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Abstract— This paper studies the problem of identifying
finite-dimensional functional spaces that are close (within a
predefined level of accuracy) to being invariant under the
application of the Koopman operator. Given a dictionary of
functions spanning a finite-dimensional functional space and
a set of data snapshots gathered from a potentially nonlinear
dynamical system, we define a measure of how close a functional
space in the span of the dictionary is to being invariant
under the Koopman operator. This measure provides a way of
determining the prediction accuracy of the functional space.
Given a desired level of accuracy, we propose a numerical
algorithm, termed Tunable Symmetric Subspace Decomposition
(T-SSD), to find a dictionary of functions with elements in
the span of the original dictionary that satisfies it. Starting
from the original dictionary, the T-SSD algorithm proceeds
by iteratively removing the functions that violate the accuracy
bound. We prove that T-SSD converges to a dictionary satisfying
the accuracy criteria after a finite number of iterations.

I. INTRODUCTION

The Koopman operator associated with a dynamical sys-
tem characterizes the effect of the dynamics on functions
(a.k.a. observables) defined over its state space. The operator
is always linear even if the underlying system is nonlinear.
This linearity is particularly useful in the context of data-
driven identification of dynamical systems because (i) it fa-
cilitates the use of efficient linear-algebraic methods suitable
for large data sets and (ii) it circumvents the need to assume
parametric models capturing the nonlinearity of the dy-
namics. Despite these advantages, dealing with the infinite-
dimensional nature of the Koopman operator requires infinite
computational capabilities. This can be addressed by restrict-
ing its action to finite-dimensional functional spaces, which
in general introduces error in its approximation. This paper
focuses on developing data-driven methods to adjust the
prediction accuracy of the selected finite-dimensional space.

Literature Review: The eigendecomposition of the Koop-
man operator, introduced in [1], [2], provides a simple,
systematic, and efficient way to represent high-dimensional
nonlinear dynamics whose analysis is otherwise cumber-
some [3], [4]. This has led to numerous applications, in-
cluding model reduction [3], control [5]–[8], robotics [9],
[10] and network science [11]. Despite its appealing ap-
plications, the infinite-dimensional nature of the Koopman
operator makes it difficult to employ in data-driven settings.
A plausible solution to this issue is to approximate the effect
of the operator on a finite-dimensional space. Dynamic Mode
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Decomposition (DMD) [12] is a popular method for this pur-
pose which was first introduced to extract information from
experimental fluid data, but its connection with the Koopman
operator became clear later [13]. Subsequently, Extended Dy-
namic Mode Decomposition (EDMD) was introduced [14]
with the main purpose of approximating the effect of the
Koopman operator on a finite-dimensional space spanned
by a dictionary of functions. EDMD achieves this goal by
finding the best linear fit for the evolution of the dictionary
based on the available data. Both DMD and EDMD are
sensitive to measurement noise [15], [16]. Even with noise-
free data, the quality of EDMD’s approximation depends on
the choice of dictionary. EDMD loses information about the
dynamics unless the dictionary spans a space that is invariant
under the Koopman operator. This issue has led to investigate
the problem of finding Koopman-invariant subspaces [17]
with a variety of approaches, including neural networks [18]–
[21], sparsity-promoting methods [22], and identification of
Koopman eigenfunctions [23], [24]. None of the aforemen-
tioned methods provide theoretical results guaranteeing the
invariance of the identified subspaces. Our recent works [25],
[26] provide algorithms to provably identify all Koopman
eigenfunctions and the maximal Koopman-invariant subspace
in an arbitrary functional space.

Statement of Contributions: Our goal in this paper is to
strike a balance between prediction accuracy and expressive-
ness when restricting the action of the Koopman operator
to finite-dimensional subspaces. This is motivated by the
consideration of two opposing forces. On the one hand, it
is desirable to consider subspaces as large as possible to
be able to capture the evolution of as many observables
as possible (including functions containing the states of the
system). We refer to this as expresiveness. On the other
hand, arbitrary subspaces are far from invariant, and this
causes large errors in the approximation of the Koopman
operator, i.e., in the prediction accuracy. Errors in prediction
accuracy can be addressed by pruning the subspace to make
it invariant at the cost of impacting expresiveness. Our
main contribution is the design of a data-driven algorithm
to approximate a finite-dimensional functional space that
is close to invariant (with tunable accuracy) under the
application of the Koopman operator associated with an
unknown (potentially nonlinear) dynamical system. We start
with a dictionary of functions spanning a finite-dimensional
functional space and a set of data snapshots collected from
the dynamical system. Building on the introduction of the
concept of ε-apart subspaces, we provide a parameterized
characterization for the gap of a finite-dimensional space



