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Abstract— This paper considers the connectivity maintenance
problem for multi-robot systems and proposes a continuous
optimization-based controller with Nonsmooth Control Barrier
Functions to achieve it. The design is based on the concept of
algebraic connectivity of the interaction graph. When viewed
as a function of the network state, the algebraic connectivity
is not continuously differentiable, a fact neglected in previous
controller designs. To illustrate the importance of this obser-
vation, we present an example of a simple multi-robot system
that fails to maintain connectivity under such controllers. The
insights gained allow us to synthesize an optimization-based
controller that prescribes that all the nontrivial eigenvalues
of the Laplacian remain positive. Using tools from nonsmooth
analysis and set-valued theory, we show that the proposed
controller is continuous, thereby guaranteeing the existence of
the robot trajectories for the closed-loop system and ensuring
network connectivity is maintained along them.

I. INTRODUCTION

Connectivity maintenance is a crucial requirement for
real world applications of multi-robot systems [1]. While
important, connectivity is not the sole objective of the multi-
robot systems. Real-time optimization-based controller has
the flexibility to address systems with multiple objective [2].
The overarching objective of this paper is to develop a set of
constraints to represent connectivity maintenance of a multi-
robot system, in a way that it may be integrated into an
optimization-based controller.

Literature Review: We rely on three bodies of literature:
graph theory, safety-critical control, and set-valued analysis.
For multi-robot systems, the network graphs are usually de-
fined via proximity graphs [3], which allow the connectivity
to change along the robots’ trajectories. In the literature, there
are two main approaches to connectivity maintenance. The
first is the local connectivity [4] concept that requires the
maintenance of the initial network. The second and more
flexible approach uses the concept in graph theory called
algebraic connectivity, also known as Fiedler eigenvalue [5].
Many connectivity maintenance algorithmic solutions [6] and
controllers [1] rely on ensuring the Fiedler eigenvalue is
greater than zero. Unfortunately, many results do not con-
sider the issue of the eigenvalue having multiplicity higher
than one. This issue is known to cause problems and requires
special care in the literature. In particular, the issue has been
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addressed in the estimation of algebraic connectivity. For
example, in [7] the proposed method for estimation cannot
retrieve the multiplicity of the eigenvalues, and it is well
known that the power iteration algorithm can not converge to
any value if the algebraic connectivity has multiplicity higher
than one [8]. To the best of our knowledge, in the context of
feedback control for connectivity maintenance, [6] is the only
work that has investigated this issue. The solution provided,
however, does not examine the continuity property of the
feedback controller, which is necessary for guaranteeing the
existence of solutions to the feedback system.

One way to preserve positiveness of a state-dependent
function, along the trajectory, is via safety-critical control.
The paper [9] uses the concept of barrier certificate to
develop Control Barrier Functions (CBFs) for control-affine
systems. The concept is improved further in [2] by relaxing
the constraint inside the safe set. CBFs are used for connec-
tivity maintenance from a local point of view in [10], and
with a global perspective in [11] for robots communicating
over a finite radius. The main limitation in the latter is the
assumption that network trajectories always evolve in the set
of points where the algebraic connectivity is continuously
differentiable. As we show later, this might not always be
the case as the network tries to maintain connectivity, with
problematic implications. To increase the robustness of the
method presented in [11], in [12] a heuristic is proposed
to consider the presence of time delays, but it does not
consider the issue related to higher multiplicity of algebraic
connectivity. In this paper we improve the method proposed
in [11] by leveraging Nonsmooth Control Barrier Functions
(NCBFs) [13] to deal with nonsmoothness as multiplicity of
the eigenvalues changes with the network state.

We use set-valued theory to study the continuity of the
proposed controller. Continuity is an important property for
guaranteeing the existence of solutions to feedback sys-
tem. The paper [14] studies the smoothness properties of
optimization-based controllers with CBFs using perturbation
theory. However, the result is limited to continuously dif-
ferentiable CBF constraints, which is not applicable to our
problem. Interpreting control constraint sets as set-valued
maps, optimization-based controllers can be viewed as a
parametric optimization problem, with the system state as the
parameter. An important and well-known result in this regard
is [15, Thm. 17.31]. The work [16] studies the continuity of
optimization-based controllers using set-valued theory, but
the results are restricted to affine constraints.

