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Abstract— This work finds a lower bound on the av-
erage dwell-time (ADT) of switching signals such that a
continuous-time, graph-based, switched system is glob-
ally asymptotically stable, input-to-state stable, or integral
input-to-state stable. We first formulate the lower bound on
the ADT as a nonconvex optimization problem with bilinear
matrix inequality constraints. Because this formulation is
independent of the choice of Lyapunov functions, its so-
lution gives a less conservative lower bound than previ-
ous Lyapunov-function-based approaches. We then design
a numerical iterative algorithm to solve the optimization
based on sequential convex programming with a convex-
concave decomposition of the constraints. We analyze the
convergence properties of the proposed algorithm, estab-
lishing the monotonic evolution of the estimates of the
average dwell-time lower bound. Finally, we demonstrate
the benefits of the proposed approach in two examples and
compare it against other baseline methods.

Index Terms— Stability of switched systems, average
dwell-time, sequential convex programming

I. INTRODUCTION

SWITCHED systems are a class of hybrid systems which
play an important role in modeling real-world pro-

cesses [1]. A switched system is defined by a collection of
dynamical subsystems and a switching signal that governs
the transitions between them. In general, switched systems
do not inherit the stability properties of their subsystems
under arbitrary switching, see e.g., [2]. Many works aim to
find sufficient conditions on the switching signals to ensure
desirable stability properties. These include dwell-time (DT)
(resp. average dwell-time (ADT)) conditions, which bound the
number (resp. the average number) of allowed switches over an
arbitrary time interval, guaranteeing global asymptotic stability
(GAS) of the switched system [3], [4]. For systems with inputs,
input-to-state stability (ISS), integral input-to-state stability
(iISS) can be guaranteed for switched systems with switching
signals satisfying similar DT [5], [6] or ADT conditions [7],
[8].

In practice, switching signals are often designed indepen-
dently of the subsystems. Hence, a lower bound on the DT
(resp. the ADT) solely based on the information of the dynam-
ics of the subsystems can provide an important design criteria
to prevent de-stabilization by the switching action of the
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signal. To broaden the class of admissible switching signals,
one would like such lower bounds to be as small as possible.
However, the DT or ADT lower bounds proposed in the
literature [3]–[9] depend heavily on the Lyapunov functions
chosen for stability analysis and may therefore be conservative.
In particular when the switched system is graph-based (that
is, when the mode changing during a switch is restricted
to be an edge of a graph), the DT or ADT lower bounds
computed using a naive choice of Lyapunov functions may be
far from satisfactory. To address this, the work [10] proposes
an optimization formulation whose constraints include matrix
exponentials, which make the problem not directly solvable.
[11] proposes an alternative optimization problem formulation
where the decision variables are matrix functions. By assuming
such matrix functions are polynomials, the problem is solved
with the aid of sum-of-squares programming. On the other
hand, the work [12] leverages the eigenvectors of each sub-
system to propose a different formula for a DT lower bound.
The research of finding DT lower bounds has also covered
discrete-time systems [13], [14]. To guarantee stability of the
overall system, the aforementioned works utilize the idea of
pairing and neutralizing the destabilizing effects of switches
with the stabilization effect provided by mode dwelling. This
simple idea is inapplicable for finding ADT lower bounds, as
switching signals satisfying ADT condition are more flexible,
which might explain the relative low number of works on this
topic. To the best of our knowledge, the work [15], extending
[12], aims to use a cycle ratio of the graph-based switched
system for computing an ADT lower bound. Finally, the work
[16] proposes a way to verify whether a positive number is a
valid ADT lower bound on the switching signals so that the
switched system is stable.

The contributions of this paper address the gaps identified
above by (i) formulating the problem of finding an ADT
lower bound as a nonlinear optimization with bilinear matrix
inequality (BMI) constraints; and (ii) proposing and analyzing
a numerical iterative algorithm to solve the resulting optimiza-
tion problem. We emphasize here that finding a lower bound
on the ADT for ensuring stability using optimization tech-
niques is novel. A key aspect of our optimization formulation
is its independence of the choice of Lyapunov functions, which
we accomplish building on the result in [17] establishing a
common ADT lower bound guaranteeing GAS, ISS or iISS
of switched systems when the unforced dynamics are linear.
We tackle the nonconvexity of the optimization problem using
sequential convex programming (SCP) with the technique of



convex-concave decomposition of constraints. Our simulations
show that our algorithm computes an ADT lower bound which
is much smaller than the values produced by the baseline
approaches in various sample switched systems.