from being Koopman invariant based on the available data.
Given a desired level of accuracy for the approximation our
computational method, termed Tunable Symmetric Subspace
Decomposition, iteratively prunes the original dictionary by
removing the functions that violate the accuracy bound. We
formally establish that the algorithm terminates in a finite
number of iterations and its output satisfies the desired
accuracy bound. For space reasons, the proofs are omitted
here and will appear elsewhere.

II. PRELIMINARIES

Here, we give a brief overview of Koopman operator the-
ory and Extended Dynamic Mode Decomposition (EDMD)1.

Koopman Operator: Following [4], consider the discrete-
time dynamical system defined over the state spaceM⊆ Rn

x+ = T (x). (1)

The Koopman operator associated with (1) provides an
alternative dynamical description by specifying the evolution
of functions, rather than of trajectories. Formally, consider
a linear functional space F defined from state space M to
C that is closed under composition with T , i.e., f ◦ T ∈ F
for all f ∈ F . Then, the Koopman operator K : F → F
corresponding to dynamics (1) is defined by

K(f) = f ◦ T.

Therefore, the Koopman operator maps a function in F (also
known as observable) to a function with temporally shifted
values according to the systems trajectories, i.e., given g =
K(f), one can write g(x) = f(x+) for all x ∈ M where
x+ = T (x) is the next temporal point on the trajectory of
the system going through x.

Linearity of the functional space F directly results in the
spatial linearity of the Koopman operator. Given functions
f1, f2 ∈ F and complex numbers c1, c2 ∈ C, one can write

K(c1f1 + c2f2) = c1K(f1) + c2K(f2). (2)

1Throughout the paper we use the following notations. We denote the
set of real, complex, and natural numbers by R, C, and N, respectively.
We denote the set of columns, set of rows, number of columns, and
number of rows of matrix A ∈ Cm×n by cols(A), rows(A), ]cols(A),
and ]rows(A), respectively. Moreover, AT , AH , A†, R(A), and ‖A‖F
represent transpose, conjugate transpose, pseudo-inverse, range space, and
Frobenius norm of A. For a square matrix M , we denote its inverse by
M−1. Given matrices A ∈ Cm×n and B ∈ Cm×d, we denote by
[A,B] ∈ Cm×(n+d) the matrix constructed by concatenating A and B
side by side. The symbols 0m×n and In represent the m by n zero matrix
and the identity matrix of size n, respectively (we drop the indices when
the context is clear). For v ∈ Cn, we represent its 2-norm by ‖v‖2 :=√
vHv. Given vectors v1, . . . , vk ∈ Cn, span{v1, . . . , vk} represents the

vector space containing all vectors in the form of c1v1 + · · · + ckvk
with c1, . . . , ck ∈ C. Given functions f1, . . . , fk , span{f1, . . . , fk}
represents the linear functional space containing all functions in the form of
c1f1 + · · ·+ ckfk with c1, . . . , ck ∈ C. Given the vector space S ⊆ Rm,
we denote by PS the orthogonal projection operator on S. For convenience,
given a matrix A ∈ Rm×n, we denote by PA the orthogonal projection
operator on R(A) (we simply refer to orthogonal projections as projections
throughout the paper). Given vectors v, w ∈ Rm, v ⊥ w means that v and
w are orthogonal. Given vector spaces S1, S2 ⊆ Rm, S1 ⊥ S2 indicates
that the subspaces are orthogonal, i.e., all vectors in S1 are orthogonal to
all vectors in S2. We denote the intersection and union of the sets S1, S2

by S1 ∩ S2 and S1 ∪ S2. In addition, we write S1 ⊆ S2 to indicate that
S1 is a subset of S2. We denote the composition of functions f : B → C
and g : A→ B, by f ◦ g : A→ C.

