
1

Informativity for centralized design of distributed
controllers for networked systems

Jaap Eising Jorge Cortés

Abstract—Recent work in data-driven control has led to meth-
ods that find stabilizing controllers directly from measurements
of an unknown system. However, for multi-agent systems we are
often interested in finding controllers that take their distributed
nature into account. For instance, the full state might not be
available for feedback at every agent. In order to deal with
such information, we consider the problem of finding a feedback
controller with a given block structure based on measured data.
Moreover, we provide an algorithm that, if it converges, leads to
a maximally sparse controller.

I. INTRODUCTION

In this paper, we consider the problem of finding distributed
controllers on the basis of measurements of an unknown
system. Such data-driven control problems have garnered a
lot of attention recently, both from the viewpoints of control
theory and learning. A particularly recent development is
based on the works by Willems et al. in [1] and Markovsky
and Rapisarda in [2]. These works have shifted the focus from
the two-step approach of system identification combined with
model based control towards designing controllers directly
from the data.

To be precise, we are interested in finding controllers for
multi-agent systems in the situation where the state matrix is
completely unknown. To compensate for this lack of knowl-
edge, we assume that we have access to measurements of
the input and the corresponding state collected over a finite
time window. In this paper, we take the viewpoint of the
informativity framework, introduced in [3]. This means that
we find a controller for the measured system by finding a
controller that works for the entire set of systems consistent
with the data. In contrast to [3], we do not assume that the
measurements are exact, but assume that the noise on this
time window satisfies bounds of the form considered in the
recent paper [4]. Among the results of [4] are conditions
that are necessary and sufficient for the problem of finding a
stabilizing controller. These conditions are given in the form
of the feasibility of linear matrix inequalities (LMI’s), and
therefore it is straightforward to check whether they hold.

However, the controllers found by the aforementioned meth-
ods are not necessarily distributed. That is, each agent might
require knowledge of the state of each other agent in order
to stabilize the system. As this might be undesirable or even
impossible, we develop results that take into account the
networked structure of the system. For this, we focus on two
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different types of problems. First we consider the problem of
designing distributed controllers according to a given commu-
nication graph. That is, controllers such that agent number i
only requires state measurements from specific other agents.
In essence, this requires us to find state feedback matrices with
a given block structure. After this, we move to the problem
of finding controllers with maximal sparsity. Here we assume
that the aforementioned communication graph is also available
for design, and want to find a controller that guarantees the
control objective, yet uses as little communication as possible.

Our contributions are the following:
1) We formulate necessary and sufficient conditions, in the

form of linear matrix inequalities in terms of the data,
under which the measured system admits a quadratically
stabilizing controller. These differ from previously known
results in the fact that we assume B is known.

2) Under certain specific assumptions, we show that the
existence of such a controller with a given block structure
can be checked using linear matrix inequalities as well.

3) We state an algorithm consisting of a repeated convex
programming problem. If this algorithm converges, we
show that it finds a controller with maximal sparsity.

Proofs are omitted for space reasons and will appear else-
where.

Literature overview

As mentioned above, data-driven control has garnered a
lot of attention recently. Given that it is impossible to give
a complete overview of the field, we refer to the survey
paper [5] and the references therein. Some additional work
that needs to be highlighted combines data-driven control and
networks. Specifically, the paper [6] resolves a number of
data-driven problems regarding complex networks. In [7], the
output synchronization problem is resolved for leader-follower
multi-agent systems. Virtual reference feedback tuning and
H∞ are the topics of [8] and [9] respectively. Lastly, [10]
provides conditions on noiseless data for specific analysis
problems.

Of course, data-driven control is not only relevant in a
context of networked systems. Many results from more general
settings can also be applied to networks. Some such more
recent developments regard the design of different types of
controllers. Specifically, we note the work on data-driven
predictive control [11]–[13], optimal control [14], [15] and
optimization-based control [16].

Apart from data-driven methods, we should also mention the
work on model-based design of distributed or decentralized
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controllers. First, we note the survey papers [17], [18] and
the book [19] and the references therein. A particularly useful
method for resolving distributed design problems is provided
in the work on quadratic invariance [20]–[22].

More specifically, finding controllers that are as sparse as
possible, while still guaranteeing certain design goals, is also a
topic of significant interest. For this topic, a good overview can
be found in [23]. Special mention is made of the paper [24],
which, like this paper employs LMI’s and [25] which deals
with an efficient method for resolving these problems. An
important ingredient of most methods noted above is the idea
of reweighted `1 minimization of Candes et al. [26] (see also
[27]). Specific applications of sparse controllers can be found
within the field of power networks [28], [29] and security [30].