II. PRELIMINARIES

Notation: We denote by Sn ⊂ Rn×n the set of symmetric
matrices. For any M ∈ Sn, we denote M � 0 (resp. M �
0) if M is positive definite (resp. positive semi-definite). In
addition, M1 � M2 if M1 −M2 � 0. Analogous definitions
hold for (semi-)negative definiteness.

Switched systems and switching signals: Consider a digraph
G = (V, E) where V = {1, 2, · · · , p} and E ⊂ V×V . For each
i ∈ V there is a locally Lipschitz vector field fi : Rn×Rm →
Rn. According to [2], a switched system is referred by the
differential equations

ẋ = fσ(x, ω), (1)

where x ∈ Rn is the state, ω ∈ Rm is the input and σ ∈ V is
the mode. Let Σ be the set of all right-continuous, piecewise
constant mappings from [0,∞) to V with a locally finite
number of discontinuities, called switching signals. For each
switching signal σ ∈ Σ, define the switch instants T (σ) :=
{t > 0 : σ(t) 6= σ(t−)} where t− denotes the left limit of
the function at t. With this data, the dynamics of the switched
system is described by

ẋ(t) = fσ(t)(x(t), ω(t)), if t 6∈ T (σ), (2a)

x(t) = x(t−), if t ∈ T (σ). (2b)

We now specify the class of switching signals for which we
study the stability of system (2). We say a switching signal σ
has an underlying switching graph G if (σ(t−), σ(t)) ∈ E for
all t ∈ T (σ); in other words, the system is only allowed to
switch from mode i to j if (i, j) is an edge of G. According
to [4], a switching signal σ has an average dwell-time (ADT)
of τa (equivalently, σ satisfies the ADT constraint) if there
exist τa > 0 and N0 ≥ 1 such that

∀t2 ≥ t1 ≥ 0 : Nσ(t1, t2) ≤ N0 +
t2 − t1
τa

, (3)

where Nσ(t1, t2) := |(t1, t2] ∩ T (σ)|. In other words, on
average there can be at most one switch per τa units of time.

III. A UNIFORM ADT LOWER BOUND FOR STABLE
SWITCHED SYSTEMS

In this work, we study two well-known stability properties,
input-to-state stability (ISS) and integral input-to-state stabil-
ity (iISS), for the switched system (1). Due to space con-
straints, we refer the readers to [18], [19] for their definitions.
It is seen that when (1) has no input (ω = 0), both ISS and
iISS reduce to global asymptotic stability (GAS). Interestingly,
although GAS, ISS and iISS are different stability notions,
they all can be guaranteed with the same ADT condition on
the switching signal for some switched systems. Formally,
consider the switched linear system without input

ẋ = Aσx, (4)

the switched linear system with linear input

ẋ = Aσx+Bσω (5)

and the switched system with linear and bilinear inputs

ẋ = Aσx+Bσω +

mc∑
j=1

Cσ,jxωj . (6)

The following result establishes that an appropriate lower
bound on τa ensures that these systems are, respectively, GAS,
ISS, and iISS.

Theorem 1 ( [7, Theorem 3.1], [17, Proposition 12]):
Given a digraph G = (V, E), let the matrix Ai ∈ Rn×n be
Hurwitz for all i ∈ V . Consider the switched systems (4), (5)
or (6) and assume the switching signal σ has an underlying
switching graph G with ADT τa. Let Pi ∈ Sn, Pi � 0 and
suppose that the inequalities

