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High-Confidence Data-Driven Ambiguity Sets for
Time-Varying Linear Systems

Dimitris Boskos Jorge Cortés Sonia Martı́nez

Abstract—This paper builds Wasserstein ambiguity sets for
the unknown probability distribution of dynamic random vari-
ables leveraging noisy partial-state observations. The constructed
ambiguity sets contain the true distribution of the data with
quantifiable probability and can be exploited to formulate robust
stochastic optimization problems with out-of-sample guarantees.
We assume the random variable evolves in discrete time under
uncertain initial conditions and dynamics, and that noisy partial
measurements are available. All random elements have unknown
probability distributions and we make inferences about the
distribution of the state vector using several output samples from
multiple realizations of the process. To this end, we leverage an
observer to estimate the state of each independent realization and
exploit the outcome to construct the ambiguity sets. We illustrate
our results in an economic dispatch problem involving distributed
energy resources over which the scheduler has no direct control.

Index Terms—Distributional uncertainty, Wasserstein ambigu-
ity sets, stochastic systems, state estimation

I. INTRODUCTION

Decisions under uncertainty are ubiquitous in a wide range
of engineering applications. Faced with complex systems that
include components with probabilistic models, such decisions
seek to provide rigorous solutions with quantifiable guarantees
in hedging against uncertainty. In practice, the designer makes
inferences about uncertain elements based on collected data
and exploits them to formulate data-driven stochastic opti-
mization problems. This decision-making paradigm has found
applications in finance, communications, control, medicine,
and machine learning. Recent research focuses on how to
retain high-confidence guarantees for the optimization prob-
lems under plausible variations of the data. To this end, dis-
tributionally robust optimization (DRO) formulations evaluate
the optimal worst-case performance over an ambiguity set
of probability distributions that contains the true one with
high confidence. Such ambiguity sets are typically constructed
under the assumption that data are generated from a static
distribution and can be measured in a direct manner. In this
paper we significantly expand on the class of scenarios for
which reliable ambiguity sets can be constructed. We consider
scenarios where the random variable is dynamic and partial
measurements, corrupted by noise, are progressively collected
from its evolving distribution. In our analysis, we exploit
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the underlying dynamics and study how the probabilistic
properties of the noise affect the ambiguity set size while
maintaining the same guarantees.

Literature review: Optimal decision problems in the face
of uncertainty, like expected-cost minimization and chance-
constrained optimization, are the cornerstones of stochastic
programming [42]. Distributionally robust versions of stochas-
tic optimization problems [2], [5], [41] carry out a worst-
case optimization over all possibilities from an ambiguity set
of probability distributions. This is of particular importance
in data-driven scenarios where the unknown distributions of
the random variables are inferred in an approximate manner
using a finite amount of data [3]. To hedge this uncertainty,
optimal transport ambiguity sets have emerged as a promising
tool. These sets typically group all distributions up to some
distance from the empirical approximation in the Wasserstein
metric [45]. There are several reasons that make this metric
a popular choice among the distances between probability
distributions, particularly, for data-driven problems. Most no-
tably, the Wasserstein metric penalizes horizontal dislocations
between distributions and provides ambiguity sets that have
finite-sample guarantees of containing the true distribution and
lead to tractable optimization problems. This has rendered the
convergence of empirical measures in the Wasserstein distance
an ongoing active research area [16], [17], [19], [27], [46],
[47]. Towards the exploitation of Wasserstein ambiguity sets
for DRO problems, the work [18] introduces tractable reformu-
lations with finite-sample guarantees, further exploited in [12],
[26] to deal with distributionally robust chance-constrained
programs. The work [14] develops distributed optimization
algorithms using Wasserstein balls, while optimal transport
ambiguity sets have recently been connected to regularization
for machine learning [4], [21], [39]. The paper [31] exploits
Wasserstein balls to robustify data-driven online optimiza-
tion algorithms, and [40] leverages them for the design of
distributionally robust Kalman filters. Further applications of
Wasserstein ambiguity sets include the synthesis of robust
control policies for Markov decision processes [49] and their
data-driven extensions [50], and regularization for stochastic
predictive control algorithms [15]. Several recent works have
also devoted attention to distributionally robust problems in
power systems control, including optimal power flow [24],
[28] and economic dispatch [48], [34], [38]. Time-varying
aspects of Wasserstein ambiguity sets are considered in our
previous work: in [29] for dynamic traffic models, in [30] for
online learning of unknown dynamical environments, in [9],
which constructs ambiguity balls using progressively assimi-
lated dynamic data for processes with random initial condi-
tions that evolve under deterministic dynamics, and in [11],
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which studies the propagation of ambiguity bands under
hyperbolic PDE dynamics. In contrast, in the present work, the
state distribution does not evolve deterministically due to the
presence of random disturbances, which together with output
measurements that are corrupted by noise, generate additional
stochastic elements that make challenging the quantification
of the ambiguity set guarantees.

Statement of contributions: Our contributions revolve
around building Wasserstein ambiguity sets with probabilistic
guarantees for dynamic random variables when we have no
knowledge of the probability distributions of their initial condi-
tion, the disturbances in their dynamics, and the measurement
noise. To this end, our first contribution estimates the states of
several process realizations from output samples and exploits
these estimates to build a suitable empirical distribution as
the center of an ambiguity ball. Our second contribution
is the exploitation of concentration of measure results to
quantify the radius of this ambiguity ball so that it provably
contains the true state distribution with high probability. To
achieve this, we break the radius into nominal and noise
components. The nominal component captures the deviation
between the true distribution and the empirical distribution
formed by the state realizations. The noise component captures
the deviation between the empirical distribution and the center
of our ambiguity ball. To quantify the latter, we carefully
evaluate the impact of the estimation error, which due to
the measurement noise, does not have a compactly supported
distribution like the internal uncertainty and requires a separate
analysis. Our third contribution is the extension of these results
to obtain simultaneous guarantees about ambiguity sets that
are built along finite time horizons, instead of at isolated time
instances. The fourth contribution is to generalize a concen-
tration inequality around the mean of sufficiently light-tailed
independent random variables, which enables us to obtain
tighter results when analyzing the effect of the estimation
error. Our last contribution is the validation of the results
in simulation for a distributionally robust economic dispatch
problem, for which we further provide a tractable reformula-
tion. We stress that our general objective revolves around the
robust uncertainty quantification (i.e., distributional inference)
problem at hand, without having DRO as a necessary end-
goal. Further, our approach is fundamentally different from
classical Kalman filtering, where the initial state and dynamics
noise distributions are known and Gaussian, and hence, the
state distribution over time is also a known Gaussian random
variable. Here, instead, we are interested to infer the unknown
state distribution from data collected by multiple realizations
of the dynamics. For each such realization, we use an observer
since we have no concrete knowledge of the state and noise
random models to directly invoke optimal filtering techniques.
In the online version [10] of this manuscript, we provide
explicit constants for several of the presented concentration
of measure inequalities which, to the best of our knowledge,
have not been delineated in the literature. These results are not
essential to keep the theoretical presentation self-contained and
are omitted due to space constraints.

II. PRELIMINARIES

Here we present general notation and concepts from prob-
ability theory used throughout the paper.

Notation: We denote by ‖ · ‖p the pth norm in Rn,
p ∈ [1,∞], using also the notation ‖ · ‖ ≡ ‖ · ‖2 for the
Euclidean norm. We denote by Bnp (ρ) the ball of center zero
and radius ρ in Rn with the pth norm, p ∈ [1,∞]. The inner
product of two vectors a, b ∈ Rn is denoted by 〈a, b〉 and
the Khatri-Rao product [35] of a ≡ (a1, . . . , ad) ∈ Rd and
b ≡ (b1, . . . , bd) ∈ Rdn, with each bi belonging to Rn, is
a∗b := (a1b1, . . . , adbd) ∈ Rdn. We use the notation [n1 : n2]
for the set of integers {n1, n1 + 1, . . . , n2} ⊂ N∪ {0} =: N0.
The interpretation of a vector in Rn as an n × 1 matrix
should be clear form the context (this avoids writing double
transposes). The diameter of a set S ⊂ Rn with the pth
norm is defined as diamp(S) := sup{‖x − y‖p |x, y ∈ S}
and for z ∈ Rn, S + z := {x + z |x ∈ S}. We denote
the induced Euclidean norm of a matrix A ∈ Rm×n by
‖A‖ := max‖x‖=1 ‖Ax‖/‖x‖. Given B ⊂ Ω, 1B is the
indicator function of B on Ω, with 1B(x) = 1 for x ∈ B
and 1B(x) = 0 for x /∈ B.

Probability Theory: We denote by B(Rd) the Borel σ-
algebra on Rd, and by P(Rd) the probability measures
on (Rd,B(Rd)). For any p ≥ 1, Pp(Rd) := {µ ∈
P(Rd) |

∫
Rd ‖x‖

pdµ <∞} is the set of probability measures
in P(Rd) with finite pth moment. The Wasserstein distance
between µ, ν ∈ Pp(Rd) is

Wp(µ, ν) :=
(

inf
π∈H(µ,ν)

{∫
Rd×Rd

‖x− y‖pπ(dx, dy)
})1/p

,

where H(µ, ν) is the set of all couplings between µ and
ν, i.e., probability measures on Rd × Rd with marginals
µ and ν, respectively. For any µ ∈ P(Rd), its sup-
port is the closed set supp(µ) := {x ∈ Rd |µ(U) >
0 for each neighborhood U of x}, or equivalently, the smallest
closed set with measure one. For a random variable X with
distribution µ we also denote supp(X) ≡ supp(µ). We denote
the product of the distributions µ in Rd and ν in Rr by the
distribution µ ⊗ ν in Rd × Rr. The convolution µ ? ν of the
distributions µ and ν on Rd is the image of the measure
µ ⊗ ν on Rd × Rd under the mapping (x, y) 7→ x + y;
equivalently, µ ? ν(B) =

∫
Rd×Rd 1B(x + y)µ(dx)ν(dy) for

any B ∈ B(Rd) (c.f. [7, Pages 207, 208]). Given a measurable
space (Ω,F), an exponent p ≥ 1, the convex function R 3
x 7→ ψp(x) := ex

p − 1, and the linear space of scalar random
variables Lψp := {X |E[ψp(|X|/t)] < ∞ for some t > 0}
on (Ω,F), the ψp-Orlicz norm (cf. [44, Section 2.7.1]) of
X ∈ Lψp is

‖X‖ψp := inf{t > 0 |E[ψp(|X|/t)] ≤ 1}.

When p = 1 and p = 2, each random variable in Lψp
is sub-exponential and sub-Gaussian, respectively. We also
denote by ‖X‖p ≡

(
E
[
|X|p

]) 1
p the norm of a scalar random

variable with finite pth moment, i.e., the classical norm in
Lp(Ω) ≡ Lp(Ω;PX), where PX is the distribution of X .
The interpretation of ‖ · ‖p as the pth norm of a vector in
Rn or a random variable in Lp should be clear from the
context throughout the paper. Given a set {Xi}i∈I of random
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variables, we denote by σ({Xi}i∈I) the σ-algebra generated
by them. We conclude with a useful technical result which
follows from Fubini’s theorem [1, Theorem 2.6.5].