Statement of Contributions: We present a NCBF-based
controller for global connectivity maintenance. We consider



a multi-robot system with a fully actuated first-order dy-
namics for which it is desirable for the robots to remain
connected. The graph defining the connections between them
is proximity-based, meaning that it is state-dependent and
can change as the robots move. We design the control input
constraint that will ensure connectivity maintenance among
the robots. The contributions are threefold. The first is a
novel controller design that manages to be well defined
everywhere by resorting to the concept of NCBFs to deal
with situations in which the algebraic connectivity is not
simple. Our second contribution is the generalization of
the design to arbitrary continuously differentiable proximity-
based graphs. As a result, the controller becomes much
more suitable for real multi-robot systems with proximity-
based graphs tied to physical meanings. Finally, our third
contribution is the characterization of the continuity of the
designed constraint. Hence, when the proposed control input
constraint is utilized in an optimization-based controller,
continuity of the feedback controller is ensured, thereby
establishing the existence of a system solution. Proofs are
omitted for reasons of space and will appear elsewhere.

II. CONTINUITY OF OPTIMIZATION-BASED
CONTROLLERS

In this section we provide a general discussion on
optimization-based controllers and their versatility to incor-
porate safety and stability constraints1. This provides the
necessary context for the problem formulation described
later. Consider the nonlinear system ẋ = f(x, u), where
x ∈ RN , u ∈ RM and f : RN × RM → RN . Broadly
speaking, we seek to synthesize a controller x 7→ k(x) such
that the closed-loop system enjoys some desirable perfor-
mance and asymptotic guarantees. A commonly used design
methodology resorts to the optimization-based controller,

k(x) = argmin
u∈U(x)

J(x, u), (1)

where J : RN ×RN → R is a cost function (e.g., minimum-
energy control specifications) and U : RN →→ RM is a set-

1We use the following notation. We denote by N, R, R≥0, and R>0 the
set of natural, real, real non-negative, and real positive numbers. For n ∈ N,
we let [n] = {1, . . . , n}. Given x ∈ Rn, ‖x‖ is its Euclidean norm. We
let Sn =

{
v ∈ Rn | ‖v‖ = 1

}
denote the unit ball in Rn. Given matrices

A,B ∈ Rn×n, A ·B =
∑

i,j AijBij . Note that for v ∈ Rn, vv> ·A =

v>Av. We let U : Rn →→ Rm denote a set-valued map, also called a
correspondence [15, Chap. 17], that assigns a subset of Rm to each point
in Rn. A set-valued map U is closed-valued, convex-valued, compact-valued
and has a nonempty interior if its image at each point of its domain is closed,
convex, compact, and has a nonempty interior, respectively. Similarly, all
set operations between set-valued maps, such as union and intersection,
are performed point-wise. We let co(S) denote the convex closure of S.
A continuous function α : R → R is of extended class K if α(0) = 0,
and α is strictly increasing. For a locally Lipschitz scalar-valued function
h : Rn → R, we let ∂xh : Rn →→ Rn denote its generalized gradient [17,
Chap. 2]. An undirected graph is a pair G = (V,E), where V is the set of
vertexes and E ⊂ V × V is the set of unordered edges, i.e., if (i, j) ∈ E
then also (j, i) ∈ E. In a weighted graph, each edge (i, j) ∈ E has a
weight ai,j ∈ R≥0. The Laplacian matrix L ∈ Rn×n of a weighted graph
G is defined with entries Lij = −ai,j if i 6= j, and Lii =

∑n
j=1 ai,j

otherwise. Given a Laplacian matrix L of a graph G, its eigenvalues are
real and nonnegative, and can be ordered, i.e., 0 = λ1 ≤ λ2 ≤ . . . ≤ λn.
For its significance, we refer to λ2 as the algebraic connectivity or Fiedler
eigenvalue [5]. In fact, λ2 > 0 if and only if the graph G is connected.

valued map encoding constraints (e.g., input boundedness,
infinitesimal decrease of certificate) on the input.

A key property of the controller is continuity, both from
a theoretical and practical viewpoint. Continuity of the
controller guarantees the existence of Carathéodory solu-
tions2 [18, Thm. 5.1]. As one can expect, the continuity of
the controller (1) depends on the continuity of the cost J and
also on how continuously U(x) changes with x. Because U
is a set-valued map, the latter requires care in formalizing
what continuity means.

Definition 2.1: (Upper and Lower Hemicontinuity [19]3):
A set-valued map U : RN →→ RM is
• upper hemicontinuous at x if for any neighborhood Ū

of U(x), there exists δ > 0 such that, if ‖x − x′‖ < δ
then U(x′) ⊂ Ū ;

• lower hemicontinuous at x if for each u ∈ U(x) and
for any sequence {xk}k∈N converging to x, there exists
a sequence {uk}k∈N converging to u with uk ∈ U(xk).