A>i Pi + PiAi + λPi � 0, ∀i ∈ V, (7a)
Pj − µPi � 0, ∀(i, j) ∈ E , (7b)

hold for some µ ≥ 1, λ > 0. If τa > lnµ
λ , then the systems (4),

(5) and (6) are GAS, ISS and iISS, respectively.
We refer to the parameter lnµ

λ as the ADT lower bound. The
smaller this bound is, the larger the set of switching signals
to which Theorem 1 applies, and hence the greater the design
flexibility for the switched system is. Notice that Theorem 1
only provides a sufficient condition, and hence the ADT lower
bound might be conservative. This bound depends on the
choices of Pi’s, µ, and λ. We observe that if Pi’s are fixed, µ
and λ can be optimized to give a minimal ADT lower bound
while preserving the inequalities (7a) and (7b). However, the
matrices Pi’s are related to the Lyapunov functions chosen for
the subsystems and they are not unique. In order to maximize
λ, each Pi needs to be tailored to Ai, in which case the Pi’s
might be very different from each other, causing µ to become
large. On the other hand, in order for µ to be as close to 1 as
possible, the Pi’s need to be close to each other. In that case the
Lyapunov functions of some subsystems may dissipate slowly
and thus λ may become small. These observations point out
to the trade-offs in the selection of the matrices Pi’s when
minimizing the ADT lower bound. Instead, one can formulate
the following optimization problem to find the best choice of
µ, λ and Pi’s which give the minimal ADT lower bound:

(P1) minimize
{Pi}i∈V ,µ,λ

lnµ

λ
(8a)

subject to µ ≥ 1, (8b)
λ > 0, (8c)
Pi � 0 ∀i ∈ V, (8d)
and (7a), (7b).

The next result is a direct consequence of Theorem 1.
Corollary 1: Given a digraph G = (V, E), let the matrices

Ai ∈ Rn×n be Hurwitz for all i ∈ V . Denote the optimal
value of (P1) by τ∗ = lnµ∗

λ∗ . Then if a switching signal σ has
underlying switching graph G with ADT satisfying τa > τ∗,
then the switched system (4) is GAS, (5) is ISS and (6) is iISS.



Comparing Corollary 1 with Theorem 1, we see that the
ADT lower bound τ∗ in Corollary 1 only depends on the
system matrices Ai’s, and it is less conservative than the one
given in Theorem 1.

We remark here that (P1) is NP-hard in general and cannot
be solved directly since 1) the objective function (8a) is
nonlinear and nonconvex, and 2) the constraints (7a) and (7b)
are BMI constraints, which are nonconvex. The problem we
address in the rest of this paper is how to tackle the challenges
involved in solving (P1).

IV. SOLVING THE NONLINEAR OPTIMIZATION PROBLEM

In this section, we first establish the feasibility of prob-
lem (P1) in Section IV-A and then design a SCP to solve it.

A. Feasibility of the problem

We first establish the feasibility of problem (P1); that is,
whether there exist Pi ∈ Sn for all i ∈ V and µ, λ ∈ R
satisfying the constraints (7a), (7b), (8b), (8c) and (8d).

Lemma 1: The optimization problem (P1) is feasible when
all Ai’s are Hurwitz matrices.

Proof: Since all Ai’s are Hurwitz, there exist Pi ∈
Sn, Pi � 0 that solve the Lyapunov equations

A>i Pi + PiAi + I = 0 ∀i ∈ V. (9)

Set λ := 1
σ̄ , µ := σ̄

σ where σ̄ := maxi∈V σmax(Pi),
σ := mini∈V σmin(Pi) and σmax(Q), σmin(Q) denotes the
largest/smallest singular values of a matrix Q, respectively.
Note that all constraints in (P1) are satisfied since σI � Pi �
σ̄I , for all i ∈ V .

B. Approximation of the objective and constraint
functions

Here we design an SCP to solve problem (P1). The pseu-
code is summarized in Algorithm 1. Our ensuing discus-

Algorithm 1 Computation of minimum ADT lower bound

Input: (V, E), {Ai}i∈V , {P (0)
i }i∈V , µ(0), λ(0), ε

1: τ (0) ← lnµ(0)

λ(0)

2: for k = 1, 2, · · · do
3: Convexify (P1) around {P (k−1)

i }i∈V , µ(k−1), λ(k−1)

4: Solve the convexified problem, set {P (k)
i }i∈V , µ(k),

λ(k) equal to the obtained minimizer
5: τ (k) ← lnµ(k)

λ(k)

sion elaborates on each of the steps in Algorithm 1. In
the k-th iteration, we convexify the problem (P1) around
{P (k−1)

i }i∈V , µ(k−1), λ(k−1). This convexification is done by
linearizing the objective function (8a), followed by adding a
quadratic regularization term, and convex-concave decomposi-
tion of the BMI constraints (7a), (7b) using techniques similar
to the ones in [20]. We then compute an ADT lower bound
τ (k) using the data µ(k), λ(k) and repeat this process. The
convergence analysis is presented in Section IV-C.