Organization

The paper is organized as follows. We start with a problem
formulation in Section II. After this, we introduce the for-
malities regarding informativity in Section III. In particular,
that section focuses on the quadratic stabilizability problem,
and provides conditions for finding a centralized controller
for each. In Section IV we consider the problem of finding a
controller corresponding to a specific communication graph,
which we resolve for two special cases. We develop an
algorithm for finding a controller that is as sparse as possible
in Section V. After this, Section VI illustrates the proposed
algorithm using a simulation example. Lastly, we end the paper
with conclusions.

II. PROBLEM FORMULATION

Suppose we have a heterogeneous networked system given
by r agents of the form:

xi(t+ 1) =

r∑
j=1

Aijxj(t) +Biui(t) + wi(t). (1)

Denote the state and input dimensions of agent i by ni and
mi. We can represent the entire system by

x(t+ 1) = Asx(t) +Bu(t) + w(t), (2)

where

x(t) =

x1(t)
...

xr(t)

, u(t) =

u1(t)
...

ur(t)

, w(t) =

w1(t)
...

wr(t)

,
and

As =

A11 · · · A1r

...
. . .

...
Ar1 · · · Arr

, B =

B1 0
. . .

0 Br

.
We assume that the input matrix B is known, but that As
is unknown. In lieu of this, we assume that we have access
to data, consisting of a finite time window of input and state
measurements. Based on these data we are interested in finding
distributed controllers. In order to formalize this notion, we
introduce some additional notation.

Suppose that we have a state-feedback controller K that
guarantees some control objective for the system (As, B). We
can partition K in the same fashion as As and B, and obtain

K =

K11 · · · K1r

...
...

Kr1 · · · Krr

 ,
with Kij ∈ Rpi×nj . Note that, if we close the loop, we get
u(t) = Kx(t). In other words, for each agent i we have that

ui(t) =

r∑
j=1

Kijxj(t).

An essential observation is the following: If Kij = 0, then
agent i does not require knowledge of the state of agent j in
order to compute the feedback. As such, we can guarantee the
absence of such dependencies by imposing that certain blocks
Kij are equal to zero. A number of interesting problems now
arise.

First of all, there is the problem of centralized control, that
is controller that stabilizes the system based on measured data.
For this problem we make use the informativity framework of
[3]. This means that we make the observation that we can only
guarantee that a controller attains the objective for the true
system, if it does so for all systems that could have generated
the data.

Following the standard centralized problem, we consider
a number of variants. For the problem of control with a
given communication graph we suppose that the controller is
allowed a given communication graph, that is, for each agent i,
a set of ‘neighboring’ agents Ni are available for feedback. In
line with the previous discussion, this is equivalent to finding
a controller K such that certain blocks Kij are equal to zero.

Alternatively, we might be tasked with controlling the sys-
tem as efficiently as possible in a number of ways. The problem
of data-driven control with minimal actuation consists of
finding a controller with the least number of nonzero block-
rows. This means that the controller acts on the minimal
number of agents. Similarly, we can consider data-driven
control with minimal observation. By finding a controller
with the least number of nonzero block-columns, the controller
is required to measure the state of the least number of agents.

Lastly, we look at minimizing the number of nonzero blocks
in K. We refer to this problem as data-driven control with
maximal sparsity.

III. PRELIMINARIES ON INFORMATIVITY

Before we return to the question of distributed controller
design, we first formulate results regarding the non-distributed
case. In this section, we use the rather general noise model that
was introduced in [4]. Note that the results presented here
differ from those in the latter paper due to the fact that we
assume B is known.

Suppose that we collect data from system (2) in the form
of state and input trajectories x(t) and u(t). We capture these
measurements in the matrices:

X :=
[
x(0) · · · x(T )

]
,

U− :=
[
u(0) · · · u(T − 1)

]
,
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and subsequently write

X+ :=
[
x(1) · · · x(T )

]
,

X− :=
[
x(0) · · · x(T − 1)

]
.

