) is then considered:

εẋ = Ax+Bu+ Ewt, y = Cx+Dwt, (33a)
u̇ = −ηuLu,t(u, y, λ), (33b)

λ̇ = ηλLλ,t(y), (33c)

where ε, ηu, ηλ ∈ R>0 are plant and controller gains. Similarly
to the projected controller in Section III, the controller (33b)-
(33c) uses output-feedback from the plant, and does not
require any knowledge on wt. The following lemma relates
the time-varying equilibria of (33) to the solution of (30).

Lemma 4.2: Let Assumptions 2.1-2.4 and 4.1 be satisfied.
For any wt ∈ Rq and t ∈ R≥0, let ξeq := (xeq, ueq, λeq) denote
an equilibrium of (33), let (u∗t , λ

∗
t ) be the unique saddle-point

of (30), and let x∗t := −A−1(Bu∗t+Hwt). Then, ξeq is unique.
Moreover, xeq = x∗t , ueq = u∗t , and λeq = λ∗t .

The proof of this claim is omitted due to space limitations.
In contrast with Lemma 3.7 in Section III, Lemma 4.2
establishes that the equilibrium point of (33) coincides with

the saddle points of the exact (non-augmented) Lagrangian
function. With this in place, the next section investigates the
stability properties of the interconnected system (33).

A. Stability and Tracking Analysis
We begin by showing that, when the dynamics of the plant

are infinitely fast, (33) converges exponentially to the solutions
of (3). We recall that we use the compact notation z̃(t) =
z(t)− z∗t , where z := (u, λ) and z∗t := (u∗t , λ

∗
t ).

Proposition 4.3: Let Assumptions 2.1-2.4 and 4.1 hold, let

Pz :=

[
`I GTKT

KG `ηuηλ I

]
, (34)

where ` := `u+‖G‖2`y . If ε = 0 and the controller parameters
are such that ηu > 4k̄

`µηλ, then for any t0 ∈ R≥0:

‖z̃(t)‖ ≤
√
κ‖z̃(t0)‖e− 1

2ρz(t−t0) +
4‖Pz‖

√
κ

λ(Pz)
ess sup

τ≥t0
‖ż∗τ‖,

(35)

for all t ≥ t0, ρz := 1
2 min{ηλ k` , ηu

µ
2 }, κ = λ̄(Pz)/λ(Pz).

The proof of this result is presented in Section IV-B. Two
comments are in order. First, differently from [11, Theorem
1], Proposition 4.3 shows that ρz can be made arbitrarily large
by properly tuning the parameters ηu and ηλ. Second, we note
that the tracking result (35) is in the spirit of [25, Section 6];
however, in [25] the primal-dual dynamics are assumed to be
differentiable with respect to t (in contrast, we require the
milder condition of absolute continuity).

Remark 4.4: When the matrix Kt is time-varying, it follows
that Pz,t in (34) and the coefficient κt in (35) are time-varying
too. In this case, the result (35) extends by replacing κ with
supτ κτ and the coefficient 4‖Pz‖

√
κ

λ(Pz) with supτ
4‖Pz,τ‖

√
κτ

λ(Pz,τ ) . �
We now present sufficient conditions on the time-scale

separation between the plant and controller dynamics that
result in exponential stability properties of the system (33).

Theorem 4.5: (Stability and Tracking of (33)) Let Assump-
tions 2.1-2.4 and 4.1 hold. Suppose that ε satisfies

ε <
ρzλ(Px)λ(Pz)

16σ1σ2 + 4ρzλ(Pz)σ3
, (36)

and Pz , ρz are as in Proposition 4.3, and

σ1 := 2ηu`y‖C‖‖G‖(`+ ‖KG‖) + 2ηλ‖GTKTKC‖+ 2`ηu‖KC‖,
σ2 := 2ηu`‖PxA−1B‖+ 2ηu‖PxA−1GGTKT‖,
σ3 := 2ηu`y‖C‖‖PxA−1BGT‖.