Lemma 2.1: (Expectation inequality). Consider the inde-
pendent random vectors X and Y , taking values in Rn1 and
Rn2 , respectively, and let (x, y) 7→ g(x, y) be integrable.
Assume that E[g(x, Y )] ≥ k(x) for some integrable function
k and all x ∈ K with supp(X) ⊂ K ⊂ Rn1 . Then,
E[g(X,Y )] ≥ E[k(X)].

III. PROBLEM FORMULATION

Consider a stochastic optimization problem where the ob-
jective function x 7→ f(x, ξ) depends on a random variable ξ
with an unknown distribution Pξ. To hedge this uncertainty,
rather than using the empirical distribution

PNξ :=
1

N

N∑
i=1

δξi , (1)

formed by N i.i.d. samples ξ1, . . . , ξN of Pξ to optimize a
sample average approximation of the expected value of f , one
can instead consider the DRO problem

inf
x∈X

sup
P∈PN

EP [f(x, ξ)], (2)

of evaluating the worst-case expectation over some ambiguity
set PN of probability measures. This helps the designer robus-
tify the decision against plausible variations of the data, which
can play a significant role when the number of samples is
limited. Different approaches exist to construct the ambiguity
set PN so that it contains the true distribution Pξ with high
confidence. We are interested in approaches that employ data,
and in particular the empirical distribution PNξ , to construct
them. In the present setup, the data is generated by a dynamical
system subject to disturbances, and we only collect partial
(instead of full) measurements that are distorted by noise.
Therefore, it is no longer obvious how to build a candidate
state distribution as in (1) from the collected samples. Further,
we seek to address this in a distributionally robust way, i.e.,
finding a suitable replacement P̂Nξ for (1) together with an
associated ambiguity set, by exploiting the dynamics of the
underlying process.

To make things precise, consider data generated by a
discrete-time system

ξk+1 = Akξk +Gkwk, ξk ∈ Rd, wk ∈ Rq, (3a)

with linear output

ζk = Hkξk + vk, ζk ∈ Rr. (3b)

The initial condition ξ0 and the noises wk and vk, k ∈ N0 in
the dynamics and the measurements, respectively, are random
variables with an unknown distribution. We seek to build an
ambiguity set for the state distribution at certain time ` ∈ N,
by collecting data up to time ` from multiple independent
realizations of the process, denoted by ξi, i ∈ [1 : N ]. This
can occur, for instance, when the same process is executed
repeatedly, or in multi-agent scenarios where identical entities
are subject to the same dynamics, see e.g. [51]. The time-
dependent matrices in the dynamics (3) widen the applicability

of the results, since they can capture the linearization of non-
linear systems along trajectories or the sampled-data analogues
of continuous-time systems under irregular sampling, even if
the latter are linear and time invariant. To formally describe the
problem, we consider a probability space (Ω,F ,P) containing
all random elements from these realizations, and make the
following sampling assumption.

Assumption 3.1: (Sampling schedule). For each realization
i of system (3), output samples ζi0, . . . , ζ

i
` are collected over

the discrete time instants of the sampling horizon [0 : `].
According to this assumption, the measurements of all realiza-
tions are collected over the same time window [0 : `]. To obtain
quantifiable characterizations of the ambiguity sets, we require
some further hypotheses on the classes of the distributions Pξ0
of the initial condition, Pwk of the dynamics noise, and Pvk
of the measurement errors (cf. Figure 1). These assumptions
are made for individual realizations and allow us to consider
non-identical observation error distributions—in this way, we
allow for the case where each realization is measured by a
non-identical sensor of variable precision.

Assumption 3.2: (Distribution classes). Consider a finite
sequence of realizations ξi, i ∈ [1 : N ] of (3a) with associated
outputs given by (3b), and noise elements wik, vik, k ∈ N0. We
assume the following:
H1: The distributions Pξi0 , i ∈ [1 : N ], are identically
distributed; further Pwik , i ∈ [1 : N ], are identically distributed
for all k ∈ N0.
H2: The sigma fields σ({ξi0}∪{wik}k∈N0

)
, σ
(
{vik}k∈N0

)
, i ∈

[1 : N ] are independent.
H3: The supports of the distributions Pξi0 and Pwik , k ∈ N0

are compact, centered at the origin, and have diameters 2ρξ0
and 2ρw, respectively, for all i.
H4: The components of the random vectors vik have uniformly
bounded Lp and ψp-Orlicz norms, as follows,

0 < mv ≤ ‖vik,l‖p ≤Mv, ‖vik,l‖ψp ≤ Cv,

for all k ∈ N0, i ∈ [1 : N ], and l ∈ [1 : r], where p ≥ 1.
Remark 3.3: (Bounded ψp-Orlicz/Lp-norm ratio). By def-

inition, ψp-Orlicz norms can become significantly larger than
Lp norms for random variables with heavier tails. Thus,
over an infinite sequence of random variables {Xk}, the
ratio ‖Xk‖ψp/‖Xk‖p may grow unbounded. We exclude this
by assuming that Cv and mv are either positive or zero
simultaneously, in which case we set Cv/mv := 0. �

𝜉𝜉01~ 𝑃𝑃𝜉𝜉0

⋯

⋯ ⋯

𝑣𝑣11 ∼ 𝑃𝑃𝑣𝑣11

1 𝑁𝑁

𝑤𝑤11 ∼ 𝑃𝑃𝑤𝑤1

𝜉𝜉0𝑁𝑁~ 𝑃𝑃𝜉𝜉0

𝑤𝑤01 ∼ 𝑃𝑃𝑤𝑤0 𝑣𝑣01 ∼ 𝑃𝑃𝑣𝑣01 𝑤𝑤0𝑁𝑁 ∼ 𝑃𝑃𝑤𝑤0

𝑤𝑤1𝑁𝑁 ∼ 𝑃𝑃𝑤𝑤1

𝑣𝑣0𝑁𝑁 ∼ 𝑃𝑃𝑣𝑣0𝑁𝑁

𝑣𝑣1𝑁𝑁 ∼ 𝑃𝑃𝑣𝑣1𝑁𝑁

Fig. 1. Illustration of the probabilistic models for the random variables in
the dynamics and observations according to Assumption 3.2.
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A direct approach to build the ambiguity set using the
measurements of the trajectories at time ` would be severely
limited, since the output map is in general not invertible.
In such case, the inverse image of each measurement is the
translation of a subspace, whose location is further obscured
by the measurement noise. As a consequence, candidate states
for a generated output sample may lie at an arbitrary distance
apart, which could only be bounded by making additional
hypotheses about the support of the state distribution. Instead,
despite the lack of full-state information, we aim to leverage
the system dynamics to estimate the state from the whole
assimilated output trajectory. To guarantee some boundedness
notion for the state estimation errors over arbitrary evolution
horizons, we make the following assumption.

Assumption 3.4: (Detectability/uniform observability).
System (3) satisfies one of the following properties:
(i) It is time invariant and the pair (A,H) (with A ≡ Ak and
H ≡ Hk) is detectable.
(ii) It is uniformly observable, i.e., for some t ∈ N, the
observability Gramian

Ok+t,k :=

k+t∑
i=k

Φ>i,kH
>
i HiΦi,k

satisfies Ok+t,k � bI for certain b > 0 and all k ∈ N0, where
we denote Φk+s,k := Ak+s−1 · · ·
Ak+1Ak. Further, all system matrices are uniformly bounded
and the singular values of Ak and the norms of ‖Hk‖ are
uniformly bounded below.

Problem statement: Under Assumptions 3.1 and 3.2 on
the measurements and distributions of N realizations of the
system (3), we seek to construct an estimator ξ̂i`(ζ

i
0, . . . , ζ

i
`)

for the state of each realization and build an ambiguity set for
the state distribution at time ` with probabilistic guarantees.
Further, under Assumption 3.4 on the system’s detectabil-
ity/uniform observability properties, we aim to characterize
the effect of the estimation precision on the accuracy of the
ambiguity sets.

We proceed to address the problem in Section IV by
exploiting a Luenberger observer to estimate the states of the
collected data and using them to replace the classical empirical
distribution (1) in the construction of the ambiguity set. To
obtain the probabilistic guarantees, we leverage concentration
inequalities to bound the distance between the updated em-
pirical distribution and the true state distribution with high
confidence. To this end, we further quantify the increase of the
ambiguity radius due to the noise. We also study the beneficial
effect on the ambiguity radius of detectability/uniform observ-
ability for arbitrarily long evolution horizons in Section V.

IV. STATE-ESTIMATOR BASED AMBIGUITY SETS

We address here the question of how to construct an
ambiguity set at certain time instant `, when samples are
collected from (3) according to Assumption 3.1. If we had
access to N independent full-state samples ξ1

` , . . . , ξ
N
` from

the distribution of ξ at `, we could construct an ambiguity
ball in the Wasserstein metric Wp centered at the empirical
distribution (1) with ξi ≡ ξi` and containing the true distri-
bution with high confidence. In particular, for any confidence

1− β > 0, it is possible, cf. [18, Theorem 3.5], to specify an
ambiguity ball radius εN (β) so that the true distribution of ξ`
is in this ball with confidence 1− β, i.e.,

P(Wp(P
N
ξ`
, Pξ`) ≤ εN (β)) ≥ 1− β.

Instead, since we only can collect noisy partial measurements
of the state, we use a Luenberger observer to estimate ξ at
time `. The dynamics of the observer, initialized at zero, is
given by

ξ̂k+1 = Ak ξ̂k +Kk(Hk ξ̂k − ζk), ξ̂0 = 0, (4)

where each Kk is a nonzero gain matrix. Using the cor-
responding estimates from system (4) for the independent
realizations of (3a), we define the (dynamic) estimator-based
empirical distribution

P̂Nξk :=
1

N

N∑
i=1

δξ̂ik
, (5)

Denoting by ek := ξk − ξ̂k the error between (3a) and the
observer (4), the error dynamics is ek+1 = Fkek + Gkwk +
Kkvk, e0 = ξ0, where Fk := Ak +KkHk and ξ0 is the initial
condition of (3a). In particular,

ek = Ψkξ0 +

k∑
κ=1

(
Ψk,k−κ+1Gk−κwk−κ

+ Ψk,k−κ+1Kk−κvk−κ
)

(6)

for all k ≥ 1, where Ψk+s,k := Fk+s−1 · · ·Fk+1Fk, Ψk,k :=
I and Ψk := Ψk,0. To build the ambiguity set at time `, we
set its center at the estimator-based empirical distribution P̂Nξ`
given by (5). In what follows, we leverage concentration of
measure results to identify an ambiguity radius ψN (β) so that
the resulting Wasserstein ball contains the true distribution
with a given confidence 1−β. Note that even if a distribution-
ally robust framework is not employed, replacing the empirical
distribution by the estimator empirical distribution in (5) does
no longer guarantee consistency, in the sense that the estimator
empirical distribution does not necessarily converge (weakly)
to the true distribution. Hence, there is also no indication
that the solution to the associated estimator Sample Average
Approximation (SAA) problem, i.e., to

inf
x∈X

1

N

N∑
i=1

f(x, ξi`)

with ξi` replaced by ξ̂i`, will be a consistent estimator of the
solution to the nominal stochastic optimization problem. This
is a fundamental limitation that is justified by the fact that, in
general, the estimation error is dependent on the state realiza-
tion, i.e., it has a variable distribution when conditioned on the
state and the internal noise, and so its effect cannot be easily
reversed (this may only be possible in rather degenerate cases,
e.g., one has access to full-sate samples and the measurement
noise is known).