We assume that the noise w is unknown, that is, the samples
of w(0), w(1), . . . , w(T − 1) are not measured. However, we
do assume that the noise samples collected in the matrix

W− :=
[
w(0) w(1) · · · w(T − 1)

]
satisfy a given noise model. Let

Φ :=

[
Φ11 Φ12

Φ>12 Φ22

]
be such that Φ11 = Φ>11 ∈ Rn×n, Φ12 ∈ Rn×T and Φ22 =
Φ>22 ∈ RT×T and Φ22 < 0. We now assume that the noise
satisfies [

I
W>−

]> [
Φ11 Φ12

Φ>12 Φ22

] [
I
W>−

]
> 0. (3)

Remark III.1 (Special cases of the noise model). Note that
this noise model encompasses, among others, energy bounds
of the form W−W

>
− 6 Q, where Q ∈ Rn×n. For a further

discussion on the special cases of this noise model, we refer
to [4]. �

Clearly, the true state matrix As satisfies

W− = X+ −AsX− −BU−,

where W− satisfies (3). As such, it is clear that we can define
the set of all state-matrices compatible with the data as

Σ = {A ∈ Rn |W− = X+ −AX− −BU− satisfies (3)}.

Let N ∈ R2n×2n be given by:

N :=

[
I X+ −BU−
0 −X−

]
Φ

[
I X+ −BU−
0 −X−

]>
. (4)

Then it is straightforward to show that A ∈ Σ if and only if[
I
A>

]>
N

[
I
A>

]
> 0. (5)

As noted, we are interested in determining properties on the
true system, based on the measurements (U−, X) as described
above. Note that we can only conclude that the true system
(As, B) has a given property if (A,B) has that property for
all A ∈ Σ. This observation leads to the following definition.

Definition III.2. Let B be given. We say that the data (U−, X)
are informative for quadratic stabilization if there exists a
feedback gain K and a matrix P > 0 such that for each
A ∈ Σ:

(A+BK)P (A+BK)> < P. (6)

Remark III.3 (Exact measurements). Suppose that B is
known, and that the measurements are exact, that is, each
w(t) = 0. Then it is straightforward to show that if the data are
informative for quadratic stabilization only if there is precisely
one A ∈ Σ, or equivalently, X− has full row rank. �

Note that informativity for quadratic stabilization not only
requires all systems in Σ to admit the same feedback gain K.

We also require all systems in Σ to admit the same Lyapunov
function P . In particular a shared Lyapunov function is given
by V (x) = x>P−1x.

We can equivalently write (6) in the form of:[
I
A>

]> [
P −BKPK>B> −BKP
−PK>B> −P

] [
I
A>

]
> 0. (7)

This means that characterizing informativity for quadratic
stabilization is equivalent to characterizing when the quadratic
matrix inequality (5) implies (7).

We say that the Slater condition holds if

∃Â s.t.
[
I

Â>

]>
N

[
I

Â>

]
> 0. (8)

Theorem III.4 (LMI conditions for stabilization). Suppose
that the Slater condition (8) holds. Then the data (U−, X)
are informative for quadratic stabilization if and only if there
exist matrices P > 0, L and scalars α > 0, β > 0 such that P − βI 0 BL

0 0 P
L>B> P P

− α [ N 0
0 0

]
> 0, (9)

where N is as defined in (4), holds. Moreover, in this case the
gain K := LP−1 stabilizes all systems in Σ.

IV. CONTROL WITH A GIVEN SPARSITY STRUCTURE

Having resolved the centralized control problems, we move
our attention to distributed controllers. For this, we introduce
some notation.

Let p ∈ Nk and q ∈ N` such that m =
∑k
i=1 pi and n =∑`

j=1 qj . Given M ∈ Rm×n we can partition it according to
the vectors p and q by

M =

M11 · · · M1`

...
...

Mk1 · · · Mk`

 , (10)

with Mij ∈ Rpi×qj .
We call σ ∈ {0, 1}k×` a block sparsity structure, and define

the space of matrices corresponding to σ by:

Mσ
p,q := {M ∈ Rm×n |Mij = 0 if σij = 0}.

As such, it is clear that the problem of control with a given
sparsity structure is a special case of the following.

Problem 1 (Control with a given sparsity structure). Given
vectors p ∈ Nk, q ∈ N` such that m =

∑k
i=1 pi and n =∑`

j=1 qj , and block sparsity structure σ ∈ {0, 1}k×`. Provide
necessary and sufficient conditions for the data (U−, X) to
be informative for quadratic stabilization with feedback gain
K ∈Mσ

p,q .