Then, for any t0 ∈ R≥0, the dynamics (33) satisfy:

‖ξ̃(t)‖ ≤
√
κ‖ξ̃(t0)‖e− 1

2ρξ(t−t0) +
4‖Pz‖

√
κ

ρzλ(Pz)
ess sup

τ≥t0
‖ż∗τ‖

+
4‖PxA−1E‖

√
κ

λ(Qx)
ess sup

τ≥t0
‖ẇτ‖, (37)

for all t ≥ t0, κ = max{λ̄(Px), λ̄(Pz)}/min{λ(Px), λ(Pz)},

ρξ =
1

4
min

{
ρz
λ(Pz)

λ̄(Pz)
, ε−1λ(Qx)

λ̄(Px)

}
. (38)
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The proof of this result is presented in Section IV-B. The
bound on ε is an increasing function of λ(Px) and ρzλ(Pz),
which are the convergence rates of the open-loop plant and of
the controller with ε = 0, respectively. Moreover, we note that
the rate of convergence ρξ is governed by the quantities ρz and
ε (as well as matrices Px, Qx, and Pz), which are interpreted
as the rates of convergence of the controller with ε = 0 and
the rate of convergence of the open-loop plant. Finally, we
note that the bound (37) can be readily extended to account
for time-varying matrices Kt by adopting a reasoning similar
to that in Remark 4.4.

B. Proofs of the Results

Here, we present the proofs of Proposition 4.3 and Theorem
4.5. We start by introducing the following change of variables
for (33):

x̃ := x− h(u,wt), h(u,wt) := −A−1Bu−A−1Ewt.

The dynamics (33) are re-written in the new variables next.
Lemma 4.6: Let Assumption 2.1-2.6 be satisfied, and for

any t ∈ R≥0, let (u∗t , λ
∗
t ) be the saddle-point of (30). The

dynamics (33) have the following equivalent representation:

ε ˙̃x = F11x̃+ F12(u− u∗t ) + F13(λ− λ∗t ) + F14ẇt,

u̇ = F21x̃+ F22(u− u∗t ) + F23(λ− λ∗t ),
λ̇ = F31x̃+ F32(u− u∗t ), (39)

where F14 = εA−1E,

F11 = A− εηuA−1BGTTy,tC, F21 = −ηuGTTy,tC,

F12 = −εηuA−1B(Tu,t +GTTy,tG), F23 = −ηuGTKT,

F13 = −εηuA−1BGTKT, F31 = ηλKC,

F22 = −ηu(Tu,t +GTTy,tG), F32 = ηλKG,

and Tu,t, Ty,t are symmetric matrices that satisfy µuI �
Tu,t � `uI , 0 � Ty,t � `yI uniformly in t.

Proof: By application of Lemma 3.11:

u̇ = −ηuLu,t(u, y, λ) + ηuLu,t(u
∗
t , Gu

∗
t +Hwt, λ

∗
t )︸ ︷︷ ︸

=0

= −ηu((Tu,t +GTTy,tG)(u− u∗t )
+GTTy,tCx̃+GTKT(λ− λ∗t )),

λ̇ = ηλLλ,t(u, y, λ)−∇λLλ,t(u∗, Gu∗t +Hwt, λ
∗
t )︸ ︷︷ ︸

=0

= ηλ(KCx̃+KG(u− u∗t )).

Finally, by using the relationships ε ˙̃x = ẋ − ε∂h∂u u̇ − ε
∂h
∂w ẇt,

and by substituting the expression for u̇:

ε ˙̃x = Ax̃+ εA−1Bu̇+ εA−1Eẇt

= (A− εηuA−1BGTTy,tC)x̃− εηuA−1BGTKT(λ− λ∗t )
− εηuA−1B(Tu,t +GTTy,tG)(u− u∗t ) + εA−1Eẇt,

which proves the claim.