Note that the random variable ξik of a system realization at
time k is a function ξik(ξi0,w

i
k) of the random initial condition

ξi0 and the dynamics noise wi
k ≡ (wi0, . . . , w

i
k−1). Analo-

gously, the estimated state ξ̂ik of each observer realization is a
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stochastic variable ξ̂ik(ξi0,w
i
k,v

i
k) with additional randomness

induced by the output noise vik ≡ (vi0, . . . , v
i
k−1). Using the

compact notation ξ0 ≡ (ξ1
0 , . . . , ξ

N
0 ), wk ≡ (w1

k, . . . ,w
N
k ),

and vk ≡ (v1
k, . . . ,v

N
k ) for the corresponding initial condi-

tions, dynamics noise, and output noise of all realizations,
respectively, we can denote the empirical and estimator-
based-empirical distributions at time ` as PNξ` (ξ0,w`) and
P̂Nξ` (ξ0,w`,v`). If we view the initial conditions and the cor-
responding internal noise of the realizations ξi over the whole
time horizon as deterministic quantities, we use the alternative
notation PNξ` (z,ω) and P̂Nξ` (z,ω,v`) for the corresponding
distributions, where z = (z1, . . . , zN ), z1 ≡ ξ1

0 , . . . , z
N ≡

ξN0 , and ω = (ω1, . . . ,ωN ), ω1 ≡ w1
` , . . . ,ω

N ≡ wN
` . We

also denote by Pξ` the true distribution of the data at discrete
time `, where from (3a),

ξ` = Φ`ξ0 +
∑̀
k=1

Φ`,`−k+1G`−kw`−k, (7)

where Φ` := Φ`,0 and Φ`,` := I (and with Φk+δk,k defined in
Assumption 3.4). Then, it follows from H1 and H2 in Assump-
tion 3.2 that the random states ξi` of the system realizations
are independent and identically distributed. Leveraging this,
our goal is to associate to each confidence 1−β, an ambiguity
radius ψN (β) so that

P(Wp(P̂
N
ξ`
, Pξ`) ≤ ψN (β)) ≥ 1− β. (8)

To achieve this, we decompose the confidence as the product
of two factors:

1− β = (1− βnom)(1− βns). (9)

The first factor (the nominal component “nom”) is exploited
to control the Wasserstein distance between the empirical
distribution and the true state distribution Pξ` . The purpose of
the second factor (the noise component “ns”) is to bound the
Wasserstein distance between the empirical- and the estimator-
based-empirical distributions, which is affected by the mea-
surement noise. Using this decomposition, our strategy to get
(8) builds on further breaking the ambiguity radius as

ψN (β) := εN (βnom) + ε̂N (βns). (10)

We exploit what is known [9] for the no-noise case to
bound the nominal ambiguity radius εN (βnom) with confidence
1 − βnom. Moreover, we bound the noise ambiguity radius
ε̂N (βns) with confidence 1−βns. This latter radius corresponds
to the impact on distributional uncertainty of the internal and
measurement noise. In the next sections we present the precise
individual bounds for these terms and then combine them to
obtain the overall ambiguity radius.

A. Nominal ambiguity radius

According to Assumption 3.2, the initial condition and inter-
nal noise distributions are compactly supported, and hence, the
same holds also for the state distribution along time. We will
therefore use the following result, that is focused on compactly
supported distributions and bounds the distance between the
true and empirical distribution for any fixed confidence level.

Proposition 4.1: (Nominal ambiguity radius [9, Corollary
3.3]). Consider a sequence {Xi}i∈N of i.i.d. Rd-valued random
variables with a compactly supported distribution µ. Then for
any p ≥ 1, N ≥ 1, and confidence 1− β with β ∈ (0, 1), we
have P(Wp(µ

N , µ) ≤ εN (β, ρ)) ≥ 1− β, where

εN (β, ρ) :=



(
ln(Cβ−1)

c

) 1
2p ρ

N
1
2p
, if p > d/2,

h−1
(

ln(Cβ−1)
cN

) 1
p

ρ, if p = d/2,(
ln(Cβ−1)

c

) 1
d ρ

N
1
d
, if p < d/2,

(11)

µN := 1
N

∑N
i=1 δXi , ρ := 1

2diam∞(supp(µ)), h(x) :=
x2

(ln(2+1/x))2 , x > 0, and the constants C and c depend only
on p and d.

This result shows how the nominal ambiguity radius de-
pends on the size of the distribution’s support, the confidence
level, and the number of samples, and is based on recent
concentration of measure inequalities from [19].

Remark 4.2: The determination of the constants C and c
in (11) for the whole spectrum of data dimensions d and
Wasserstein exponents p is a particularly cumbersome task.
Nevertheless, in the online version [10, Section 8.2], we
provide some alternative concentration of measure results and
use them to obtain explicit formulas for these constants when
d > 2p. In particular, the constants in the third expression in
(11) can be chosen as C :=

Cd?

2
√
d
d and c := 1

2d
√
d
d , where

C? :=
√
d2(d−2)/(2p)

(
1

1− 2p−d/2
+

1

1− 2−p

)1/p

.

Recent work [4], [20], [6] informs the ambiguity radius by
the optimization problem at hand to ameliorate its slow decay
with the number of samples. However, the resulting ambiguity
balls often contain the true distribution with low probability,
which may fail to provide guarantees when solving multiple
DRO problems using the same data, as is done for instance in
model predictive control [37], [25]. �

B. Noise ambiguity radius

In this section, we quantify the noise ambiguity radius
ε̂N (βns) for any prescribed confidence 1 − βns. We first
give a result that uniformly bounds the distance between
the empirical and estimator-based-empirical distributions with
prescribed confidence for all values of the initial condition and
the internal noise from the set BNd∞ (ρξ0)×BN`q∞ (ρw), which
contains the support of their joint distribution (and hence all
their possible realizations). For the results of this section,
the initial condition and the internal noise are interpreted as
deterministic quantities, as discussed above.

Lemma 4.3: (Distance between empirical & estimator-
based-empirical distribution). Let (z,ω) ∈ BNd∞ (ρξ0) ×
BN`q∞ (ρw) and consider the discrete distribution PNξ` ≡
PNξ` (z,ω) and the empirical distribution P̂Nξ` ≡ P̂

N
ξ`

(z,ω,v`),
where v` is the measurement noise of the realizations. Then,

Wp(P̂
N
ξ`
, PNξ` ) ≤ 2

p−1
p Mw + 2

p−1
p

( 1

N

N∑
i=1

(Ei)p
) 1
p

, (12a)
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where

Mw :=
√
d‖Ψ`‖ρξ0 +

√
q
∑̀
k=1

‖Ψ`,`−k+1G`−k‖ρw, (12b)

Ei ≡ E(vi) :=
∑̀
k=1

‖Ψ`,`−k+1K`−k‖‖vi`−k‖1. (12c)

The next result gives bounds for the norms of the random
variables Ei in Lemma 4.3.

Lemma 4.4: (Orlicz- & Lp-norm bounds for Ei). The
random variables Ei in (12c) satisfy

‖Ei‖p ≤Mv := Mvr
∑̀
k=1

‖Ψ`,`−k+1K`−k‖, (13a)

‖Ei‖ψp ≤ Cv := Cvr
∑̀
k=1

‖Ψ`,`−k+1K`−k‖, (13b)

‖Ei‖p ≥ mv := mvr
1
p

(∑̀
k=1

‖Ψ`,`−k+1K`−k‖p
) 1
p

, (13c)

with mv , Mv , and Cv as given in H4.
The proofs of both results above are given in the Appendix.

We further rely on the following concentration of measure
result around the mean of nonnegative independent random
variables, whose proof is also in the Appendix, to bound the
term

(
1
N

∑N
i=1(Ei)p

) 1
p , and control the Wasserstein distance

between the empirical and the estimator-based-empirical dis-
tribution.

Proposition 4.5: (Concentration around pth mean). Let
X1, . . . , XN be scalar, nonnegative, independent random vari-
ables with finite ψp norm and E[Xp

i ] = 1. Then,

P
((

1

N

N∑
i=1

Xp
i

) 1
p

− 1 ≥ t
)
≤ 2 exp

(
− c′N

R2
αp(t)

)
, (14)

for every t ≥ 0, with c′ = 1/10, R := maxi∈[1:N ] ‖Xi‖ψp +
1/ ln 2, and

αp(s) :=

{
s2, if s ∈ [0, 1],

sp, if s ∈ (1,∞).
(15)

Combining the results above, we obtain the main result of
this section regarding the ambiguity center difference.

Proposition 4.6: (Distance guarantee between empirical
& estimator-based-empirical distribution). Consider a con-
fidence 1− βns and let

ε̂N (βns) := 2
p−1
p

(
Mw + Mv + Mvα

−1
p

(
R2

c′N
ln

2

βns

))
,

(16)

with Mw, Mv given by (12b), (13a),

R := Cv/mv + 1/ ln 2, (17)

and Cv , mv as in (13b), (13c). Then, for all (z,ω) ∈
BNd∞ (ρξ0)×BN`q∞ (ρw), we have

P
(
Wp(P̂

N
ξ`

(z,ω,v`), P
N
ξ`

(z,ω)) ≤ ε̂N (βns)
)
≥ 1− βns.

(18)

Proof: For each i, the random variable Xi := Ei/‖Ei‖p
satisfies ‖Xi‖p = 1. Thus, we obtain from Proposition 4.5 that

P
((

1

N

N∑
i=1

(
Ei

‖Ei‖p

)p) 1
p

− 1 ≥ t
)
≤ 2 exp

(
− c′N

R2
αp(t)

)
,

where R = maxi∈[1:N ]

∥∥Ei/‖Ei‖p∥∥ψp + 1/ ln 2. From (13b),
(13c), and (17), we deduce R ≥ R, and thus,

P
((

1

N

N∑
i=1

(
Ei

‖Ei‖p

)p) 1
p

− 1 ≥ t
)
≤ 2 exp

(
− c′N

R2
αp(t)

)
.

Now, it follows from (13a) that

Mv

(
1

N

N∑
i=1

(
Ei

‖Ei‖p

)p) 1
p

−Mv ≥
(

1

N

N∑
i=1

(Ei)p
) 1
p

−Mv.

Thus, we deduce

P
((

1

N

N∑
i=1

(Ei)p
) 1
p

−Mv ≥Mvt

)
≤ 2 exp

(
− c′N

R2
αp(t)

)
,

or, equivalently, that

P
((

1

N

N∑
i=1

(Ei)p
) 1
p

≥Mv + s

)
≤ 2 exp

(
− c′N

R2
αp

( s

Mv

))
. (19)

To establish (18), it suffices by Lemma 4.3 to show that

P
(

2
p−1
p Mw + 2

p−1
p

( 1

N

N∑
i=1

(Ei)p
) 1
p ≤ ε̂N (βns)

)
≥ 1− βns.