Remark IV.1 (Block partitions and network systems). Recall
the problem formulation of Section II. There we decompose
K according to the state and input dimensions of the spe-
cific subsystems. Clearly, this corresponds to the choice of
r = k = `, and the partition pi = mi and qi = ni for
each i = 1, . . . , r. As such, finding a controller with a given
communication graph is a special case of Problem 1. However,
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it is important to stress that for Problem 1, this is not required.
An interesting alternative case we consider is the case where
r = k and pi = mi for each i = 1, . . . , r, but where ` = 1.
In terms of networked systems, this corresponds to actuating
only the agents i for which σi1 = 1. Similarly, we can look
at k = 1, which, in terms of the set-up of Section II, would
correspond to measuring only agent i for σ1i = 1. �

Recall that in Theorem III.4 we formulate conditions for
quadratic stabilization in the form of LMI (9) in the variables
P > 0, L, α > 0 and β > 0. If (9) is feasible, we can find a
suitable feedback gain by taking K = LP−1. However, note
that the latter is not linear in the variables. This means that
testing feasibility of the subspace constraint LP−1 ∈ Mσ

p,q

together with the LMI (9) is no longer linear. However, certain
special cases can be resolved in an efficient manner.

First of all, it is straightforward to show that L and K =
LP−1 have exactly the same (non-)zero rows, regardless of
P . As such, we have the following result.

Corollary IV.2 (Control with given block-rows). Suppose
that ` = 1 and that the Slater condition holds. Then the
data (U−, X) are informative for quadratic stabilization with
feedback gain K ∈ Mσ

p,q if and only if there exists P > 0,
L ∈Mσ

p,q , α > 0 and β > 0 such that (9), where N is defined
as in (4), holds.

Let σ̄ := I` ∈ {0, 1}`×`. Note that if P ∈Mσ̄
q,q, then P is

a block diagonal n × n matrix. Moreover, if the matrix P ∈
Mσ̄

q,q is (block) diagonal, then so is P−1. Furthermore, it is
straightforward to prove that if this is the case, then L ∈Mσ

p,q

if and only if K = LP−1 ∈Mσ
p,q .

Remark IV.3 (Block diagonal P and networks). Consider the
case of networked systems, that is, ` = r and qi = ni. Then,
the assumption that P is block diagonal corresponds to the
case where

x>P−1x =

r∑
i=1

x>i P
−1
ii xi.

That is, the Lyapunov function is decoupled. �

As such, we can resolve Problem 1 efficiently under the
additional assumption that P is block diagonal.

Corollary IV.4 (Control with diagonal Lyapunov function).
Suppose that the Slater condition holds. The data (U−, X)
are informative for quadratic stabilization with feedback gain
K ∈ Mσ

p,q and Lyapunov matrix 0 < P ∈ Mσ̄
q,q if and only

if there exists 0 < P ∈ Mσ̄
q,q , L ∈ Mσ

p,q , α > 0 and β > 0
such that (9), where N is defined as in (4), holds.

V. SPARSE CONTROL

After considering finding controllers with a given block
structure, we now move to the problem of finding controllers
that are as sparse as possible.

Let p ∈ Nk and q ∈ N` and let M be a matrix that is
partitioned as in (10). We define the block cardinality of a
matrix M , denoted bcardp,q(M) as the number of non-zero
blocks in M .

Let φ : R→ R be the function defined by:

φ(x) :=

{
0 x = 0,

1 x 6= 0.

Note that the number of nonzero elements of σ ∈ {0, 1}k×`
is equal to

∑k
i=1

∑`
j=1 σij . As such, we have the following

equivalent statements

bcardp,q(M)= min
σ s.t. M∈Mσ

p,q

k∑
i=1

∑̀
j=1

σij=

k∑
i=1

∑̀
j=1

φ(‖Mij‖F ),

where ‖ · ‖F denotes the Frobenius norm.
In the case where pi = qj = 1 for all i and j, the block

cardinality is equal to the number of non-zero elements in
M . This is often referred to as the `0-pseudo norm or simply
the cardinality of M . It should be stressed, however, that the
(block) cardinality is not a norm, nor a convex function.

This leads us to the following general problem formulation.

Problem 2 (Control with maximal sparsity). Given vectors
p ∈ Nk, q ∈ N` such that m =

∑k
i=1 pi and n =

∑`
j=1 qj and

data (U−, X) that are informative for quadratic stabilization,
resolve the following problem:

minimize bcardp,q(K),

subject to ∃P > 0 s.t. (6) ∀A ∈ Σ.
(11)

Remark V.1 (Interpretation in terms of networked systems).
It follows immediately from the reasoning in Remark IV.1 that
this statement can be used for the problems of control with
minimal actuation/observation and for control with maximal
sparsity. �

Note that in Problem 2 the objective function is not a convex
function of K, and the constraint set is linear in P and KP ,
but not necessarily in K. As such, the problem above is not
a convex problem. This means that the problem can not be
resolved by many standard methods.