1) Approximation of the objective function: We approximate
f in (P1) linearly around (µ†, λ†) by

L fµ†,λ†(µ, λ) :=
lnµ†

λ†
+
(

1
µ†λ†

− lnµ†

(λ†)2

)(
µ− µ†

λ− λ†

)
.

(10)

Note that the second term is the directional derivative of f at
(µ†, λ†), in the direction of (µ − µ†, λ − λ†). The objective
function f can also be locally approximated by a quadratic
function by taking into account its Hessian. However, since f
is nonconvex, its Hessian is sign indefinite and the quadratic
optimization problem cannot be solved efficiently.

2) Approximation of the BMI constraints: We first approxi-
mate the BMI constraints (7a) with linear matrix inequality
(LMI) constraints. For each i ∈ V , (7a) can be rewritten in
quadratic form asAiPi

λ
2 I

>Σ
AiPi
λ
2 I

 � 0, with Σ :=

0 I 0
I 0 I
0 I 0

 . (11)

Notice that Σ is a 3n×3n symmetric matrix, with eigenvalues
−
√

2, 0, and
√

2, all of multiplicity n. Let V denote an
orthogonal matrix whose columns are eigenvectors of Σ.
Divide both sides of (11) by

√
2 and define

R̂(Pi, λ) :=

AiPi
λ
2 I

> V
0

0
I

(0 0 I
)
V >

AiPi
λ
2 I

 ,

Ř(Pi, λ) :=

AiPi
λ
2 I

> V
I0

0

(I 0 0
)
V >

AiPi
λ
2 I

 ,

the inequality in (11) becomes

R̂(Pi, λ)− Ř(Pi, λ) � 0. (12)

Notice that by definition, both R̂ and Ř are positive semidef-
inite and convex. Using this fact, we can write, for any
Pi, P

†
i ∈ Sn and λ, λ† > 0,

Ř(Pi, λ) � L ŘP †i ,λ†
(Pi, λ) (13)

:= Ř(P †i , λ
†) +DŘ(Pi, λ)(Pi − P †i , λ− λ

†),

where L ŘP †i ,λ†
is the linearization of Ř around (P †i , λ

†) and
DŘ(x)(v) is the directional derivative of Ř evaluated at x in
the direction of v. The latter can be explicitly computed as

DŘ(Pi, λ)(Pi − P †i , λ− λ
†)

=

 0

Pi − P †i
λ−λ†

2 I

> V
I0

0

(I 0 0
)
V >

 Ai
P †i
λ†

2 I



+

 Ai
P †i
λ†

2 I

> V
I0

0

(I 0 0
)
V >

 0

Pi − P †i
λ−λ†

2 I

 .

Consider the following inequality

R̂(Pi, λ)− L ŘP †i ,λ†
(Pi, λ) � 0. (14)



From (13), we see that (12) holds whenever (14) holds. This
means the feasible set of Pi, λ given by the constraint (14) is a
subset of the feasible set given by the constraint (12). Thus, if
we fix P †i , λ

† and replace the constraint (7a) by (14) in (P1),
the optimal value of the objective function will in general be
larger. Note that by using the definition of R̂ and applying the
Schur complement [21], (14) is equivalent to the LMI

I
(
0 0 I

)
V >

AiPi
λ
2 I


(
A>i Pi

λ
2 I
)
V

0
0
I

 L Ř
P

†
i ,λ

†(Pi, λ)

 � 0.