By the definition of ε̂N and exploiting that it is strictly
decreasing with βns, it suffices to prove

P
(( 1

N

N∑
i=1

(Ei)p
) 1
p

<Mv + Mvα
−1
p

( R2

c′N
ln

2

βns

))
≥ 1− βns.

Setting τ = α−1
p

(
R2

c′N ln 2
βns

)
, we equivalently need to show

P
(( 1

N

N∑
i=1

(Ei)p
) 1
p ≥Mv + τMv

)
≤ βns,

which follows by (19) with s = τMv .

C. Overall ambiguity set

Here we combine the results from Sections IV-A and IV-B
to obtain the ambiguity set of the state distribution in the
following result.

Theorem 4.7: (Ambiguity set under noisy dynamics &
observations). Consider data collected from N realizations
of system (3) in accordance to Assumptions 3.1 and 3.2, a
confidence 1 − β, and let βnom, βns ∈ (0, 1) satisfying (9).
Then, the guarantee (8) holds, where ψN (β) is given in (10)
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and its components εN (βnom) ≡ εN (βnom, ρξ`) and ε̂N (βns)
are given by (11) and (16), respectively, with

ρξ` :=
√
d‖Φ`‖ρξ0 +

√
q
∑̀
k=1

‖Φ`,`−k+1G`−k‖ρw. (20)

Proof: Due to (10) and the triangle inequality for Wp,

{Wp(P̂
N
ξ`
, Pξ`) ≤ ψN (β)} ⊃ {Wp(P̂

N
ξ`
, PNξ` ) ≤ ε̂N (βns)}

∩ {Wp(P
N
ξ`
, Pξ`) ≤ εN (βnom, ρξ`)}.

Thus, to show (8), it suffices to show that

E
[
1{Wp(P̂Nξ`

,PNξ`
)−ε̂N (βns)≤0}

× 1{Wp(PNξ`
,Pξ` )−εN (βnom,ρξ` )≤0}

]
≥ 1− β. (21)

We therefore exploit Lemma 2.1 with the random variable
X ≡ (ξ0,w`), taking values in the compact set K ≡
BNd∞ (ρξ0)×BN`q∞ (ρw), the random variable Y ≡ v` ∈ RN`r,
and g(X,Y ) ≡ g(ξ0,w`,v`), where

g(ξ0,w`,v`) := 1{Wp(PNξ`
(ξ0,w`),Pξ` )−εN (βnom,ρξ` )≤0}

× 1{Wp(P̂Nξ`
(ξ0,w`,v`),PNξ`

(ξ0,w`))−ε̂N (βns)≤0}.

Due to (18), E
[
1{Wp(P̂Nξ`

(z,ω,v`),PNξ`
(z,ω))−ε̂N (βns)≤0}

]
≥ 1 −

βns for any x = (z,ω) ∈ K and thus E[g(x, Y )] ≥
1{Wp(PNξ`

(x),Pξ` )−εN (βnom,ρξ` )≤0} × (1 − βns) =: k(x), for all
x ∈ K. Hence, since X ≡ (ξ0,w`) and Y ≡ v` are
independent by H2, we deduce from Lemma 2.1 that

E[g(X,Y )]

≥ E
[
1{Wp(PNξ`

(ξ0,w`),Pξ` )−εN (βnom,ρξ` )≤0}(1− βns)
]

= (1− βns)P(Wp(P
N
ξ`

(ξ0,w`), Pξ`) ≤ εN (βnom, ρξ`)).

From (7) and H3 in Assumption 3.2, it follows that Pξ` is sup-
ported on the compact set Bd∞(ρξ`) with diam∞(Bd∞(ρξ`)) =
2ρξ` and ρξ` given in (20). In addition, due to H1 and H2
in Assumption 3.2 the random states ξi` in the empirical
distribution PNξ` (ξ0,w`) = 1

N

∑N
i=1 δξi` are i.i.d.. Thus, we

get from Proposition 4.1 that P(Wp(P
N
ξ`

(ξ0,w`), Pξ`) ≤
εN (βnom, ρξ`)) ≥ 1 − βnom, which implies E[g(X,Y )] ≥
(1 − βns)(1 − βnom) = 1 − β. Finally, (21) follows from this
and the definition of g.

With this result at hand, we deduce from the expres-
sions (11) and (18) for the components of the ambiguity
radius that it decreases as we exploit a larger number N
of independent trajectories and relax our confidence choices,
i.e., reduce 1 − βnom and 1 − βns. Notice further that no
matter how many trajectories we use, the noise ambiguity
radius decreases to a strictly positive value. It is also worth to
observe that ψN generalizes the nominal ambiguity radius εN
in the DRO literature (even when dynamic random variables
are considered [9]) and reduces to εN in the noise-free case
where ε̂N = 0.

Drawing conclusions about how the ambiguity radius be-
haves as we simultaneously allow the horizon [0 : `] and
the number N of sampled trajectories to increase is a more
delicate matter. The value of the nominal component depends

essentially on N and the support of the distribution at `, with
the latter in turn depending on the system’s stability properties
and the support of the initial condition and internal noise
distributions. On the other hand, the noise component depends
on N and the quality of the estimation error. We quantify in the
next section how the latter guarantees uniform boundedness of
the noise radius under detectability-type assumptions.

Remark 4.8: (Positive lower bound of the noise radius).
The positive lower bound 2

p−1
p (Mw+Mv) on the noise radius

in (16) represents in general a fundamental limitation for the
ambiguity set accuracy, which is independent of the number
N of estimated state samples. This is because the bound is
related to the size of the state estimation error, which persists
under the presence of noise and may further grow in time if
there is no system detectability. �

Remark 4.9: (Optimal radius selection). Once a desired
confidence level 1 − β and the number of independent tra-
jectories N are fixed, we can optimally select the ambiguity
radius by minimizing the function

βnom 7→ ψN (βnom) ≡ εN (βnom) + ε̂N ((β − βnom)/(1− βnom)),

where we have taken into account the constraint (9) between
the nominal and the noise confidence. This function is non-
convex, but one-dimensional, and its minimizer is in the
interior of the interval (0, β), so its optimal value can be
approximated with high accuracy. �

D. Uncertainty quantification over bounded time horizons
In this section we discuss how the guarantees can be

extended to scenarios where an ambiguity set is built over a
finite-time horizon instead of a single instance `. In this case
we assume that samples are collected over the time window
[0 : `2] and we seek to build an ambiguity set about the state
distribution along [`1 : `2], with 0 ≤ `1 ≤ `2. We distinguish
between two ambiguity set descriptions depending on the way
the associated probabilistic guarantees are obtained. In the
first, we directly build an ambiguity set for the probability
distribution of the random vector ξ` := (ξ`1 , . . . , ξ`2) ∈ R˜̀d
with ` := (`1, . . . , `2) and ˜̀= `2 − `1 + 1, comprising of all
states over the interval of interest and using the concentration
of measure result of Proposition 4.1 for ˜̀d-dimensional ran-
dom variables. This has the drawback that the ambiguity radius
decays slowly with the number of trajectories due to the high
dimension of ξ`. The other description derives an ambiguity
set about the state distribution Pξ`1 at time `1 with prescribed
confidence, and propagates it under the dynamics while taking
into account the possible values of the internal noise. We
also present sharper results for the case when the internal
noise sequence is known. The first ambiguity set description
is provided by the following analogue of Theorem 4.7.

Theorem 4.10: (Ambiguity set over a bounded time hori-
zon). Consider output data collected from N realizations of
system (3) over the interval [0 : `2] and let Assumption 3.1
hold. Pick a confidence 1 − β, let βnom, βns ∈ (0, 1) satisfy-
ing (9), and consider the bounded-horizon estimator empirical
distribution

P̂Nξ` :=
1

N

N∑
i=1

δξ̂i`
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over the horizon [`1 : `2], where ξ̂i` := (ξ̂i`1 , . . . , ξ̂
i
`2

) ∈ R˜̀d
and each ξ̂i` is given by the observer (4). Then

P(Wp(P̂
N
ξ`
, Pξ`) ≤ ψN (β)) ≥ 1− β (22)

holds, where ξ` := (ξ`1 , . . . , ξ`2) and ψN (β) is given in (10).
The nominal component εN (βnom) ≡ εN (βnom, ρξ`) is given
by (11) (with d in the expression substituted by ˜̀d)

ρξ` := max
`∈[`1:`2]

{√
d‖Φ`‖ρξ0 +

√
q
∑̀
k=1

‖Φ`,`−k+1G`−k‖ρw
}
,

(23)

whereas ε̂N (βns) is given as

ε̂N (βns) := 2
p−1
p

(
M̃w + M̃v + M̃vα

−1
p

(
R̃2

c′N
ln

2

βns

))
, with

M̃w :=

`2∑
`=`1

Mw(`), M̃v :=

`2∑
`=`1

Mv(`),

R̃ :=
C̃v
m̃v

+
1

ln 2
, C̃v :=

`2∑
`=`1

Cv(`), m̃v :=

`2∑
`=`1

mv(`),

and Mw(`) ≡Mw, Mv(`) ≡Mv , Cv(`) ≡ Cv , and mv(`) ≡
mv , as given by (12b), (13a), (13b), and (13c), respectively.

The proof of this result follows the argumentation employed
for the proof of Theorem 4.7 (a sketch can be found in the
online version [10]). For the second ambiguity set description
we use a pointwise-in-time approach. To this end, we build a
family of ambiguity balls so that under the same confidence
level the state distribution at each time instant of the horizon
lies in the associated ball, i.e.,

P
(
Pξ` ∈ BψN,`(P̃Nξ` ) ∀` ∈ [`1 : `2]

)
≥ 1− β, (24)

where BψN,`(P̃Nξ`
)

:= {P ∈ Pp(Rd) |Wp(P, P̃
N
ξ`

) ≤ ψN,`}
and P̃Nξ` is the center of the ball. This is well suited for
stochastic optimization problems that have a separable struc-
ture with respect to the stochastic argument across different
time instances, i.e., problems of the form

inf
x∈X

E
[
f1(x, ξ`1) + · · ·+ f˜̀(x, ξ`2)

]
.

The pointwise ambiguity sets are quantified in the following
result.

Theorem 4.11: (Pointwise ambiguity sets over a bounded
time horizon). Let the assumptions of Theorem 4.10 hold,
assume that the internal noise sequence w` is independent (also
of the initial state), Pw` ∈ Pp(Rd) for ` ∈ [`1 : `2], i.e., it
is not necessarily compactly supported, and consider either of
the following two cases for its distribution when ` ∈ [`1 : `2]:

(i) Pw` is not known and E
[
‖w`‖p

] 1
p ≤ qw.

(ii) Pw` is known.
Then, for any confidence 1 − β, and βnom, βns ∈ (0, 1) satis-
fying (9), (24) holds, with P̃Nξ`1

:= P̂Nξ`1
and ψN,`1 as given

by Theorem 4.7 (for ` ≡ `1), and P̃Nξ` , ψN,`, ` ∈ [`1 + 1 : `2]
defined as follows for the respective two cases above:

(i) The ambiguity set center is P̃Nξ` := 1
N

∑N
i=1 δξ̃i`

with

ξ̃i` := Φ`,`1 ξ̂`1 and the radius is given recursively by
ψN,` := ‖A`−1‖ψN,`−1 + qw.