An approach that can work for networked systems with a
relatively low number of agents is a simple exhaustive search.
In cases where we can efficiently solve Problem 1, we can
simply test feasibility for different block sparsity patterns σ
with increasing number of nonzero elements. This method
is guaranteed to provide the correct answer, but scales in a
combinatorial way with k`.

As a first step towards resolving the minimization prob-
lem (11), we formulate the following corollary of Theo-
rem III.4.

Corollary V.2 (Equivalent formulation of control with maxi-
mal sparsity). Suppose that the Slater condition holds. Then
resolving (11) in Problem 2 is equivalent to:

minimize bcardp,q(LP
−1),

subject to P > 0,∃α > 0, β > 0. s.t. (9).
(12)

In the following we take an approach based on the method
of reweighted `1 minimization, as introduced in [26]. As such,
we propose a strategy consisting of repeating a weighted
optimization problem and updating the weights, as shown in
Algorithm 1.
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Algorithm 1 Reweighted optimization

1: Inputs: Vectors p ∈ Nk, q ∈ N` with m =
∑k
i=1 pi and

n =
∑`
j=1 qj , matrix N as in (4).

2: Outputs: {(Lt̂, Pt̂)}tt̂=0
for some t > 1.

3: Initialize: Set t = 0 and find L0 and P0 > 0 for which
there exist α > 0 and β > 0 such that (9) holds

4: while (Lt−1, Pt−1) 6= (Lt, Pt) do
5: for i = 1, . . . k, j = 1, . . . , ` do
6: Update the weights by:
7: if (LtP

−1
t )ij 6= 0 then

8: Let wij(t) :=
1

‖(LtP−1
t )ij‖F

9: else
10: Let wij(t) :=∞
11: end if
12: end for

13: Set ft(L) :=
k∑
i=1

∑̀
j=1

wij(t)‖(LP−1
t )ij‖F

14: Update the estimates by solving:

(Lt+1, Pt+1) := arg min
(L,P )

ft(L),

subject to P > 0,∃α > 0, β > 0 s.t. (9)
(13)

15: Update t← t+ 1
16: end while

Note that the objective function of the optimization problem
(13) is not dependent on P , but on Pt. As such, it is
straightforward to show that the objective function is a convex
function of L. Furthermore, the constraint set is given by an
LMI, making it straightforward to resolve (13).

Theorem V.3 (If reweighted optimization converges, its output
solves the stabilization problem with maximal sparsity). Given
vectors p ∈ Nk, q ∈ N` such that m =

∑k
i=1 pi and

n =
∑`
j=1 qj . Suppose that the Slater condition holds and

that the data (U−, X) are informative for quadratic stabi-
lization. Then, we can initialize Algorithm 1. Moreover, if
(Lt−1, Pt−1) = (Lt, Pt), and we denote L := Lt and P := Pt
then LP−1 is the minimizer of (11).

It is important to realize that Theorem V.3 only gives suf-
ficient conditions for resolving Problem 2, since we have not
formulated conditions under which the algorithm converges.

VI. SIMULATIONS

Let the true system be given by 3 agents, where ni = 2,

mi = 1 and Bi =

[
1
0

]
for each i 6 3. Assume that the true

state matrix is given by:

As =
3

5


1 0 1 0 0 0
1 1 1 1 0 0
0 0 0 0 1 0
0 0 0 0 1 1
1 0 0 0 1 0
1 1 0 0 1 1

 , and B =


1 0 0
0 0 0
0 1 0
0 0 0
0 0 1
0 0 0

 .

We generate measurements using Matlab, by choosing an
initial condition x(0), inputs u(t) and noise w(t) randomly
for t = 0, . . . 9, such that W−W>− 6 1

20I . The precise
measurements can be found in (14).

We use Yalmip [31] with Mosek as a solver in combination
with Theorem III.4 to resolve the informativity problem. First,
we note that the Slater condition holds. Then, the solver returns
P > 0, L, α > 0 and β > 0 such that LMI (9) holds. As such,
the data are informative for quadratic stabilization. In addition
this results in the stabilizing feedback gain K1 = LP−1 for
all A ∈ Σ, given by:[
−0.071335 0.53919 −0.36814 0.23887 −0.72051 −0.74332
0.088392 0.091179 −0.38196 −0.37764 −0.64738 −0.060889
−0.076069 0.54351 0.11392 0.10647 −1.2478 −0.66924

]
It can be easily verified that this gain indeed stabilizes the true
system. However, if we decompose K1 according to the input
and state dimension of the agents, we obtain

ui(t) =

r∑
j=1

Kijxj(t).