The linearity of the Koopman operator allows us to define
its eigendecomposition. A function φ ∈ F is called an
eigenfunction of the Koopman operator with eigenvalue λ if

K(φ) = λφ. (3)

An interesting property of Koopman eigenfunctions is their
linear temporal evolution. Formally, given the eigenfunction
defined in (3), one can write φ(x+) = (φ ◦ T )(x) =
K(φ)(x) = λφ(x). The combination of linear temporal
evolution of the eigenfunctions and spatial linearity of the
Koopman operator in (2) enables one to linearly predict
the evolution of functions’ values on the trajectories of (1).
Given eigenfunctions {φi}Nk

i=1 with corresponding eigenval-
ues {λi}Nk

i=1, and any function in the form of f =
∑Nk

i=1 ciφi,
one can write

f(x(k)) =

Nk∑
i=1

ciλ
k
i φi(x(0)), ∀k ∈ N. (4)

A subspace L ⊆ F is invariant under the Koopman
operator if for all f ∈ L we have K(f) ∈ L. For instance,
any space generated by Koopman eigenfunctions is invariant.

By making sure that F contains the states of the system,
one can use (4) to fully characterize the dynamics in a linear
fashion. However, such functional space F and the Koopman
operator defined on it might be of infinite dimension which
complicates the computational analysis of the operator. To
circumvent this issue, one can restrict the analysis to finite-
dimensional subspaces, as we explain next.

Extended Dynamic Mode Decomposition: Given the com-
putational difficulties emerging from the infinite-dimensional
nature of the Koopman operator, Extended Dynamic Mode
Decomposition (EDMD) [14] provides a data-driven way
to approximate the action of the operator on a finite-
dimensional space. Given the dynamical system (1), the
EDMD method relies on the following elements:

(i) data matrices X,Y ∈ RN×n comprised of N data
snapshots collected from the state space such that

yi = T (xi), ∀i ∈ {1, . . . , N}, (5a)

where xTi and yTi are the ith rows of X and Y ;
(ii) a dictionary D : M → R1×Nd comprised of Nd

functions {di :M→ R}Nd
i=1 represented by

D(x) = [d1(x), . . . , dNd
(x)]. (5b)

We define the effect of the dictionary on data matrix X as

D(X) = [D(x1)T , . . . , D(xN )T ]T .

The EDMD method approximates the action of the Koop-
man operator on the functional space spanned by dictionary
D by solving the following least-squares problem

minimize
K

‖D(Y )−D(X)K‖F (6)

which has the closed-form solution

KEDMD = EDMD(D,X, Y ) := D(X)†D(Y ). (7)



KEDMD provides an approximation for the action of the
operator on the span of D. Moreover, given the eigende-
composition of KEDMD, one can define the approximated
Koopman eigenfunctions. Formally, given KEDMDv = λv
with λ ∈ C and v ∈ CNd \ {0}, the approximated Koopman
eigenfunction φ associated with eigenvalue λ is defined as

φ(x) := D(x)v.

In general, the restriction to span(D) by EDMD induces
error in the description of the action of the Koopman
operator. In fact, the quality of the EDMD approximation
depends on the diversity of the data acquired form the system
and more importantly on the choice of dictionary D. This
motivates the focus on subspaces that are invariant under the
Koopman operator. If D spans a Koopman-invariant sub-
space, the residual error ‖D(Y )−D(X)KEDMD‖F is equal
to zero (independently of the data) and KEDMD recovers
perfectly the action of the Koopman operator on span(D).

III. PROBLEM STATEMENT

We seek to characterize the prediction accuracy of a finite-
dimensional functional space (or equivalently, determine how
close it is to being invariant under the Koopman operator).
The aim is to make use of this characterization to, given
any arbitrary functional space, develop computational meth-
ods that allow us to identify a subspace with a predeter-
mined desired prediction accuracy. Since in our treatment
we assume no knowledge about the underlying dynamics,
the aforementioned characterization must be based on the
available sampled data from system trajectories.

The elements of our problem statement are the dynamical
system (1), data matrices X,Y ∈ RN×n and the dictionary
D : M → R1×Nd in (5). Note that any dictionary D̃ with
elements in span(D) can be characterized by a matrix C
by means of the equation D̃(x) = D(x)C. This enables us
to utilize conventional efficient linear algebraic methods on
dictionary matrices D̃(X) and D̃(Y ) rather than working
with functional spaces directly. Throughout the paper, we
rely on the following standard assumption.