(ii) The ambiguity set center is P̃Nξ` :=
(
(A`−1)#P̃

N
ξ`−1

)
?

Pw`−1
and the radius is ψN,` := ‖A`−1‖ · · · ‖A`1‖ψN,`1 .

Note that when the internal noise distribution is known,
all individual ambiguity balls of Theorem 4.11 shrink at the
exact same decay rate with the number of samples, which
overcomes the slow decay rate of the ambiguity radius of
Theorem 4.10 for larger time horizons. In our technical
approach, we use the next result, whose proof can be found
in the online version [10]. The result examines what happens
to the Wasserstein distance between the distributions of two
random variables when other random variables are added.

Lemma 4.12: (Wasserstein distance under convolution).
Given p ≥ 1 and distributions P1, P2, Q ∈ Pp(Rd), it
holds that Wp(P1, P2) ≤ Wp(P1 ? Q, P2 ? Q). Also, if it
holds that

( ∫
Rd ‖x‖

pQ(dx)
) 1
p ≤ q, then Wp(P1, P2 ? Q) ≤

Wp(P1, P2) + q.
Proof of Theorem 4.11: The proof is carried out by

induction on ` ∈ [`1 : `2]. In particular, it suffices to establish
that

Wp

(
Pξ`1 , P̃

N
ξ`1

)
≤ ψN,`1 =⇒

Wp

(
Pξ`′ , P̃

N
ξ`′

)
≤ ψN,`′ ∀`′ ∈ [`1 : `]. (25)

Note that from Theorem 4.7, P
(
Pξ`1 ∈ BψN,`1 (P̃Nξ`1

)
)
≥ 1−β.

From (25), this also implies that P
(
Pξ`′ ∈ BψN,`′ (P̃

N
ξ`′

) ∀`′ ∈
[`1 : `]

)
≥ 1−β, establishing validity of the result for ` ≡ `2.

For ` ≡ `1, the induction hypothesis (25) is a tautology.
Next, assuming that it is true for certain ` ∈ [`1 : `2 − 1], we
show that it also holds for ` + 1. Hence it suffices to show
that if Wp

(
Pξ` , P̃

N
ξ`

)
≤ ψN,` then also Wp

(
Pξ`+1

, P̃Nξ`+1

)
≤

ψN,`+1 for both cases (i) and (ii). Consider first (i) and note
that then the ambiguity set center at ` + 1 satisfies P̃Nξ`+1

=
1
N

∑N
i=1 δξ̃i`+1

= 1
N

∑N
i=1 δA`ξ̃i`

= (A`)#P̃
N
ξ`

, where we have

exploited that ξ̃ik ≡ Φk,`1 ξ̂
i
`1

and the definition of Φk,`1 (for
k = `−1, `) to derive the second equality. Using also the fact
that Pξ`+1

=
(
(A`)#Pξ`

)
?Pw` , we get from the second result

of Lemma 4.12 that

Wp(Pξ`+1
, P̃Nξ`+1

) = Wp

((
(A`)#Pξ`

)
? Pw` , (A`)#P̃

N
ξ`

)
≤Wp

(
(A`)#Pξ` , (A`)#P̃

N
ξ`

)
+ qw

≤ ‖A`‖Wp

(
Pξ` , P̃

N
ξ`

)
+ qw ≤ ‖A`‖ψN,` + qw = ψN,`+1.

Here we also used the fact that Wp(f#P, f#Q) ≤ LWp(P,Q)
for any globally Lipschitz function f : Rd → Rr with
Lipschitz constant L in the second to last inequality (see e.g.,
[45, Proposition 7.16]).

Next, we prove the induction hypothesis for (ii). Using
Lemma 4.12 and the definition of the ambiguity set center
and radius,

Wp(Pξ`+1
, P̃Nξ`+1

)

= Wp

((
(A`)#Pξ`

)
? Pw` ,

(
(A`)#P̃

N
ξ`

)
? Pw`

)
≤Wp

(
(A`)#Pξ` , (A`)#P̃

N
ξ`

)
≤ ‖A`‖Wp

(
Pξ` , P̃

N
ξ`

)
≤ ‖A`‖ψN,` = ‖A`‖‖A`−1‖ · · · ‖A`1‖ψN,`1 = ψN,`+1,

completing the proof.
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V. SUFFICIENT CONDITIONS FOR UNIFORMLY BOUNDED
NOISE AMBIGUITY RADII

In this section we leverage Assumption 3.4 to establish that
the noise ambiguity radius remains uniformly bounded as the
sampling horizon increases. We first provide uniform bounds
for the matrices involved in the system and observer error
dynamics.

Proposition 5.1: (Bounds on system/observer matrices).
Under Assumption 3.4, the gain matrices Kk can be selected
so that the following properties hold:

(i) There exist K?,K
?, G? > 0 and Ψ?

s > 0, s ∈ N0, so that
‖Gk‖ ≤ G?, K? ≤ ‖Kk‖ ≤ K?, and ‖Ψk+s,k‖ ≤ Ψ?

s

for all and k ∈ N0.
(ii) There exists s0 ∈ N so that ‖Ψk+s,k‖ ≤ 1

2 for all k ∈ N0

and s ≥ s0.
Proof: Note that we only need to verify part (i) for the

time-varying case. Since all Gk are uniformly bounded, we
directly obtain the bound G?. Let

Kk := −AkΦk,k−t−1O−1
k,k−t−1Φ>k,k−t−1H

>
k ,

(for k > t+1) as selected in [36, Page 574] (but with a minus
sign at the front to get the plus sign in Fk = Ak + KkHk)
and with the observability GramianOk,k−t−1 as defined in As-
sumption 3.4(ii). Then, the upper bound K? follows from the
fact that the system matrices are uniformly bounded combined
with the uniform observability property of Assumption 3.4,
which implies that all O−1

k,k−t−1 are also uniformly bounded.
On the other hand, the lower bound K? follows from the
assumption that the system matrices are uniformly bounded,
which imposes a uniform lower bound on the smallest singular
value of O−1

k,k−t−1, the uniform lower bound on the smallest
singular value of Ak, hence, also on that of Φk,k−t−1 and
Φ>k,k−t−1, and the uniform lower bound on ‖Hk‖ (all found
in Assumption 3.4). Finally, the bounds Ψ?

s follow from the
uniform bounds for all Ak and Hk and the derived bound K?

for all Kk.
To show part (ii), assume first that Assumption 3.4(i) holds,

i.e., the system is time invariant and (A,H) is detectable.
Then, we can choose a nonzero gain matrix K so that
F = A + KH is convergent (cf. [43, Theorem 31]), namely
lims→∞ ‖F s‖ = 0. Consequently, there is s0 ∈ N with
‖F s‖ ≤ 1

2 for all s ≥ s0 and the result follows by taking
into account that Ψk+s,k = F s. In case Assumption 3.4(ii)
holds, let

ẽk+1 = Fkẽk (26)

be the recursive noise-free version of the error equation (6).
Then, from [36, Page 577], there exists a quadratic time-
varying Lyapunov function V (k, ẽ) := ẽ>Qkẽ with each Qk
being positive definite, a1, a2 > 0, a3 ∈ (0, 1), and m ∈ N so
that

a1 ≤ λmin(Qk) ≤ λmax(Qk) ≤ a2 (27a)
V (k +m, ẽk+m)− V (k, ẽk) ≤ −a3V (k, ẽk) (27b)

for any k and any solution of (26) with state ẽk at time k.
Thus, Ψ>k+m,mQk+mΨk+m,m � (1 − a3)Qk, and hence, by

induction Ψ>k+νm,mQk+νmΨk+νm,m � (1− a3)νQk, since

Ψ>k+(ν+1)m,mQk+(ν+1)mΨk+(ν+1)m,m

=Ψ>k+m,kΨ>k+(ν+1)m,k+mQk+(ν+1)mΨk+(ν+1)m,k+mΨk+m,k

� (1− a3)νΨ>k+m,kQk+mΨk+m,k � (1− a3)(ν+1)Qk.

Next, pick ẽ with ‖ẽ‖ = 1 and ‖Ψk+νm,mẽ‖ = ‖Ψk+νm,m‖.
Taking into account that ẽ>Ψ>k+νm,kQk+νmΨk+νm,mẽ ≤
(1− a3)ν ẽ>Qkẽ, we get λmin(Qk+νm)‖Ψk+νm,kẽ‖2 ≤ (1−
a3)νλmax(Qk). Using (27a),

‖Ψk+νm,k‖ ≤ (1− a3)
ν
2

(a2

a1

) 1
2

. (28)

Now, select ν so that (1 − a3)
ν′
2 (a2/a1)

1
2 ≤

1/(2 maxs∈[1:m] Ψ?
s) for all ν′ ≥ ν. Let s0 := νm and

pick s ≥ s0. Then, s = s′0 +m′ for some s′0 = ν′m, ν′ ≥ ν,
and m′ ∈ [0 : m− 1] and we get from (28), part (i), and the
selection of ν that

‖Ψk+sm,k‖=‖Ψk+s′0+m′,k+s′0
Ψk+s′0,k

‖

≤‖Ψk+s′0+m′,k+s′0
‖‖Ψk+ν′m,k‖≤Ψ?

m′
1

2 maxs∈[1:m] Ψ?
s

≤ 1

2
,

which establishes the result.
Based on this result and Assumption 3.4 about the system’s

detectability/uniform observability properties, we proceed to
provide a uniform bound on the size of the noise radius for
arbitrarily long evolution horizons.

Proposition 5.2: (Uniform bounds for noise ambiguity
radius). Consider data collected from N realizations of sys-
tem (3), a confidence 1 − β as in (9), and let Assump-
tions 3.1, 3.2, and 3.4 hold. Then, there exist observer gain
matrices Kk so that the noise ambiguity radius ε̂N in (16) is
uniformly bounded with respect to the sampling horizon size.
In particular, there exists `0 ∈ N so that, for each ` ≥ `0,
Mw ≡Mw(`), Mv ≡Mv(`), and R ≡ R(`) given by (12b),
(13a), and (17), are uniformly upper bounded as

Mw ≤
1

2

√
dρξ0 + 3

√
q

`0−1∑
j=0

Ψ?
jG

?ρw,

Mv ≤ 3Mvr

`0−1∑
j=0

Ψ?
jK

?, R ≤ 3
Cv
mv

r
p−1
p

∑`0−1
j=0 Ψ?

jK
?

K?
.

Proof: Consider gain matrices Kk and the time s0 as
given in Proposition 5.1, and let `0 := s0. Then, for any ` ≥
`0, ` = n`0 + r′ with 0 ≤ r′ < `0 and we have

∑̀
k=1

‖Ψ`,`−k+1G`−k‖ ≤
∑̀
k=1

‖Ψ`,`−k+1‖G?

=

( r′∑
k=1

‖Ψ`,`−k+1‖+
∑̀

k=r′+1

‖Ψ`,`−k+1‖
)
G?