(15)
Using similar convex-concave decomposition and lineariza-

tion, the constraints (7b) can also be approximated by LMI
constraints I

(
I 0

)
U>

(
Pi
µ
2 I

)
(
Pi

µ
2 I
)
U

(
I
0

)
L Ŝ

P
†
i ,µ

†(Pi, µ) − Pj

 � 0, (16)

where the columns of U are the eigenvectors of
(

0 I
I 0

)
and

L ŜP †i ,µ†
(Pi, µ) =

(
Pi − P †i

µ
2 I

)>
U

(
0
I

)(
0 I

)
U>

(
P †i
µ†

2 I

)

+

(
P †i
µ†

2 I

)>
U

(
0
I

)(
0 I

)
U>

(
Pi
µ
2 I

)

C. The convex subproblem

In this section we combine the aforementioned approxima-
tions for the objective function and constraints and summarize
the convex subproblem formulated and solved in Steps 3 and
4 of Algorithm 1. To this end, for P †i ∈ Sn, µ†, λ† ∈ R and
parameters cλ, cµ, cP ≥ 0, define the regularization function

rP †i ,µ†,λ†
({Pi}i∈V , µ, λ) := (17)

cP
∑
i∈V
‖Pi − P †i ‖

2
F + cµ(µ− µ†)2 + cλ(λ− λ†)2.

This function is a weighted sum of the squared distance
between Pi, µ, λ and P †i , µ

†, λ†, and is convex in Pi, µ, λ.
Consider the following problem

(P2) minimize
{Pi}i∈V ,µ,λ

L fµ†,λ†(µ, λ) + rP †i ,µ†,λ†
({Pi}i∈V , µ, λ)

subject to (8b) – (8d),
and (15) ∀i ∈ V, (16) ∀(i, j) ∈ E ,

where L fµ†,λ† is defined in (10) and rP †i ,µ†,λ†
is defined in

(17). If the point ({P †i }i∈V , µ†, λ†) is itself a solution to (P2),
then we call it optimal. The problem (P2) has a quadratic
and convex objective function with LMI constraints, and it is
a standard semi-definite programming (SDP) problem which
can be efficiently solved.

The convex subproblem solved at the k-th iteration of
Algorithm 1 is precisely (P2) with the choice (P †i , µ

†, λ†) =

(P
(k−1)
i , µ(k−1), λ(k−1)). A fixed point of Algorithm 1 is

therefore an optimal point in the sense defined above. Under
some mild assumptions, we show next that any solution of (P1)
is a fixed point. We also show that P (k)

i , µ(k), λ(k) generated
by Algorithm 1 converge to a fixed point.

Proposition 1 (Convergence of Algorithm 1): Suppose that
there is a compact subset D of the feasible set of (P1)
such that cλ ≥ 1+2 lnµ

λ3 for all ({Pi}i∈V , µ, λ) ∈ D. Let
({P ∗}i∈V , µ∗, λ∗) ∈ D be a solution of (P1), then it is
a fixed point. In addition, if Algorithm 1 generates the
sequence (P

(k)
i , µ(k), λ(k)) ∈ D for all k ∈ N, then the

associated τ (k) monotonically decrease and the sequence
({P (k)

i }i∈V , µ(k), λ(k)) converges to a fixed point when k
approaches infinity.

Proof: For each k ∈ N, denote g∗({Pi}i∈V , µ, λ) :=
L fµ∗,λ∗(µ, λ) + rP∗i ,µ∗,λ∗({Pi}i∈V , µ, λ) and
e∗({Pi}i∈V , µ, λ) := g∗({Pi}i∈V , µ, λ) − lnµ

λ . Computing
the Hessian of eP∗i ,µ∗,λ∗ , it is found that

H e∗ =

cµ + 1
µ2λ

1
µλ2 0

1
µλ2 cλ − 2 lnµ

λ3 0

0 0 cP I

 .