Assumption 3.1: (Full Rank Dictionary Matrices): The
matrices D(X) and D(Y ) have full column rank. �

Assumption 3.1 requires the dictionary matrices to be lin-
early independent, avoiding redundant functions, and the data
snapshots to be diverse and representative of the dynamics.
Our main goal is to:
(a) given data matrices X,Y , provide a quantifiable mea-

sure to characterize the prediction accuracy over any
dictionary D̃ with elements in span(D);

(b) given a desired level of accuracy, design an algorithm
to find a dictionary D̃ with elements in span(D) that
meets the provided accuracy measure.

We deal with (a) in Section IV and with (b) in Section V.

IV. PROBLEM REFORMULATION USING ε-APART SPACES

In this section, we take the first step toward developing
tunable methods to approximate Koopman eigenfunctions
and invariant subspaces by characterizing the quality of sub-
spaces for Koopman approximation. We start by analyzing

the quality of approximation derived by the EDMD method.
Taking a closer look at (6) reveals that the EDMD solution
can be understood as projecting the vectors inR(D(Y )) onto
R(D(X)), i.e., for any vector in v ∈ R(D(Y )) in the form
of D(Y )w, one can use (7) and write

D(X)KEDMDw = D(X)D(X)†D(Y )w

= D(X)D(X)†v = PD(X)v,

where in the last equality we have used the fact that
D(X)D(X)† is the projection operator on R(D(X)). This
projection viewpoint explains the observation that EDMD
leads to exactly capturing the Koopman operator’s action
on an invariant subspace, i.e., if the dictionary D spans
a Koopman-invariant subspace and considering Assump-
tion 3.1, R(D(X)) = R(D(Y )). Hence, in such case, the
EDMD projection has perfect prediction accuracy. On the
other hand, if R(D(Y )) is orthogonal to R(D(X)),

KEDMD = (D(X)TD(X))−1D(X)TD(Y ) = 0Nd×Nd
,

where in the first equality we have used Assumption 3.1. This
means that the approximation of the Koopman operator by
EDMD does not capture any information. The residual error
is ‖D(Y )−D(X)KEDMD‖F = ‖D(Y )‖F , i.e., EDMD leads
to 100% prediction error on the available data.

The two aforementioned extreme cases (R(D(X)) =
R(D(Y )) and R(D(X)) ⊥ R(D(Y ))) suggest that one
data-driven way to characterize the quality of a dictionary
for Koopman approximation is to study the gap between
R(D(X)) and R(D(Y )). Motivated by this observation, we
define the concept of ε-apart subspaces.

Definition 4.1: (ε-Apart Subspaces): Given ε ≥ 0, two
vector spaces S1, S2 ⊆ Rp are ε-apart if ‖PS1

v−PS2
v‖2 ≤

ε‖v‖2, for all v ∈ S1 ∪ S2. �
Based on Definition 4.1, two vector spaces are ε-apart if

the norm of difference between a vector v in any of the
subspaces and its projection on the other subspace does not
exceed ε‖v‖. The next result shows that by setting ε = 0,
one can fully characterize equal subspaces.

Lemma 4.2: (0-apart Spaces are Equal): Vector spaces
S1, S2 ⊆ Rp are 0-apart if and only if S1 = S2. �

Next, we show that all subspaces are 1-apart.
Lemma 4.3: (Any Two Subspaces are 1-apart): Any two

vector spaces S1, S2 ⊆ Rp are 1-apart. �
Note that all cases for ε ≥ 1 are equivalent since for any

vector v ∈ Rp and any subspace S ⊆ Rp, we always have

‖v − PSv‖2 ≤ ‖v‖2 ≤ ε‖v‖2, ∀ε ≥ 1.

The previous results enable us to characterize the gap
between any two subspaces by the parameter ε ∈ [0, 1]. The
case ε = 0 implies that the subspaces are identical while in
the case ε = 1 the subspaces can even be orthogonal. Given
the discussion at the beginning of this section, this concept
provides a quantifiable measure of prediction accuracy (cf.
problem (a) in Section III). Using the concept of ε-apart
subspaces, we can reformulate problem (b) in Section III as:

Problem 4.4: (ε-Apart Subspace Identification): Given
ε ∈ [0, 1], find a dictionary D̃ with elements in span(D)
such that R(D̃(X)) and R(D̃(Y )) are ε-apart. �



Note that

ε∗ = min{ε ∈ [0, 1] | R(D(X)),R(D(Y )) are ε-apart}

captures the prediction accuracy of the original dictionary.
Therefore, choosing any ε in Problem 4.4 smaller than ε∗

will necessarily result in a smaller dictionary than D, hence
reducing expressiveness. It is in this sense that we say that
the parameter ε captures the trade-off between prediction
accuracy and expressiveness of the original dictionary.