1) Proof of Proposition 4.3: The proof follows similar ideas
as in [11, Lemma 2]. By letting ε = 0 in (39) we obtain
Ax̃ = 0, which, by Assumption 2.1 implies x̃ = 0. Hence, we
let z := (u, λ) and z̃ := z − z∗t , and we rewrite the dynamics
(39) as ż = Fz(z − z∗t ) = Fz z̃, where

Fz =

[
F22 F23

F31 0

]
. (40)

We will prove that V (z) = z̃TPz z̃ satisfies the assumptions
of Lemma 3.14. By the Schur Complement, Pz is positive
definite if and only if `2 ηuηλ I − G

TKTKG � 0. Using ηu >
4k̄
`µηλ, ` ≥ µ and Assumption 4.1 one gets `2(ηu/ηλ)I −
GTKTKG � ((4`k̄)/µu)I − k̄I � 3k̄ � 0, which shows
that Pz is positive definite. By expanding the time-derivative:

d

dt
V (z̃) = (ż − ż∗t )TPz(z − z∗t ) + (z − z∗t )TPz(ż − ż∗t )

= z̃T(FT
z Pz + PzFz)z̃ − 2z̃TPz ż

∗
t . (41)

Next, we show that z̃T(FT
z Pz +PzFz)z̃+ ρ̄zV (z̃) ≤ 0, where

ρ̄z = min{ηλ k` , ηu
µ
2 }. Let M := FT

z Pz + PzFz + ρ̄zPz . By
expanding the product, M = [Mij ] is a 2×2 block symmetric
matrix with blocks:

M11 = 2ηu`(Tu,t +GTTy,tG)− 2ηλG
TKTKG− ρ̄z`I,

M12 = ηu(Tu,t +GTTy,tG)TGTKT − ρ̄zGTKT,

M22 = 2ηuKGG
TKT − ρ̄z`(ηu/ηλ)I, (42)

and M21 = MT
12. By application of the Schur Complement, M

is positive definite when M22 � 0 and M11−M12M
−1
22 M

T
12 �

0. The first condition can be rewritten as:

M22 � (2ηuk − ρ̄z`
ηu
ηλ

)I � ηukI � 0

where we used Assumption 4.1 and the expression of ρz . For
the second condition, we have:

M12M
−1
22 M

T
12 �M12(ηuKGG

TKT)−1MT
12

= ηu(Tu,t +GTTy,tG)T(Tu,t +GTTy,tG) +
ρ̄2
z

ηu
I

− ρ̄z((Tu,t +GTTy,tG)T + (Tu,t +GTTy,tG))

� ηu`(Tu,t +GTTy,tG) +
ρ̄2
z

ηu
I − 2ρ̄z(Tu,t +GTTy,tG),

where the first bound follows from Assumption 4.1 and
the definition of ρ̄z , the second identity follows from
GTKT(KGGTKT)−1KG = I , and the last bound follows
from GTTy,tG � 0. Thus:

M11 −M12M
−1
22 M

T
12 � 2ηu`(Tu,t +GTTy,tG)− 2ηλG

TKTKG

− ρ̄z`I − ηu`(Tu,t +GTTy,tG)− ρ̄2
z

ηu
I + 2ρ̄z(Tu,t +GTTy,tG),

and, by using
1

2
ηu`(Tu,t +GTTy,tG)− 2ηλG

TKTKG

� (
1

2
ηu`µu − 2ηλk̄)I � 0

1

2
ηu`(Tu,t +GTTy,tG)− ρ`I � (

1

2
ηu`µ− ρ`)I � 0

ηu`(Tu,t +GTTy,tG)− ηu`(Tu,t +GTTy,tG) = 0,
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we conclude M11−M12M
−1
22 M

T
12 � 0, which shows M � 0.

As a result, (41) satisfies:

d

dt
V (z̃) ≤ −ρ̄zV (z̃) + 2‖z̃‖‖Pz‖‖ż∗t ‖

= − ρ̄z
2
V (z̃)− ρz

2
λ(Pz)‖z̃‖2 + 2‖z̃‖‖Pz‖‖ż∗t ‖

≤ − ρ̄z
2
V (z̃), (43)

where the last inequality holds when 2‖z̃‖‖Pz‖‖ż∗t ‖ −
ρz
2 λ(Pz)‖z̃‖2 ≤ 0, or ‖z̃‖ ≥ 4‖Pz‖

ρzλ(Pz) ess supτ ‖ż∗τ‖. Finally,
the claim follows by application of Lemma 3.14 with ā =
λ̄(Pz), a = λ(Pz), b = ρ̄z

2 , and b0 = 4‖Pz‖
ρzλ(Pz) ess supτ ‖ż∗τ‖. �

2) Proof of Theorem 4.5: Let z := (u, λ), z̃ := z − z∗t and
rewrite the dynamics (39) as:

˙̃x = F11x̃+ Fxz z̃ + F14ẇt, ˙̃z = Fzxx̃+ Fz z̃, (44)

where Fz is as defined by (40), Fxz = [F12, F13], and
Fzx = [FT

21, F
T
31]T. To show this claim, we will prove that

the function U(x̃, z̃) = (1 − θ)V (z̃) + θW (x̃), where θ =
‖Σ1‖/(‖Σ2‖+‖Σ1‖) satisfies the assumptions of Lemma 3.14.
By substituting (44) and by using FT

z Pz+PzFz � −ρ̄zPz (see
(41) and (43)):

V̇ (z̃) = z̃T(FT
z Pz + PzFz)z̃ + 2x̃TFzxPz z̃ − 2z̃TPz ż

∗

≤ −ρz z̃TPz z̃ + z̃TΣ1x̃− 2z̃TPz ż
∗

≤ −ρz
2
λ(Pz)‖z̃‖2 + ‖Σ1‖‖z̃‖‖x̃‖,

where the last inequality holds if ‖z̃‖ ≥ 4‖Pz‖
ρzλ(Pz) supτ ‖ż∗τ‖.

Next, by expanding the time-derivative of W (x̃):

εẆ (x̃) = x̃T(FT
11Px + PxF11)x̃+ 2x̃TPxFxz z̃ + 2x̃TPxF14ẇt.

Using F11 = A− εηuA−1BGTTy,tC, ATPx + PxA = −Qx:

x̃T(FT
11Px + PxF11)x̃ = −x̃TQxx̃
− ηuεx̃T(CTTy,tGB

TA−TPx + PxA
−1BGTTy,tC)x̃.

Let Σ1 := 2Pz[F
T
21, F

T
31]T, Σ2 := 2ε−1Px[F12, F13], Σ3 =

ηu(CTTy,tGB
TA−TPx + PxA

−1BGTTy,tC), and Σ4 =
PxA

−1E. Then,

εẆ (x̃) ≤ −λ(Qx)‖x̃‖2 + ε‖Σ2‖‖x̃‖‖z̃‖ (45)

+ ε‖Σ3‖‖x̃‖2 + 2‖Σ4‖‖x̃‖‖ẇt‖

≤ −λ(Qx)

2
‖x̃‖2 + ε‖Σ2‖‖x̃‖‖z̃‖+ ε‖Σ3‖‖x̃‖2,

where the last inequality holds when −λ(Qx)
2 ‖x̃‖2 +

2‖Σ4‖‖x̃‖‖ẇt‖ ≤ 0, or ‖x̃‖ ≥ 4‖Σ4‖
λ(Qx) ess supτ≥0 ‖ẇτ‖. By

using V (z) ≤ λ̄(Pz)‖z̃‖2, W (z) ≤ λ̄(Px)‖x̃‖2, by letting
ξ̂ := (‖z̃‖, ‖x̃‖), and by combining (43)-(45) we get U̇(x̃, z̃) ≤
−ξ̂TΛξ̂ − ρξU(x̃, z̃), where:

Λ=

[
(1− θ) ρ̄zλ(Pz)

4 − 1
2 ((1− θ)‖Σ1‖+ θ‖Σ2‖)

− 1
2 ((1− θ)‖Σ1‖+ θ‖Σ2‖) θ(λ(Qx)

4ε − ‖Σ3‖)

]
.

Matrix Λ is positive definite when

θ(1− θ)ρzλ(Pz)λ(Qx)

16ε
>

1

4
((1− θ)‖Σ1‖+ θ‖Σ2‖)2,

(a) (b)

Fig. 3. (a) Portion of highway system in Los Angeles, CA, USA. (b)
Network schematic. Links colored in green represent controllable on-
ramps.

which holds when the following is satisfied:

ε <
ρzλ(Px)λ(Pz)

16‖Σ1‖‖Σ2‖+ 4ρzλ(Pz)‖Σ3‖
.