≤
( r′−1∑
s=0

Ψ?
s +

n`0+r′∑
k=r′+1

‖Ψn`0+r′,n`0+r′−k+1‖
)
G?

(k 7→ (ν − 1)`0 + j + r′)
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=

( r′−1∑
s=0

Ψ?
s +

n∑
ν=1

`0∑
j=1

‖Ψn`0+r′,(n−ν)`0+r′+`0−j+1‖
)
G?

(`0 + 1− j 7→ j)

≤
( r′−1∑
s=0

Ψ?
s +

n∑
ν=1

`0∑
j=1

‖Ψn`0+r′,(n−ν+1)`0+r′‖

× ‖Ψ(n−ν)`0+r′+`0,(n−ν)`0+r′+j‖
)
G?

=

( r′−1∑
s=0

Ψ?
s +

n∑
ν=1

‖Ψn`0+r′,(n−ν+1)`0+r′‖
`0∑
j=1

× ‖Ψ(n−ν)`0+r′+`0,(n−ν)`0+r′+j‖
)
G?

≤
( r′−1∑
s=0

Ψ?
s +

n∑
ν=1

( ν−1∏
κ=1

‖Ψ(n+1−κ)`0+r′,(n−κ)`0+r′‖
)

×
`0∑
j=1

Ψ?
`0−j

)
G?

≤
( `0−1∑

s=0

Ψ?
s +

n∑
ν=1

(1

2

)ν−1
`0−1∑
j=0

Ψ?
j

)
G? ≤ 3

`0−1∑
j=0

Ψ?
jG

?,

where we have used
∑−1
κ=0 ≡

∑0
κ=1 ≡ 0 and

∏0
κ=1 ≡ 1.

From this and the fact that from Proposition 5.1, ‖Ψ`‖ ≤ 1
2

for all ` ≥ `0, we get the upper bound for Mw. The
one for Mv is obtained analogously. Finally, for R, we
obtain the same type of upper bound for Cv as for Mw,
and exploit Proposition 5.1(i) to get the lower bound mv =

mvr
1
p
(∑`

k=1 ‖Ψ`,`−k+1K`−k‖p
) 1
p ≥ mvr

1
p ‖Ψ`,`K`−1‖ ≥

mvr
1
pK?, which is independent of `.

Remark 5.3: (Noise ambiguity radius for time-invariant
systems). For time-invariant systems, it is possible to improve
the bounds of Proposition 5.2 for Mw, Mv , and R by
exploiting the fact that the system and observer gain matrices
are constant. The precise bounds in this case (see also [8,
Proposition 5.5]) are

Mw ≤
1

2

√
dρξ0 + 2

√
q

`0−1∑
k=0

‖ΨkG‖ρw,

Mv ≤ 2Mvr

`0−1∑
k=0

‖ΨkK‖, R ≤ 2
Cv
mv

r
p−1
p

∑`0−1
k=0 ‖ΨkK‖(∑`0−1
k=0 ‖ΨkK‖p

) 1
p

,

with `0 as in the time-invariant case of Proposition 5.2, and
where G and K denote the constant values of the internal
noise and observer gain matrices, resp. The superiority of these
bounds can be checked using the matrix bounds in Proposi-
tion 5.1(i) and their derivation is based on a simplified version
of the arguments employed for the proof of Proposition 5.2.�

VI. APPLICATION TO ECONOMIC DISPATCH WITH
DISTRIBUTED ENERGY RESOURCES

In this section, we take advantage of the ambiguity sets
constructed with noisy partial measurements, cf. Theorem 4.7,
to hedge against the uncertainty in an optimal economic
dispatch problem. This is a problem where uncertainty is

naturally involved due to (dynamic) energy resources, which
the scheduler has no direct access to control or measure, like
storage or renewable energy elements. The financial implica-
tions of the associated decisions are of utmost importance for
the electricity market and justify the use of a reliable decision
framework that accounts for the variability of the uncertain
factors.

A. Network model and optimization objective

Consider a network with distributed energy resources [13]
comprising of n1 generator units and n2 storage (battery)
units. The network needs to operate as close as possible to
a prescribed power demand D at the end of the time horizon
[0 : `], corresponding to a uniform discretization of step-size
δt of the continuous-time domain. To this end, each generator
and storage unit supplies the network with positive power P j

and Sι, respectively, at time `. We assume we can control the
power of the generators, which additionally needs to be within
the upper and lower thresholds P jmin and P jmax, respectively.
Each battery is modeled as an uncertain dynamic element
with an unknown initial state distribution and we can decide
whether it is connected (ηι = 1) or not (ηι = 0) to the
network at time `. Our goal is to minimize the energy cost
while remaining as close as possible to the prescribed power
demand. Thus, we minimize the overall cost

C(P ,η) :=

n1∑
j=1

gj(P j) +

n2∑
ι=1

ηιhι(Sι)

+ c

( n1∑
j=1

P j +

n2∑
ι=1

ηιSι −D
)2

(29)

where P := (P 1, . . . , Pn1), η := (η1, . . . , ηn2), gj and hι

are cost functions for the power provided by generator j
and storage unit ι, respectively. We treat the deviation of the
injected power from its prescribed demand as a soft constraint
by assigning it a quadratic cost with weight c and augmenting
the overall cost function (29). Due to the uncertainty about the
batteries’ state and their injected powers Sι, the minimization
of (29) is a stochastic problem.

B. Battery dynamics and observation model

Each battery is modeled as a single-cell dynamic element
and we consider its current Iι discharging over the operation
interval (if connected to the network) as a fixed and a priori
known function of time. Its dynamics is conveniently approx-
imated by the equivalent circuit in Figure 2(a) (see e.g., [32],
[33]), where zι is the state of charge (SoC) of the cell and
Ocv(zι) is its corresponding open-circuit voltage, which we
approximate by the affine function αιzι + βι in Figure 2(b).
The associated discrete-time cell model is

χιk+1 ≡
(
Iι,2k+1

zιk+1

)
=

(
aι 0
0 1

)(
Iι,2k
zιk

)
+

(
1− aι
−δt/Qι

)
Iιk

θιk ≡ V ιk = αιzιk + βι − IιkRι,1 − I
ι,2
k Rι,2

where aι := e−δt/(R
2,ιCι), δt is the time discretization step,

and Qι is the cell capacity. Here, we assume that for all k ∈
[0 : `] the cell is neither fully charged or discharged (by e.g.,
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Fig. 2. (a) shows the equivalent circuit model of a lithium-ion battery cell
in discharging mode (c.f. [33, Figure 2],[32, Figure 1]). (b) is taken from [32,
Figure 3] and shows the nonlinear dependence of the open circuit voltage on
the state of charge and its affine approximation.

requiring that 0 < z0 −
∑`−1
k=0 δtI

ι
k/Q

ι < 1 for all k and
any candidate initial conditions and input currents) and so,
the evolution of its voltage is accurately represented by the
above difference equation. The initial condition comprising of
the SoC zι0 and the current Iι,20 through Rι,2 is random with
an unknown probability distribution. We also consider additive
measurement noise with an unknown distribution, namely, we
measure

θιk = αιzιk + βι − IιkRι,1 − I
ι,2
k Rι,2 + vk.

To track the evolution of each random element through a linear
system of the form (3), we consider for each battery a nominal
state trajectory χι,?k = (Iι,2,?k , zι,?k ) initiated from the center
of the support of its initial-state distribution. Setting ξιk =
χιk − χ

ι,?
k and ζιk = θk(χιk)− θk(χι,?k ),

ξιk+1 = Aιkξ
ι
k

ζιk = Hι
kξ
ι
k + vk,

where Aιk := diag(a, 1) and Hι
k := (αι,−Rι,2). Denoting

ξ := (ξ1, . . . , ξn2) and ζ := (ζ1, . . . , ζn2), we obtain a system
of the form (3) for the dynamic random variable ξ. Despite
the fact that the state distribution ξk of the batteries across
time is unknown, we assume having access to output data
from N independent realizations of their dynamics over the
horizon [0 : `]. Using these samples we exploit the results
of the paper to build an ambiguity ball PN of radius εN in
the 2-Wasserstein distance (i.e., with p = 2), that contains
the batteries’ state distribution Pξ` at time ` with prescribed
probability 1−β. In particular, we take the samples from each
realization i ∈ [1 : N ] and use an observer to estimate its state
ξ̂i` at time `. The ambiguity set is centered at the estimator-
based empirical distribution P̂Nξ` = 1

N

∑N
i=1 δξ̂i`

and its radius
can be determined using Theorem 4.7 and Proposition 4.6.

C. Decision problem as a distributionally robust optimization
(DRO) problem

To solve the decision problem regarding whether or not to
connect the batteries for economic dispatch, we formulate a
distributionally robust optimization problem for the cost (29)
using the ambiguity set PN . To do this, we derive an explicit
expression of how the cost function C depends on the stochas-
tic argument ξ`. Notice first that the power injected by each

battery at time ` is

Sι = Iι`V
ι
` = Iι`

(
αιzι` + βι − Iι`Rι,1 − I

ι,2
` Rι,2

)
= 〈(−Iι`Rι,2, αιIι`), χι`〉+ βιIι` − (Iι`)

2Rι,1

= 〈α̂ι, ξι`〉+ β̂ι ≡ (α̂ι)>ξι` + β̂ι,

with α̂ι := (−Iι`Rι,2, αιIι`) and

β̂ι := 〈α̂ι, χι,?` 〉+ Iι`β
ι − (Iι`)

2Rι,1

= Iι`I
ι,2,?
` Rι,2 − αιIι`z

ι,?
` + Iι`β

ι − (Iι`)
2Rι,1.

Considering further affine costs hι(S) := ᾱιS + β̄ι for the
power provided by the batteries, the overall cost C becomes

C(P ,η) = g(P ) + (η ∗ α̃)>ξ` + η>β̃

+ c
(
1>P + (η ∗ α̂)>ξ` + η>β̂ −D

)2
, (30)

where ∗ denotes the Khatri-Rao product (cf. Section II) and

g(P ) :=

n1∑
j=1

gj(P j), α̂ := (α̂1, . . . , α̂n2),

β̂ := (β̂1, . . . , β̂n2), α̃ := (ᾱ1α̂1, . . . , ᾱn2 α̂n2),

β̃ := (ᾱ1β̂1 + β̄1, . . . , ᾱn2 β̂n2 + β̄n2).

Using the equivalent description (30) for C and recalling the
upper and lower bounds P jmin and P jmax for the generator’s
power, we formulate the DRO power dispatch problem

inf
η,P

{
fη(P ) + sup

Pξ`∈P
N

EPξ`
[
hη(P , ξ`)

]}
, (31a)

s.t. P jmin ≤ P
j ≤ P jmax ∀j ∈ [1 : n1], (31b)

with the ambiguity set PN introduced above and

fη(P ) := g(P ) + cP>11>P

+ 2c(η>β̂ −D)1>P + c(η>β̂ −D)2 + η>β̃

hη(P , ξ`) := cξ>` (η ∗ α̂)(η ∗ α̂)>ξ` +
(
2c
(
1>P

+ η>β̂ −D)(η ∗ α̂)> + (η ∗ α̃)>
)
ξ`,

This formulation aims to minimize the worst-case expected
cost with respect to the plausible distributions of ξ at time `.