V. TUNABLE SYMMETRIC SUBSPACE DECOMPOSITION

In this section, we present a numerical algorithm to solve
Problem 4.4 and study its properties.

A. The T-SSD Algorithm

Here, we introduce the Tunable Symmetric Subspace
Decomposition (T-SSD) algorithm. An efficient way to tackle
Problem 4.4 is to start with the dictionary D and prune it by
removing the functions in span(D) that violate the accuracy
bound specified by ε. To identify such functions, and inspired
by the definition of ε-apart spaces, we consider

G = PD(X) − PD(Y ) = D(X)D(X)† −D(Y )D(Y )†.

The matrix G is symmetric and consequently has real
eigenvalues with mutually orthogonal eigenvectors. More
importantly, if all eigenvalues of G belong to [−ε, ε], then
R(D(X)) and R(D(Y )) are ε-apart, and one can conclude
that the dictionary does not need pruning. Otherwise, we
reduce our attention to the vector space spanned by the
eigenvectors of G with eigenvalues in [−ε, ε],

Wε := span{v ∈ RN | Gv = λv, |λ| ≤ ε}.

We use this reduced space to search for a dictionary D̃ with
the largest dimension such that R(D̃(X)),R(D̃(Y )) ⊂ Wε.
Depending on the dimension of D̃ (upon existence), we face
two possible scenarios:

(i) dim D̃ = dimD;
(ii) dim D̃ < dimD.

Scenario (i) indicates that span(D̃) = span(D) and
R(D(X)),R(D(Y )) ⊂ Wε. Consequently one can deduce
that R(D(X)) and R(D(Y )) are ε-apart and the dictionary
cannot be pruned. Otherwise, in Scenario (ii), we have
pruned the dictionary, although there is no guarantee that
R(D̃(X)) and R(D̃(Y )) are ε-apart. To circumvent this is-
sue, we propose to iteratively perform all the aforementioned
steps until we cannot prune the dictionary any further.

The aforementioned strategy is formally presented in Tun-
able Symmetric Subspace Decomposition (T-SSD) algorithm
(cf. Algorithm 1). The Symmetric-Intersection routine in
Step 8 of the T-SSD algorithm is presented in Algorithm 22.

Remark 5.1: (Implementing Algorithm 2 on Finite-
Precision Machines): Algorithm 2 depends on calculation
of the null space of matrices which is closely related to their
rank and can be adversely affected by round-off errors. To

2In Algorithms 1-2, the function basis(A) returns a matrix whose
columns form an orthonormal basis for R(A). Also, the function null(A)
returns a matrix whose columns span a basis for the null space of A.

Algorithm 1 Tunable Symmetric Subspace Decomposition

Inputs: D(X), D(Y ) ∈ RN×Nd , ε ∈ [0, 1]

1: Procedure T-SSD(D(X), D(Y ), ε)
2: Initialization
3: i← 0, A0 ← D(X), B0 ← D(Y ), C0 ← INd

4: while 1 do
5: i← i+ 1
6: Gi ← Ai−1A

†
i−1 −Bi−1B

†
i−1

. projection difference
7: Vi ← basis({v ∈ RN | Giv = λv, |λ| ≤ ε})

. The eigenpairs corresponding to small eigenvalues
8: Ei ← Symmetric-Intersection(Vi, Ai−1, Bi−1)

. Using Algorithm 2
9: Ci ← Ci−1Ei . Reduce the subspace

10: Ai ← Ai−1Ei, Bi ← Bi−1Ei
. Calculating the new dictionary matrices

11: if Ei = 0 then
12: return 0

. The subspace does not exist, returning scalar 0

13: break
14: end if
15: if ]rows(Ei) ≤ ]cols(Ei) then
16: return Ci . The procedure is complete
17: break
18: end if
19: end while

address this issue, we use singular value decomposition of
the matrix and set small singular values to zero following
the method laid out in [25, Remark 5.4]. �

For convenience, we define the output of the T-SSD
algorithm by CT-SSD := T-SSD(D(X), D(Y ), ε). We use
CT-SSD to build a reduced dictionary D̃ as

D̃(x) := D(x)CT-SSD, ∀x ∈M. (8)

Moreover, consistently with the EDMD approach, we define
the linear prediction matrix KT-SSD as

KT-SSD = EDMD(D̃,X, Y ) = D̃(X)†D̃(Y ). (9)

In addition, given x ∈M, one can build D̃+
pred(x), the linear

predictor for D̃(x+) = D̃ ◦ T (x), as

D̃+
pred(x) := D̃(x)KT-SSD. (10)

Note that every function f in span(D̃) can be represented
by a vector v ∈ C]cols(CT-SSD) in the form of f = D̃v.
Accordingly, one can write the predicted value of f(x+) =
f ◦ T (x) as

f+pred(x) := D̃+
pred(x)v. (11)

Remark 5.2: (Approximating Koopman Eigenfunctions
using T-SSD): Note that KT-SSD is the solution of EDMD
applied to the dictionary matrices D̃(X) and D̃(Y ). As is
done in the EDMD approach, we approximate the Koop-
man eigenfunctions by eigenvectors of KT-SSD. Formally,



Algorithm 2 Symmetric Intersection

Inputs: V ∈ Rn×m and A,B ∈ Rn×p

1: Procedure Symmetric-Intersection(V,A,B)
2: if null([V,A]) = ∅ then
3: return 0
4: break
5: else

6:

[
WV

WA

]
← null([V,A])

. ]cols(V ) = ]rows(WV ), ]cols(A) = ]rows(WA)
7: if null([V,BWA]) = ∅ then
8: return 0
9: break

10: end if

11:

[
ZV
ZB

]
← null([V,BWA])

. ]cols(V ) = ]rows(ZV ), ]cols(BWA) = ]rows(ZB)
12: end if
13: return basis(WAZB) . Returning an orthogonal basis

given KT-SSDv = λv, the function φ(x) := D̃(x)v is an
approximated eigenfunction with corresponding eigenvalue
λ. Moreover, based on (10)-(11) and the definition of φ,

φ+pred(x) := D̃+
pred(x)v = λD̃(x)v = λφ(x). �

B. Properties of T-SSD Algorithm

Here, we analyze the T-SSD algorithm. We start by
studying the properties of Algorithm 2 (the subroutine of
the T-SSD algorithm invoked in Step 8).

Proposition 5.3: (Properties of Algorithm 2): Let ma-
trices V,A,B have full column rank and E =
Symmetric-Intersection(V,A,B) (cf. Algorithm 2). Then,
(a) E = 0 or ETE = I;
(b) R(AE),R(BE) ⊆ R(V );
(c) E is maximal, i.e., any nonzero matrix F such that
R(AF ),R(BF ) ⊆ R(V ) satisfies R(F ) ⊆ R(E). �

Now, we are ready to establish the first result regarding
the T-SSD algorithm, proving that it always terminates in a
finite number of iterations.

Proposition 5.4: (Finite-time Termination of T-SSD ): The
T-SSD algorithm terminates after at most Nd iterations. �

The next result characterizes important properties of T-
SSD’s internal matrices.

Lemma 5.5: (Properties of T-SSD Matrices): Let T-SSD
algorithm terminate in T time steps. Then,
(a) ∀i ∈ {0, . . . , T − 1}, R(Ci+1) ⊆ R(Ci);
(b) ∀i ∈ {0, . . . , T − 1}, CTi Ci = I;
(c) CT = 0 or CTT CT = I . �

We establish next the main result of the paper, which
states that the subspaces spanned by the reduced dictionary
obtained from the T-SSD algorithm, cf. (8), applied on
available data matrices are ε-apart.