As such, we see that in order to compute the input ui, we re-
quire for each j = 1, . . . , r the state xj . That is, the controller
is not sparse. As such, we move our attention to Problem 2, the
problem of control with maximal sparsity. Note that we are not
in the situation Corollary IV.2 or Corollary IV.4. As such, we
have no efficient way of resolving Problem 1. This prevents us
from performing an exhaustive search for a maximally sparse
controller. In addition, note that finding a feedback gain with,
for example, less than or equal to 4 nonzero blocks would
require us to check up to 255 different sparsity patterns. In
line with Section V, we implement Algorithm 1 numerically.
This requires making a number of straightforward changes
regarding machine precision to the pseudo code. Again, we
apply Yalmip with the solver Mosek. After 21 iterations, the
algorithm has stabilized up to the required precision. The
corresponding feedback gain, denoted K21, is found as:[

0 0 0 0 0 0
0 0 −0.19134 −0.048629 0 0

−0.94584 −0.052014 −0.11946 0.073348 −0.98268 −0.14899

]
As such, we have obtained a feedback gain with just 4 nonzero
blocks that stabilizes all systems in Σ.

VII. CONCLUSIONS

We have considered data-driven distributed and sparse con-
trol. In particular, we started with defining and resolving
informativity problems regarding centralized stabilization. As
such, we formulated conditions under which a controller
guarantees stabilization for all systems compatible with given
measurements. After this, we have considered the same prob-
lem while restricting the allowed controllers to those corre-
sponding to a given communication graph. For two specific
cases, it was shown that efficient solutions are possible. Lastly
we formulated an algorithm whose steps can be calculated
efficiently. If this algorithm converges, it results in the most
sparse stabilizing controller for all systems compatible with the
data. Future work will investigate the synthesis of stabilizing
controllers with a given sparsity structure (cf. Problem 1) for
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X =


0.75274 1.2276 1.5028 1.4546 2.2505 3.2402 4.0554 4.8123 5.0687 5.8844 7.3989
0.48475 1.6001 2.0504 3.067 5.4602 8.2031 11.736 16.6432 22.2254 28.3431 36.5077
0.62701 0.28679 0.56613 1.9483 1.9467 2.3218 3.3144 3.4338 3.7058 5.0454 5.0957
0.80199 0.30132 0.99168 2.6294 4.0138 5.7936 8.6326 12.1519 16.2375 21.5731 27.317
0.11059 0.60892 1.6934 1.9273 2.9284 3.9676 4.7534 5.4348 6.8431 7.5784 8.6763
0.39059 1.0436 2.6886 4.7617 6.7268 10.4199 15.4993 21.6268 29.1105 37.9496 47.8538



U− =

 0.39914 0.59328 0.21324 0.20845 0.72101 0.71757 0.39015 0.12077 0.61899 0.8402
0.22042 0.20061 0.93207 0.79012 0.56395 0.93289 0.58158 0.4449 0.9393 0.54806
0.090819 0.59133 0.0087293 0.89861 0.85981 0.42837 0.14863 0.69451 0.43057 0.59851



W− =10−4


0.56402 0.85894 0.078075 0.30536 0.81527 0.68118 0.19788 0.30939 0.66536 0.8844
0.21199 0.93952 0.38109 0.63732 0.34066 0.82892 0.067992 0.74664 0.63701 0.16617
0.020618 0.17608 0.26612 0.25169 0.81665 0.99683 0.21282 0.0048493 0.20266 0.57528
0.61413 0.1923 0.19338 0.42205 0.42013 0.11501 0.24711 0.46404 0.91496 0.25192
0.10097 0.13537 0.88955 0.63512 0.39169 0.35093 0.91207 0.34179 0.69204 0.14824
0.35514 0.51728 0.61431 0.50191 0.33043 0.84755 0.31911 0.24342 0.93888 0.53028
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the general case, the application of efficient solution methods
to the stabilization with maximal sparsity (cf. Problem 2),
establishing convergence of Algorithm 1. A last problem of
interest is the case where a block structure of the state matrix is
known, in addition to one for the controller. This corresponds
to knowledge of the network structure of the system. Being
able to use this knowledge might lead to stronger results.
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