The bound (36) is then obtained using standard ma-
nipulations. Finally, the claim follows by application of
Lemma 3.14 with ā = max{λ̄(Px), λ̄(Pz)}, a =

min{λ(Px), λ(Pz)}, b = 1
4 min

{
ρz

λ(Pz)

λ̄(Pz)
, ε−1 λ(Qx)

λ̄(Px)

}
, and

b0 = max{ 4‖Pz‖
ρzλ(Pz) ess supτ ‖ż∗τ‖,

4‖Σ4‖
λ(Qx) ess supτ ‖ẇτ‖}. �

V. APPLICATION EXAMPLE: RAMP METERING CONTROL

In this section, we apply the proposed framework to the
control of on-ramps in a network of traffic highways.

To describe the traffic evolution, we adopt a continuous-
time version of the Cell-Transmission Model (CTM) [33]. We
model a traffic network as a directed graph G = (V,L), where
V models the set of traffic junctions (nodes) and L ⊆ V × V
models the set of highways (links). We partition L = Lon ∪
Loff ∪ Lin, where Lon is the set of on-ramps where vehicles
can enter, Loff is the set of off-ramps where vehicles can exit,
and Lin is the set of internal links. For i ∈ L, we denote by
i+ the set of downstream links, and by i− the set of upstream
links. For all i ∈ L, we let xi : R≥0 → R≥0 be the density of
vehicle in the link. We model the dynamics of all links i ∈ Lin
according to the CTM with FIFO allocation policy [33]:

ẋi = −f out
i (x) + f in

i (x),

f out
i (x) = min{di(xi), {sj(xj)/rij}j∈i+},
di(xi) = min{ϕixi, dmax

i }, si(xi) = min{βi(xjam
i − xi), s

max
i },

f in
i (x) =

∑
j∈i−

f out
j (x), (46)

where di : R≥0 → R≥0 and si : R≥0 → R≥0 are the link
demand and supply functions, respectively, rij ∈ [0, 1] is the
routing ratio from i to j, with

∑
j rij = 1, ϕi > 0. We refer

to Fig. 4 for a description of the parameters that characterize
the demand and supply functions. The dynamics of on-ramps
and off-ramps coincide with those of (46), where inflow and
outflow functions are replaced, respectively, by:

f in
i (x) := ui, if i ∈ Lon,

f out
i (x) := di(xi), if i ∈ Loff, (47)
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xi

xjam
ixcrt,d

i xcrt,s
i

dmax
i

smax
i

si(xi)

di(xi)

(a)

Variable Description
ϕi free-flow speed
βi back propag. speed
dmax
i demand saturation
smax
i supply saturation
x

jam
i jam density

xcrt,d
i critical dens. of di
xcrt,s
i critical dens. of si

(b)

Fig. 4. (a) Demand and supply functions. (b) Parameters description.

We assume the availability of measurements that provide a
noisy estimate of the traffic densities in the highways: yi =
xi + wi, for all i ∈ L, where wi : R≥0 → R. Finally, we
define the network throughput as the sum of all exit flows from
the off-ramps Φ(x) :=

∑
i∈Loff

f out
i (x). The on-ramp metering

problem is formalized as follows.
Problem 2: (Ramp Metering) Given a vector of on-ramp

flow demands uref ∈ Rm, select the set of metered flows on
the on-ramps (u1, . . . , um) such that u and x minimize the cost
(u−uref)TQu(u−uref)−Φ(x), subject to the constraints (46)-
(47), where Qu ∈ Rn×n is symmetric and positive definite.

The following strategies are compared.
1) Online Primal-Dual Controller: To solve Problem 2, we

assume that for all i ∈ L one has that dmax
i ≤ smax

j for all j ∈
i+. (i.e., highway j is not congested and, precisely, xj ≤ xcrt,s

j ).
thus, when the network is maintained in a regime in which all
highways are not congested, namely, xi ≤ min{xcrt,d

i , xcrt,s
i }

for all i ∈ L, then the dynamics (46) simplify to the following
linear model:

ẋi = −f out
i (x) + f in

i (x),

f out
i (x) = ϕixi, f in

i (x) =
∑
j∈i−

f out
j (x). (48)

In vector form, one has ẋ = (RT − I)Fx + Bu, and y =
x+ w, where R := [rij ], and F := diag(ϕ1, . . . , ϕn). Notice
that matrix (RT− I)F is Hurwitz (see e.g. [34, Theorem 1]).
Building on this, we propose the following problem:

min
u,y

(u− uref)TQu(u− uref)− Φ(y),

s.t. y = −((RT − I)F )−1Bu+ w,

ui ≥ 0, yi ≤ min{xcrt,d
i , xcrt,s

i },∀i ∈ L. (49)

The optimization problem (49) formalizes the objectives of the
ramp metering problem, while maintaining all highways in the
network in the free-flow regime by design.