Theorem 5.6: (T-SSD Output Subspaces are ε-Apart):
R(D̃(X)) and R(D̃(Y )) are ε-apart. �

VI. SIMULATION RESULTS

We illustrate here the efficacy of the T-SSD algorithm on
the Van der Pol oscillator

ẋ1 = x2,

ẋ2 = x2(1− x21)− x1, (12)

with x = [x1, x2]T . We consider the discretized version
of (12) with time step ∆t = 0.01s and gather data from 2500
trajectories with length equal to two time steps and initial
conditions uniformly selected in [−4, 4]2 forming a total of
N = 5000 data snapshots. To approximate the Koopman
operator, we choose the dictionary D constructed with all
Nd = 66 monomials of degree 10 in the form of

∏10
i=1 yi,

where yi ∈ {1, x1, x2}.
Table I shows the dimension of the subspace calculated

by T-SSD versus ε ∈ {0.05, 0.15, 0.25, 0.35, 0.45}. As ex-
pected, as we enforce a tighter accuracy bound (smaller ε),
the dimension of the subspace identified by T-SSD decreases,
showing the trade-off between accuracy and expressiveness.
For ε = 0.45, the dimension of the T-SSD output is 66, equal
to Nd, meaning that the original dictionary satisfies this level
of accuracy. Interestingly, the maximal Koopman-invariant
subspace in the span of the original dictionary is spanned by
the trivial Koopman eigenfunction φ(x) = 1 with eigenvalue
λ = 1, and is therefore one-dimensional. This means that,
for this example, focusing on obtaining a subdictionary with
a perfect prediction accuracy would lead to not capturing any
useful information about the dynamics.

TABLE I: Dimension of subspace identified by T-SSD vs ε.

ε 0.05 0.15 0.25 0.35 0.45

dim D̃ 8 26 48 56 66

To illustrate the effectiveness of T-SSD in approximating
the eigendecomposition of the Koopman operator, we focus
on the case with ε = 0.05. It is worth mentioning that T-
SSD successfully identifies the only eigenfunction of the
Koopman operator in the span of the original dictionary
(φ(x) = 1 with eigenvalue λ = 1). It also approximates
seven more eigenfunctions. Figure 1 illustrates the eigen-
function corresponding to λ = 0.9982+0.0078j, a dominant
(closest to the unit circle) oscillatory eigenvalue.
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Fig. 1: Absolute value (left) and phase (right) of the eigenfunction corre-
sponding to eigenvalue λ = 0.9982 + 0.0078j.

To show the benefits of the proposed method regarding
prediction accuracy, given a dictionary D define its EDMD
prediction matrix as K = EDMD(D, X, Y ) where X,Y
are the available training data snapshot matrices. We define



the relative prediction error associated to dictionary D on a
trajectory {x(k)}Mk=0 of length M as

Erelative(k) :=
‖D(x(k))−D(x(0))Kk‖2

‖D(x(k))‖2
× 100,

where k ∈ {0, . . . ,M}. Figure 2 compares the one time
step relative prediction error of the original dictionary D
with the dictionary D̃ identified by T-SSD given ε = 0.05.
According to the plots, dictionary D̃ has prediction error
of 5% or less on most regions of the state space and its
prediction error never exceeds 15%. On the other hand, the
original dictionary D fails to capture the system’s behavior
over [−2, 2]2, which is where the limit cycle lies, making it
unsuitable for prediction of the Van der Pol oscillator.

<5% 5%-15% 15%-35% 35%-70% 70%-100% 100%<

Fig. 2: One step relative error for dictionary identified by T-SSD (ε = 0.05)
(left) and the original dictionary (right) with initial conditions in [−3, 3]2.

We also investigated the multi-step prediction accuracy of
D̃ and D over 500 trajectories with length M = 10 time
steps with initial conditions uniformly selected in the state
space. The average relative error of D̃ on those trajectories
did not exceed 2% in one time step and 17% in 10 time steps.
On the other hand, the average relative prediction error of the
original dictionary D was more than 800% in one time step
and 7200% after 10 time steps, underlying the importance
of the choice of the dictionary in the accuracy of EDMD.

VII. CONCLUSIONS

We have introduced a data-driven approach to identify
finite-dimensional functional spaces that have a desired level
of prediction accuracy under the application of the Koop-
man operator. The proposed T-SSD algorithm proceeds by
selectively pruning the original dictionary of functions to
minimally impact expresiveness while ensuring the desired
level of accuracy, and takes a finite number of iterations until
convergence. In future work, we aim to provide analytical
bounds on storage and computational complexity of the pro-
posed algorithm, investigate ways of enhancing its efficiency,
characterize the accuracy of multi-step prediction, and further
analyze the theoretical connections of our algorithm with
existing methods in the literature.
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