We simply refer to the map as upper hemicontinuous
(UHC) (resp. lower hemicontinuous (LHC)) if it is upper
(resp. lower) hemicontinuous for all x. Unlike for single-
valued functions, the two definitions are not equivalent. A
set-valued map is continuous when it is both UHC and
LHC. By Berge Maximum Theorem [15, Thm. 17.31], if
the cost function J is continuous, the constraints set map
U is continuous and compact-valued, and the minimization
in (1) is single-valued, then, k is continuous.

In the present paper, we employ the set-valued map U
to specify safety constraints via CBFs [2]. Then we restrict
the inputs, at each state, to those that ensure the forward
invariance of the safe set. Suppose we are given a continu-
ously differentiable function h : RN → R, and the goal is
to contain all system trajectories within its zero superlevel
set C = {x ∈ RN | h(x) ≥ 0}, which represents the safe set.
The idea is to constrain the choices of control input to only
the ones that do not drive the state trajectory outside of C.
Since we are dealing with continuous trajectories, the only
region where one really needs to worry is the boundary
{x ∈ RN | h(x) = 0}, where we must ensure the Lie
derivative is non-negative, i.e., ∂h∂xf(x, u) ≥ 0, to guarantee h
does not decrease from those states. This inequality defines
a set of valid inputs as a function of x, i.e., a set-valued
map U specifying constraints for the optimization-based con-
troller. However, because the inequality only appears at the
boundary, the set-valued map U , and consequently k, is not
continuous. CBFs deal with this issue by prescribing safety
constraints everywhere without overconstraining the system.
Formally, for all x, one requires ∂h

∂xf(x, u) ≥ −α(h(x)),
where α is an extended class K function. With this constraint,
h is called a CBF. The constraint does not outright require
a positive Lie derivative everywhere, but gradually becomes
stricter for states closer to the boundary. This defines a set-
valued map U that specifies a set of valid inputs for every
state x by means of an inequality that changes continuously.

2A Carathéodory solution is an absolutely continuous trajectory that sat-
isfies the dynamics at almost every time in the sense of Lebesgue measure.

3Sometimes referred to as semicontinuity, see e.g. [20].



We point out that it is possible for the function h to not
have a well-defined gradient and still carry out a similar
discussion using NCBFs [13]. In such case, h being locally
Lipschitz is sufficient to reason with its generalized gradient.

III. PROBLEM STATEMENT

We consider a group of n robots moving in a d-
dimensional space. Each robot is modeled by a first-order
fully-actuated dynamics of the form

ẋi = ui, (2)

where xi ∈ Rd and ui ∈ Rd are the position and the
input of the i-th robot, respectively. The network state is
represented by x =

[
x>1 , . . . , x

>
n

]> ∈ Rnd, with the position
of all robots stacked. The underlying interaction topology is
specified by a proximity-based weighted graph x 7→ G(x),
which changes with the network state as a function of
the communication capabilities of the robots, cf. [3]. We
assume edge weights are continuously differentiable4. Since
the graph G(x) changes with x, we define the state-dependent
Laplacian function L : Rnd → Rn×n. The composition
function λm ◦ L : Rnd → R, for m ∈ [n], are the ordered
eigenvalues of the Laplacian at the corresponding state. For
convenience, and with a slight abuse of notation, we use λm
to refer to λm ◦ L. With this in place, network connectivity
can be ensured by requiring λ2(x) ≥ ε at all times, for some
ε ∈ R>0. The threshold parameter provides a robustness
margin in ensuring connectivity.

We assume a controller udes, designed to make the network
achieve some desirable coordination task, is available. Our
goal is then to design a controller that is as close as possible
to udes while ensuring network connectivity. This goal can be
encoded with the optimization-based controller (1) by using
udes to define the cost function J and prescribing the task of
defining an appropriate constraint set-valued map U .