D. Tractable reformulation of the DRO problem

Our next goal is to obtain a tractable reformulation of
the optimization problem (31). To this end, we first provide
an equivalent description for the inner maximization in (31),
which is carried out over a space of probability measures.
Exploiting strong duality (see [22, Corollary 2(i)] or [5,
Remark 1]) and recalling that our ambiguity set PN is based
on the 2-Wasserstein distance, we equivalently write the inner
maximization problem supPξ`∈PN

EPξ`
[
hη(P , ξ`)

]
as

inf
λ≥0

{
λψ2

N +
1

N

N∑
i=1

sup
ξ`∈Ξ
{hη(P , ξ`)− λ‖ξ` − ξ̂i`‖2}

}
,

(32)

where ψN ≡ ψN (β) is the radius of the ambiguity ball,
Ξ ⊂ R2n2 is the support of the batteries’ unknown state
distribution, and the ξ̂i` are the estimated states of their
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realizations. We slightly relax the problem, by allowing the
ambiguity ball to contain all distributions with distance ψN
from P̂Nξ` that are supported on R2n2 and not necessarily on
Ξ. Thus, we first look to solve for each estimated state ξ̂i` the
optimization problem

sup
ξ`∈R2n2

{hη(P , ξ`)− λ‖ξ` − ξ̂i`‖2},

which is written

sup
ξ`∈R2n2

{
ξ>` Aξ` +

(
2c
(
1>P + η>β̂ −D)(η ∗ α̂)>

+ (η ∗ α̃)>
)
ξ` − λ(ξ` − ξ̂i`)>(ξ` − ξ̂i`)

}
= −λ(ξ̂i`)

>ξ̂i` + sup
ξ`∈R2n2

{
ξ>` (A− λI2n2

)ξ`

+
(
2c
(
1>P + η>β̂ −D)(η ∗ α̂)>

+ (η ∗ α̃)> + 2λ(ξ̂i`)
>)ξ`}

= −λ(ξ̂i`)
>ξ̂i` + sup

ξ`∈R2n2

{
ξ>` (A− λI2n2)ξ` + (ri)>ξ`

}
where ri ≡ riη(P , λ) := 2c(1>P+η>β̂−D)(η∗α̂)+η∗α̃+

2λξ̂i` and A ≡ Aη := c(η∗α̂)(η∗α̂)> is a symmetric positive
semi-definite matrix with diagonalization A = Q>DQ where
the eigenvalues decrease along the diagonal. Hence, we get

sup
ξ`∈R2n2

{
ξ>` (A− λI2n2)ξ` + (ri)>ξ`

}
= sup
ξ`∈R2n2

{
ξ>` (Q>DQ−Q>λI2n2

Q)ξ` + (ri)>ξ`
}

= sup
ξ∈R2n2

{
ξ>(D− λI2n2

)ξ + (r̂i)>ξ
}

with r̂i := Qri and denoting λmax(A) the maximum eigen-
value of A we have

sup
ξ∈R2n2

{
ξ>(D− λI2n2

)ξ + (r̂i)>ξ
}

=

{
∞ if 0 ≤ λ < λmax(A)
1
4 (r̂i)>(λI2n2

−D)−1r̂i if λ > λmax(A).
(33)

To obtain this we exploited that Q(ξ) := ξ>(D− λI2n2
)ξ +

(r̂i)>ξ is maximized when

∇Q(ξ?) = 0 ⇐⇒ 2(D− λI2n2
)ξ? + r̂i = 0

⇐⇒ ξ? =
1

2
(λI2n2 −D)−1r̂i,

which gives the optimal value Q(ξ?) = 1
4 (r̂i)>(λI2n2

−
D)−1r̂i. Note that we do not need to specify the value of
the expression in (33) for λ = λmax. In particular, since the
function we minimize in (32) is convex in λ, the inner part of
the DRO problem is equivalently written

inf
λ>λmax(A)

{
λ

(
ψ2
N −

1

N

N∑
i=1

(ξ̂i`)
>ξ̂i`

)

+
1

4N

N∑
i=1

r̂iη(P , λ)>(λI2n2
−D)−1r̂iη(P , λ)

}
.

Taking further into account that

(λI2n2 −D)−1 = diag
( 1

λ− λmax(A)
, . . . ,

1

λ− λmin(A)

)
,

as well as the constraints (31b) on the decision variable P ,
the overall DRO problem is reformulated as

min
η

inf
P ,λ

{
fη(P ) + λ

(
ψ2
N −

1

N

N∑
i=1

(ξ̂i`)
>ξ̂i`

)

+
1

4N

N∑
i=1

r̂iη(P , λ)>

× diag
( 1

λ− λmax(A)
, . . . ,

1

λ− λmin(A)

)
r̂iη(P , λ)

}
(34a)

subject to P jmin ≤ P
j ≤ P jmax ∀j ∈ [1 : n1]

λ > λmax(A). (34b)

E. Simulation results

For the simulations we consider n1 = 4 generators and
n2 = 3 batteries with the same characteristics. We assume
that the distributions of each initial SoC zι0 and current Iι,20

are known to be supported on the intervals [0.45, 0.9] and
[1.5, 1.7], respectively. The true SoC distribution for batteries
2 and 3 at time zero is Pz20 = Pz30 = U [0.45, 0.65] (U
denotes uniform distribution). On the other hand, the provider
of battery 1 has access to the distinct batteries 1A and 1B and
selects randomly one among them with probabilities 0.9 and
0.1, respectively. The SoC distribution of battery 1A at time
zero is Pz1A0 = U [0.45, 0.65], whereas that of battery 1B is
Pz1B0 = U [0.84, 0.86]. Thus, we get the bimodal distribution
Pz10 = 0.9U [0.45, 0.65] + 0.1U [0.84, 0.86], which is responsi-
ble for non-negligible empirical distribution variations, since
for small numbers of samples, it can fairly frequently occur
that the relative percentage of samples from 1B deviates
significantly from its expected one. On the other hand, we
assume that the true initial currents Iι,20 of all batteries are
fixed to 1.6308, namely, PI1,20

= PI2,20
= PI3,20

= δ1.6308. For
the measurements, we consider the Gaussian mixture noise
model Pvk = 0.5N (0.01, 0.012) + 0.5N (−0.01, 0.012) with
N (µ, σ2) denoting the normal distribution with mean µ and
variance σ2.

To compute the ambiguity radius for the reformulated DRO
problem (34), we specify its nominal and noise components
εN (βnom, ρξ`) and ε̂N (βns), where due to Proposition 4.1, ρξ`
can be selected as half the diameter of any set containing the
support of Pξ` in the infinity norm. It follows directly from
the specific dynamics of the batteries that ρξ` does not exceed
half the diameter of the initial conditions’ distribution support,
which is isometric to [0.45, 0.9]3 × [1.5, 1.7]3 ⊂ R6. Hence,
using Proposition 19 in the online version [10] with p = 2,
d = 6, and ρξ` = 0.225, we obtain

εN (βnom, ρξ`) = 4.02N−
1
6 + 1.31(lnβ−1

nom)
1
4N−

1
4 .

To determine the noise radius, we first compute lower and
upper bounds mv and Mv for the L2 norm of the Gaussian
mixture noise vk and an upper bound Cv for its ψ2 norm.
Denoting by EP the integral with respect to the distribution
P , we have for Pvk = 0.5N (µ1, σ

2
1) + 0.5N (µ2, σ

2
2) that

‖vk‖22 = E 1
2 (P1+P2)

[
v2
k

]
= 1

2 (µ2
1 + σ2

1 + µ2
2 + σ2

2), where
P1 = N (µ1, σ

2
1), P2 = N (µ2, σ

2
2) and we used the fact that
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Fig. 3. Results from 100 realizations of the power dispatch problem
with N = 10 independent samples used for each realization. We compute
the optimizers of the SAA and DRO problems, plot their corresponding
optimal values (termed “SAA cost” and “DRO cost”), and also evaluate
their performance with respect to the true distribution (“true cost with SAA
optimizer” and “true cost with DRO optimizer”). With the exception of two
realizations (whose DRO cost and true cost with the DRO optimizer are
framed inside black boxes), the DRO cost is above the true cost of the DRO
optimizer, namely, this happens with high probability. From the plot, it is
also clear that the SAA solution tends to over-promise since its value is most
frequently below the true cost of the SAA optimizer.

EPi
[
v2
k

]
= µ2

i+EPi
[
(vk−µi)2

]
= µ2

i+σ
2
i . Hence, in our case,

where µi = σi = 0.01, we can pick mv = Mv = 0.01
√

2.
Further, using Proposition 21 from the online version [10], we
can select Cv = 0.01(

√
8/3 +

√
ln 2). To perform the state

estimation from the output samples we used a Kalman filter. Its
initial condition covariance matrix corresponds to independent
Gaussian distributions for each SoC zι0 and current Iι,20 with
a standard deviation of the order of their assumed support.
We also select the same covariance as in the components
of the Gaussian mixture noise to model the measurement
noise of the Kalman filter. Using the dynamics of the filter
and the values of mv , Mv , and Cv above, we obtain from
(12b), (13a)-(13c), and (17) the constants Mw = 0.325,
Mv = 0.008, and R = 2.72 for the expression of the
noise radius. In particular, we have from Proposition 4.6 that
ε̂N (βns) = 0.47 + 0.0113

√
74.98/N ln(2/βns) and the overall

radius is

ψN (β) = 0.47 + 4.02N−
1
6 + 1.31(lnβ−1

nom)
1
4N−

1
4

+ 0.0973(ln(2β−1
ns ))

1
2N−

1
2 . (35)

We assume that the energy cost of the generators is lower
than that of the batteries and select the quadratic power
generation cost g(P ) = 0.25

∑4
j=1(P j − 0.1)2 and the same

lower/upper power thresholds P jmin = 0.2/P jmax = 0.5 for
all generators. For the batteries, we pick the same resistances
Rι,1 = 0.34 and Rι,2 = 0.17, and we take aι = 0.945 and
Iιk = 8 for all times. We nevertheless use different linear costs
hι(S) = ᾱιS for their injected powers, with ᾱ1 = 1 and
ᾱ2 = ᾱ3 = 1.3, since battery 1 is less reliable due to the large
SoC fluctuation among its two modes.