Since cµ, cP ≥ 0 and cλ ≥ 1+2 lnµ
λ3 , H e∗ � 0 so the

function e∗ is convex in D. In addition, the value of e∗ and
the gradient of e∗ at ({P ∗i }i∈V , µ∗, λ∗) are found to be 0,
which implies that the minimum of e∗ in D is 0 and the
optimizer is ({P ∗i }i∈V , µ∗, λ∗). In other words, lnµ∗

λ∗ ≤
lnµ
λ ≤

g∗({Pi}i∈V , µ, λ), where the first inequality comes from the
fact that ({P ∗}i∈V , µ∗, λ∗) is a solution of (P1). Because both
equalities above hold iff ({P}i∈V , µ, λ) = ({P ∗}i∈V , µ∗, λ∗),
we conclude that ({P ∗}i∈V , µ∗, λ∗) is a fixed point.

To show that the sequence τ (k) is monotonically decreasing,
we use the shorthand notation that g(k)({Pi}i∈V , µ, λ) :=
L fµ(k),λ(k)(µ, λ) + r

P
(k)
i ,µ(k),λ(k)({Pi}i∈V , µ, λ). We have

τ (k+1) =
lnµ(k+1)

λ(k+1)
≤ g(k)({P (k+1)

i }i∈V , µ(k+1), λ(k+1))

≤ g(k)({P (k)
i }i∈V , µ

(k), λ(k)) =
lnµ(k)

λ(k)
= τ (k)

where the first inequality comes from similar reasoning as
above and the second inequality comes from the fact that
({P (k+1)

i }i∈V , µ(k+1), λ(k+1)) is the minimizer of g(k). Hence
the sequence τ (k) is monotonically decreasing. Lastly, the
convergence to a fixed point is concluded by appealing to [22,
Theorem 3.1] and realizing the fact that τ (k) is monotonic.

We conclude here with some remarks regarding Proposi-
tion 1. Firstly, the assumption that cλ ≥ 1+2 lnµ

λ3 over D
imposes constraints on D and hence only local convergence is
guaranteed for Algorithm 1. In practice, we use a sufficiently
large parameter cλ in order for (P

(k)
i , µ(k), λ(k)) ∈ D for all

k ∈ N. The limitation of local convergence is caused by the
nonconvexity of (P1). Meanwhile, Proposition 1 guarantees
the convergence of Algorithm 1 to a fixed point which is only
a necessary condition of being an optimizer of (P1). In other
words, the initial guesses P (0)

i , µ(0), λ(0) affect the output of
Algorithm 1. Nevertheless, monotonicity implies that the ADT
lower bound improves by applying Algorithm 1.



V. EXAMPLES AND COMPARISON

Here, we show two examples of continuous-time, graph-
based switched systems and compute the ADT lower bounds
which guarantee GAS. We use Algorithm 1 for the computa-
tion and compare the result with other alternative approaches.

A. Baseline approaches and an approach from literature
We start with an introduction to three baseline approaches

for computing ADT lower bounds. These approaches are all
based on Theorem 1 with some particular choices of Pi’s.

a) Naive choice of Pi’s: We choose the matrices Pi’s solving
the Lyapunov equations (9), and then find the maximal λ
and minimal µ satisfying the constraints (7a) and (7b).

b) Greedy choice of maximizing λ: We first choose Pi’s
maximizing λ subject to (7a). This is a generalized
eigenvalue problem (GEVP) and can be solved using the
techniques in [23], [24]. We then find the minimal µ
satisfying the constraints (7b).

c) Greedy choice of minimizing µ: We first choose Pi’s
minimizing µ subject to (7b). This is again a GEVP. We
then find the maximal λ satisfying the constraints (7a).

Algorithm 1 is implemented via the platform YALMIP
in Matlab, and for each iteration the SDP (P2) is solved
using SeDuMi. We run the algorithm until the difference
|τ (k) − τ (k−1)| between consecutive estimates of the ADT
lower bound get below a tolerance ε = 0.001. In each example,
we use the results generated by the three baseline approaches
– which are feasible points to (P1) – as the initial guesses for
our algorithm, and then take the best output.

As an additional comparison, we also use the approach in
[15] for computing ADT lower bounds for both examples. This
approach requires the matrices Ai’s to be diagonalizable and
examines the relation between their matrices of eigenvectors.
With this information, one finds the maximal ratio between
the total destabilising effects and total stabilizing effects in a
cycle (termed as cycle ratio) over all possible cycles in G, and
then computes an ADT lower bound.