2) Distributed Reactive Metering using ALINEA: ALINEA
[24] is a distributed metering strategy that has received con-
siderable interest thanks to its simplicity of implementation
and to its effectiveness. Given a controllable on-ramp i ∈ Lin,
ALINEA is a reactive controller that takes the form u̇i =∑
j∈i+ Kj(x̂j − xj), where x̂i ∈ R≥0 is a desired setpoint

and Kj are tunable controller gains. In our simulations, we
let x̂i = min{xcrt,d

i , xcrt,s
i }.
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(a)
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(b)

Fig. 5. Plant without noise. (a) Network throughput Φ(x). (b) Constraint
violation computed as ‖y −min{xcrt,d, xcrt,s}‖.

(a) (b)

Fig. 6. Plant subject to random noise (green line shows noise mean). (a)
Throughput Φ(x). (b) Constraint violation: ‖y −min{xcrt,d, xcrt,s}‖.

3) Model Predictive Control (MPC): MPC is a receding-
horizon control algorithm that computes an optimal control
input based on a prediction of the system’s future trajectory
according to the system’s dynamics. We denote by q[t1,t2] the
restriction to the time-interval [t1, t2] of the signal t 7→ q(t),
and we consider an MPC formulation of Problem 2 with
prediction horizon Tp ∈ R>0 and x̂t = x(t+Ts) as the initial
condition. Usually, after an optimal control policy u∗[0,Tp] has
been computed by setting x̂t = x(t), only the input u[0,Ts],
0 ≤ Ts ≤ Tp, is implemented in the system for the time
window [0, Ts], and then a new optimal policy is re-computed
by solving the MPC with x̂t = x(t+ Ts), in order to account
for model inaccuracies. In our simulations, we solved MPC by
discretizing the dynamics and we used Tp = 20 and Ts = 5.

4) Discussion: Fig. 5 compares the performance of the
controllers described in Section V for the noiseless case, in
which wi = 0 at all times for all i ∈ L. The simulation
demonstrates that our method and MPC achieve the largest
network throughput, outperforming ALINEA. Moreover, the
constraint violation plot (right figure) shows that both our
method and MPC are able to maintain the network in a regime
near the free-flow conditions. Notice that, while for MPC this
regime is precisely modeled through the prediction equations,
the primal-dual controller maintains the system in such regime
thanks to the constraints in the optimization problem (49).
Finally, although ALINEA is certainly better than no on-ramp
metering at all, it suffers considerably from its distributed
architecture, which lacks a global system model.

Fig. 6 compares the performance of our controller with that
of MPC in a scenario with time-varying output disturbance
(depicted in green). There are two main benefits in adopting
primal-dual controllers as compared to MPC: (i) the primal-
dual controller uses instantaneous feedback from the system,
which enables it to react faster to unmodeled dynamics or
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time-varying disturbances, and (ii) the primal-dual controller
is computationally more efficient as compared to MPC, since
it leverages only part of the full network model (precisely, the
model corresponding to the free-flow regime).

VI. CONCLUSIONS

We have leveraged online primal-dual dynamics to develop
an output controller that regulates an LTI plant to the solution
of a time-varying optimization problem. For optimization
problems with input constraints and output inequality con-
straints, we leveraged an augmented Lagrangian function and
established exponential convergence to an approximate solu-
tion of the optimization problem. For optimization problems
with output equality constraints, we established exponential
convergence to an interval around the exact optimal solu-
tion trajectory. Our convergence bounds capture the time-
variability of the optimal solution due to time-varying costs
and constraints as well as the variation of the exogenous input.
Topics that will be the subject of future investigations include
extensions to time-varying input constraint sets and generic
convex constraints on the system output.
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