We solve 100 independent realizations of the overall eco-
nomic dispatch problem. For each of them, we generate
independent samples from the batteries’ initial condition distri-
butions and solve the associated sample average approximation
(SAA) and DRO problems for N = 10, N = 40, and N = 160

(a)

(b)

Fig. 4. Analogous results to those of Figure 3, from 100 realizations with
(a) N = 40 and (b) N = 160 independent samples, and the ambiguity radius
tuned so that the same confidence level is preserved. In both cases, the DRO
cost is above the true cost of the DRO optimizer with high probability (in
fact, always). Furthermore, the cost of the DRO optimizer (red star) is strictly
better than the true cost of the SAA one (green circle) for a considerable
number of realizations (highlighted in the illustrated boxes).

samples, respectively, using CVX [23]. It is worth noting that
the radius ψN given by (35) is rather conservative. The main
reasons for this are 1) conservativeness of the concentration of
measure results used for the derivation of the nominal radius,
2) lack of homogeneity of the distribution’s support (the a
priori known support of the Iι,20 components is much smaller
than that of the zι0 ones), 3) independence of the batteries’
individual distributions, which we have not exploited, and 4)
conservative upper bounds for the estimation error. Although
there is room to sharpen all these aspects, it requires multiple
additional contributions and lies beyond the scope of the paper.
Nevertheless, the formula (35) gives a qualitative intuition
about the decay rates for the ambiguity radius. In particular,
it indicates that under the same confidence level and for small
sample sizes, an ambiguity radius proportional to N−

1
4 is a

reasonable choice. Based on this, we selected the ambiguity
radii 0.05, 0.0354, and 0.025 for N = 10, N = 40, and
N = 160. The associated simulation results are shown in Fig-
ures 3, 4(a), and 4(b), respectively. We plot there the optimal
values of the SAA and DRO problems (termed “SAA cost” and
“DRO cost”) and provide the expected performance of their
respective decisions with respect to the true distribution (“true
cost with SAA optimizer” a.k.a. out-of-sample performance
and “true cost with DRO optimizer” ). We observe that in all
three cases, the DRO value is above the true cost of the DRO
optimizer for nearly all realizations (and for all when N is 40
or 160), which verifies the finite sample guarantees of DRO
formulations [18, Theorem 3.5]. In addition, when solving the
problem for 40 or 160 samples, we witness a clear out-of-
sample superiority of the DRO decision compared to the one
of the non-robust SAA, because it considerably improves the
true cost for a significant number of realizations (cf. Figure 4).
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F. Discussion

The SAA solution tends to consistently promise a better
outcome compared to what the true distribution reveals for
the same decision (e.g., magenta circle being usually under
the green circle in all figures). This rarely happens for the
DRO solution, and when it does, it is only by a small margin.
This makes the DRO approach preferable over the SAA one
in the context of power systems operations where honoring
committments at a much higher cost than anticipated might
result in significant losses, and not fulfilling committments
may lead to penalties from the system operator.

VII. CONCLUSIONS

We have constructed high-confidence ambiguity sets for
dynamic random variables using partial-state measurements
from independent realizations of their evolution. In our model,
both the dynamics and measurements are subject to distur-
bances with unknown probability distributions. The ambiguity
sets are built using an observer to estimate the full state
of each realization and leveraging concentration of mea-
sure inequalities. For systems that are either time-invariant
and detectable, or uniformly observable, we have established
uniform boundedness of the ambiguity radius. To aid the
associated probabilistic guarantees, we also provided auxiliary
concentration of measure results. Future research will include
the consideration of robust state estimation criteria to mitigate
the noise effect on the ambiguity radius, the extension of
the results to nonlinear dynamics, and the construction of
ambiguity sets with information about the moments.

VIII. APPENDIX

Here we give proofs of various results of the paper.
Proof of Lemma 2.1: Since X and Y are independent,

their joint distribution P(X,Y ) is the product measure PX⊗PY
of the individual distributions PX and PY . Thus, from the
Fubini theorem [1, Theorem 2.6.5] and integrability of g, k
we get

E[g(X,Y )] =

∫
Rn1×Rn2

g(x, y)dP(X,Y )

=

∫
Rn1

∫
Rn2

g(x, y)dPY dPX =

∫
Rn1

E[g(x, Y )]dPX

=

∫
K

E[g(x, Y )]dPX ≥
∫
K

k(x)dPX

=

∫
Rn1

k(x)dPX = E[k(X)],

which concludes the proof.
Proof of Lemma 4.3: Using [9, Lemma A.2] to

bound the Wasserstein distance of two discrete distribu-

tions, we get Wp(P̂
N
ξ`
, PNξ` ) ≤

(
1
N

∑N
i=1 ‖ξ̂i` − ξi`‖p

) 1
p

=(
1
N

∑N
i=1 ‖ei`‖p

) 1
p

. From (6), we have

‖ei`‖ =
∥∥∥Ψ`z

i +
∑̀
k=1

(
Ψ`,`−k+1G`−kω

i
`−k

+ Ψ`,`−k+1K`−kv
i
`−k
)∥∥∥

≤ ‖Ψ`‖‖zi‖+
∑̀
k=1

‖Ψ`,`−k+1G`−k‖‖ωi`−k‖

+
∑̀
k=1

‖Ψ`,`−k+1K`−k‖‖vi`−k‖1 =: M(zi,ωi) + E(vi),

with E(vi) ≡ Ei given in the statement. Since (a + b)p ≤
2p−1(ap + bp) for a, b ≥ 0 and p ≥ 1,

Wp(P̂
N
ξ`
, PNξ` ) ≤

( 1

N
2p−1

N∑
i=1

(M(zi,ωi)p + (Ei)p)
) 1
p

.

Next, using (a + b)
1
p ≤ a

1
p + b

1
p for a, b ≥ 0 and p ≥ 1, we

have

Wp(P̂
N
ξ`
, PNξ` ) ≤

( 1

N
2p−1

N∑
i=1

M(zi,ωi)p
) 1
p

+
( 1

N
2p−1

N∑
i=1

(Ei)p
) 1
p

. (36)

Finally, since (z,ω) ∈ BNd∞ (ρξ0) × BN`q∞ (ρw),
we get M(zi,ωi)p ≤ ‖Ψ`‖

√
d‖zi‖∞

+
∑`
k=1 ‖Ψ`,`−k+1G`−k‖

√
q‖ωi`−k−1‖∞ ≤ Mw. This

combined with (36) yields (12a).
Proof of Lemma 4.4: From H4 in Assumption 3.2, we

obtain for each summand in (12c)∥∥‖Ψ`,`−k+1K`−k‖‖vi`−k‖1
∥∥
ψp

≤ ‖Ψ`,`−k+1K`−k‖
(∥∥vi`−k,1∥∥ψp + · · ·+

∥∥vi`−k,r∥∥ψp)
≤ Cvr‖Ψ`,`−k+1K`−k‖.

Hence, we deduce that

‖Ei‖ψp ≤
∑̀
k=1

∥∥‖Ψ`,`−k+1K`−k‖‖vi`−k‖1
∥∥
ψp

≤ Cvr
∑̀
k=1

‖Ψ`,`−k+1K`−k‖.

For the Lp bounds, note that ‖Ei‖p =∥∥∑
k∈[1:`],l∈[1:r] ‖Ψ`,`−k+1K`−k‖|vi`−k,l|

∥∥
p
. Thus, from

the inequality ‖
∑
i ciXi‖p ≤

∑
i ci‖Xi‖p, which holds for

any nonnegative ci and Xi in Lp,

‖Ei‖p ≤
∑

k∈[1:`],l∈[1:r]

‖Ψ`,`−k+1K`−k‖‖vi`−k,l‖p,

which, by the upper bound in H4 of Assumption 3.2, im-
plies (13a). For the other bound, we exploit linearity of the
expectation and the inequality

(∑
i ci
)p ≥∑i c

p
i , which holds

for any nonnegative ci, to get(
E
[
(Ei)p

]) 1
p

≥
( ∑
k∈[1:`],l∈[1:r]

‖Ψ`,`−k+1K`−k‖pE
[
|vi`−k,l|

]p) 1
p

.

Thus, from the lower bound in H4 of Assumption 3.2 we also
obtain (13c).

We next prove Proposition 4.5, along the lines of the
proof of [44, Theorem 3.1.1], which considers the special
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case of sub-Gaussian distributions. We rely on the following
concentration inequality [44, Corollary 2.8.3].

Proposition 8.1: (Bernstein inequality). Let X1, . . . , XN

be scalar, mean-zero, sub-exponential, independent random
variables. Then, for every t ≥ 0 we have

P
(∣∣∣ 1

N

N∑
i=1

Xi

∣∣∣ ≥ t) ≤ 2 exp
(
− c′min

{ t2
R2

,
t

R

}
N
)
,

where c′ = 1/10 and R := maxi∈[1:N ] ‖Xi‖ψ1
.

The precise constant c′ above is not specified in [44] but
we provide an independent proof of this result in the online
version [10, Section 8.2].

Proof of Proposition 4.5: Note that each random variable
Xp
i − 1 is mean zero by assumption. Additionally, we have

that ‖Xp
i −1‖ψ1

≤ ‖Xp
i ‖ψ1

+‖1‖ψ1
= ‖Xi‖ψp +1/ ln 2 ≤ R,

where we took into account that

E[ψ1(Xp
i /t

p)] = E[ψp(Xi/t)]⇒ ‖Xp
i ‖ψ1

= ‖Xi‖ψp ,

and the following fact, shown after the proof.
. Fact I. For any constant random variable X = µ ∈ R, it
holds ‖X‖ψp = |µ|/(ln 2)

1
p . /

Thus, we get from Proposition 8.1 that

P
(∣∣∣∣ 1

N

N∑
i=1

Xp
i − 1

∣∣∣∣ ≥ t) ≤ 2 exp
(
− c′N

R2
min{t2, t}

)
,

(37)

where we used the fact that R > 1. We will further leverage
the following facts shown after the proof of the proposition.
. Fact II. For all p ≥ 1 and z ≥ 0 it holds that |z− 1| ≥ δ ⇒
|zp − 1| ≥ max{δ, δp}. /
. Fact III. For any δ ≥ 0, if u = max{δ, δp}, then
min{u, u2} = αp(δ), with αp as given by (15). /

By exploiting Fact II, we get

P
(∣∣∣∣( 1

N

N∑
i=1

Xp
i

) 1
p

− 1

∣∣∣∣ ≥ t)

≤ P
(∣∣∣∣ 1

N

N∑
i=1

Xp
i − 1

∣∣∣∣ ≥ max{t, tp}
)

≤ 2 exp
(
− c′N

R2
min{max{t, tp}2,max{t, tp}}

)
.

Thus, since P(|Y | ≥ t) ≥ P(Y ≥ t) for any random variable
Y , we obtain (14) from Fact III and conclude the proof.

Proof of Fact I: From the ψp norm definition, ‖X‖ψp =
inf
{
t > 0 |E

[
e(|X|/t)p] ≤ 2

}
= inf

{
t > 0 | t ≥

|µ|/(ln 2)
1
p
}

= |µ|/(ln 2)
1
p , which establishes the result.

Proof of Fact II: Assume first that z < 1. Then, we have
that |zp − 1| = 1 − zp > 1 − z ≥ δ ≥ δp. Next, let z ≥ 1.
Then, we get |zp−1| = zp−1 ≥ z−1 ≥ δ. In addition, when
δp ≥ δ, namely, when δ ≥ 1, we have that zp− (z− 1)p ≥ 1,
and hence, |zp − 1| = zp − 1 ≥ (z − 1)p ≥ δp.

Proof of Fact III: We consider two cases. Case (i):
0 ≤ δ ≤ 1 ⇒ δ ≥ δp ⇒ u = max{δ, δp} = δ. Then
min{u, u2} = min{δ, δ2} = δ2. Case (ii): δ > 1⇒ δ ≤ δp ⇒
u = max{δ, δp} = δp. Then min{u, u2} = min{δp, δ2p} =
δp. Thus, we get that min{u, u2} = αp(δ) for all δ ≥ 0.
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