Naive Max. λ Min. µ Alg. 1 [15]
µ 10.47 5489 1.056 1.171 -
λ 0.2046 1.52 0.0053 0.5568 -

ADT lb. 11.48 5.664 10.39 0.2844 2.899
time (ms) 9 12 14 518 2

TABLE I: ADT lower bounds for Section V-B.

B. Two-mode, 4-dimensional switched system
Consider a two-mode, 4-dimensional switched linear system

of form (4) with matrices

A1 =

(−15 9 −12 −1
−2 2 −5 −7
13 −5 −17 23
2 2 −15 10

)
, A2 =

(−14 11 −19 6
−10 7 −15 5

3 −1 −7 9
−6 5 −15 8

)
.

Both switches, from mode 1 to 2 and from mode 2 to 1,
are allowed. Table I shows the computed values of the ADT
lower bounds, λ, and µ using the approaches in Section V-
A. From the table, we observe that the approaches which
greedily choose Pi’s so that either λ is maximized or µ is

0 1 2 3 4 5

-1

0

1

2

3

4

Fig. 1: Trajectories for the exam-
ple in Section V-B starting from
x(0) = (4, 3, 2, 1) with dwell
time 0.285.

Mode 1

Mode 2

Mode 3 Mode 4

Mode 5

Fig. 2: Switching graph G of Sec-
tion V-C.

minimized do not yield small values for the ADT lower bound.
However, Algorithm 1 is capable of balancing µ and λ so
that the ADT lower bound is further minimized. It is also
significant that Algorithm 1 finds an ADT lower bound that
is about 10 times smaller than the value computed with the
cycle ratio approach [15]. To explain this improvement, we
note that, although the cycle ratio approach is not based on
Lyapunov functions, the idea of eigendecomposition can be
interpreted as choosing Lyapunov functions that maximize
the decay rates of all subsystems. Therefore, this approach is
similar to the greedy approach of maximizing λ (albeit with
better performance because the ratio computation per cycle is
less conservative than employing the uniform parameter µ).
In contrast, Algorithm 1 is capable of finding a smaller ADT
lower bound by employing the fact that the gain at switches
may be further minimized if the Lyapunov functions for the
subsystems are chosen differently. As an illustration, Figure 1
shows a trajectory converging to the equilibrium implemented
with a dwell time significantly smaller than the ADT lower
bound computed by the cycle ratio approach but slight larger
than the one computed by Algorithm 1.

The last row of Table I displays the total computation times
for each approach. The approach of [15] is the fastest because
it just implements eigendecomposition, followed with finding
the maximal cycle ratio, and hence it has a complexity of
O(mn3 + mp + m2 logm), where m = |V| and p = |E|.
Instead, each iteration of Algorithm 1 has a complexity of
O(m4.5n6.5+m2n6.5p2.5+n3.5p3.5), based on the complexity
of SeDuMi provided in [25] and assuming no simplification
is used for block diagonal LMI. This results in Algorithm 1
having the largest computation time (albeit we should also note
that we have not optimized the implementation on Matlab,
and currently rely on the external solver SeDuMi to solve
the SDP optimization). As noted above, this is because our
design puts the emphasis on minimizing the ADT lower
bound, whereas optimality is not in the scope of the other
approaches. We also point out that computation time is not an
issue in the scenarios of application we envision, where the
algorithm is run offline to provide a reference for the switched
system designer. Interestingly, Algorithm 1 terminates after 3
iterations and, after the first iteration, already achieves τ (1) =
0.4382, which is much smaller than the results produced by
the other approaches. This shows that while other approaches
are fast, they severely underestimate the possible improvement
in the ADT lower bound by optimizing over the Lyapunov
functions.



C. Five-mode, 3-dimensional switched system
Consider a five-mode, 3-dimensional switched system of

form (4) with matrices given by

A1 =

−5 1 2
0 −5 1
0 1 −2

 , A2 =

−1 3 1
0 −2 0
0 1 −1

 ,

A3 =

 0 0 3
−2 −1 −3
−1 0 −2

 , A4 =

−4 0 −3
2 −2 4
1 0 −1

 ,

A5 =

−1 0 0
−1 −1 −1
−3 0 −4

 .

The switching graph of this system is shown in Figure 2 and
the computed ADT lower bounds through different approaches
are summarized in Table II. The approach in [15] is not
applicable because the matrix A2 is not diagonalizable. Note
that when the number of modes is large and the switching
graph gets more complex, the greedy approaches produce
lower-quality ADT lower bounds as they compute extremely
conservative values of µ or λ while optimizing the other one.
Algorithm 1 finds an ADT lower bound which is significantly
smaller by balancing µ and λ.

Naive Max. λ Min. µ Alg. 1 [15]
µ 20.17 3964900 1.443 3.071 -
λ 0.286 1.959 0.0011 0.9178 -

ADT lb. 10.5 7.757 334.6 1.222 -
time (ms) 13 23 38 2423 -

TABLE II: ADT lower bounds for Section V-C.

Consistent with the previous example, Algorithm 1 takes a
computation time to find an optimal ADT lower bound longer
than the other approaches for the reasons explained above.
Here, Algorithm 1 takes 7 iterations to converge, with each
iteration taking about 340 ms. After the first iteration, the
algorithm already yields τ (1) = 2.597, which is much smaller
than the other approaches.

VI. CONCLUSIONS

We have studied the problem of finding ADT lower bounds
for switching signals that can guarantee GAS, ISS or iISS
of continuous-time, graph-based switched systems. We for-
mulated the problem as an optimization problem, which es-
sentially minimizes the ADT lower bound computed over the
parameters given by different choices of Lyapunov functions.
This optimization problem was then solved via an iterative
algorithm with local convergence guarantees. From the demon-
stration of examples and the comparison with previous results,
we found that the ADT lower bounds produced by our algo-
rithm are relatively small and, hence, favorable for practical
switching-signal design purposes. Future research will develop
an analysis of computational complexity that addresses the
SCP initialization and characterizes its convergence rate. We
also plan to explore the combination of cycle ratios with
our technique of optimizing over the matrices that define the
Lyapunov functions by defining constraints on cycles, rather
than on edges, to further improve the ADT lower bound.
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[3] A. S. Morse, “Dwell-time switching,” in European Control Conference,
Groningen, The Netherlands, 1993, pp. 176–181.

[4] J. P. Hespanha and A. S. Morse, “Stability of switched systems with
average dwell-time,” in IEEE Conf. on Decision and Control, Shangai,
China, Dec 1999, pp. 2655–2660.

[5] W. Xie, C. Wen, and Z. Li, “Input-to-state stabilization of switched
nonlinear systems,” IEEE Transactions on Automatic Control, vol. 46,
no. 7, pp. 1111–1116, 2001.

[6] A. Russo, S. Liu, D. Liberzon, and A. Cavallo, “Quasi-integral-input-
to-state stability for switched nonlinear systems,” IFAC-PapersOnLine,
vol. 53, no. 2, pp. 1992–1997, 2020.

[7] L. Vu, D. Chatterjee, and D. Liberzon, “Input-to-state stability of
switched systems and switching adaptive control,” Automatica, vol. 43,
no. 4, pp. 639–646, 2007.

[8] S. Liu, A. Tanwani, and D. Liberzon, “Average dwell-time bounds for
ISS and integral ISS of switched systems using Lyapunov functions,” in
IEEE Conf. on Decision and Control, Jeju Island, South Korea, 2020,
pp. 6291–6296.

[9] P. Colaneri, J. C. Geromel, and A. Astolfi, “Stabilization of continuous-
time switched nonlinear systems,” Systems & Control Letters, vol. 57,
no. 1, pp. 95–103, 2008.

[10] J. C. Geromel and P. Colaneri, “Stability and stabilization of continuous-
time switched linear systems,” SIAM Journal on Control and Optimiza-
tion, vol. 45, no. 5, pp. 1915–1930, 2006.

[11] C. Briat and A. Seuret, “Affine characterizations of minimal and mode-
dependent dwell-times for uncertain linear switched systems,” IEEE
Transactions on Automatic Control, vol. 58, no. 5, pp. 1304–1310, 2013.
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