Problem 3.1: (Connectivity Maintenance Constraint De-
sign Problem): Consider the multi-robot system (2) operating
with a state-feedback optimization-based controller defined
by (1). Design a set-valued map constraint U so that the
controller is continuous and the trajectories of the closed-
loop system satisfy λ2(x(t)) ≥ ε at all time. •

A. Previous Work

Here we report the solution proposed in [11] for Prob-
lem 3.1 and discuss its limitations. This serves as motivation
for our developments later. Given the desired controller udes,
define the quadratic cost function

J(x, u) = ‖u− udes(x)‖2. (3)

For fixed x, the minimizer of J is precisely u = udes(x).
Given the goal of maintaining the algebraic connectivity
above a threshold value, one can take x 7→ h(x) = λ2(x)−ε
as a CBF and resort to the discussion of Section II regarding
the specification of set-valued maps via CBFs. This gives

4This condition is verified by common weight assignments [6], [21].

rise to the optimization-based controller (1) designed with
the following QP problem:

kQP (x) = argmin
u∈Rnd

‖u− udes(x)‖2 (4)

s.t.
∂λ2
∂x

(x)u ≥ −α(λ2(x)− ε).

This controller is well-defined and maintains connectivity
as long as the network state remains in the domain where
the algebraic connectivity λ2 is continuously differentiable.
Unfortunately, λ2 is only Lipschitz, but not continuously
differentiable everywhere. In particular, it is not differen-
tiable at states where its multiplicity is higher than one, in
which case (4) is not well-defined. Depending on the specific
network scenario, such configurations might be precisely the
ones the network is drawn to, as shown next.

B. Example of Nonsmoothness of Algebraic Connectivity
We report here a simulation in MATLAB® where the

controller (4) steers the network to a state where the multi-
plicity of λ2 increases and hence kQP is not well defined,
with its implementation actually leading the network to lose
connectivity. Consider n = 4 robots moving on the plane
(d = 2), with a weighted r-disk proximity graph and the edge
weights defined as in [11]. Let α be the identity function,
the threshold value ε = 0.1, and the communication radius
r = 3m. The desired controller udes constantly disperses the
robots in different directions:

uides =
[
0.5 cos

(
2π
n+1 i

)
0.5 sin

(
2π
n+1 i

)]>
∀i ∈ [n]. (5)

Fig. 1 shows the evolution of λ2 and λ3 during the sim-
ulation, and it is clear that the two converge to the same
value at t = t∗. When this happens, the controller (4) is
not well defined and the ensuing evolution depends on the
implementation choice. To continue the simulation, we use
the formula in [11] which assumes the eigenvalue always
remains simple. Fig. 2 shows the applied inputs, in which
we observe a chattering behavior. We attribute this to the
combination of the digital implementation with the fact that
the controller neglects higher eigenvalues (e.g., λ3). By
focusing on λ2, the controller does not make any effort to
limit how fast λ3 may approach the threshold ε. As such,
only when λ3 becomes as small as λ2, the controller jumps
in value to prevent it from going lower. We speculate that
the chattering is due to λ2 and λ3 interchanging their role.
Regardless, it is clear that the controller can jump in value
for nearby system states x, i.e., is not continuous. In addition,
Fig. 1 shows that the controller (4) proposed in [11] allows
λ2 to reach zero and fails to maintain connectivity. This
example reinforces the need to come up with a solution
for Problem 3.1 that is well-defined everywhere and can
deal with changes in the multiplicity of λ2. The solution
should give rise to a continuous controller that can maintain
connectivity without sacrificing system performance.

IV. CONTINUOUS OPTIMIZATION-BASED CONTROLLER
FOR CONNECTIVITY MAINTENANCE

In this section, we address the design of an optimization-
based controller’s constraint that accounts for the possibility
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Fig. 1. Eigenvalues (λ2, λ3, λ4) during the simulation. The instant t∗
when λ2 and λ3 converge to the same value is highlighted with the black
dotted vertical line.
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Fig. 2. The applied inputs to the robots. When the multiplicity of λ2
increases at t∗, the controller kQP (x) is no longer continuous and begins
to chatter. We report all the components of kQP (x).

of the Fiedler eigenvalue not being simple. By relying on
nonsmooth analysis tools and set-valued theory, we show
that the design solves Problem 3.1.

A. Accounting for Nonsmoothness of Algebraic Connectivity
Does Not Necessarily Ensure Connectivity Maintenance

Here we revise the optimization-based controller (4) to
account for the nonsmoothness of the algebraic connectivity.
For arbitrary m ∈ [n], the eigenvalue function λm is not con-
tinuously differentiable but fortunately is globally Lipschitz
with respect to the Laplacian matrix (cf., [6, Lem. 1] and [22,
Thm. 2.4]). In turn, since L is continuously differentiable,
λm◦L is a Lipschitz function of x, so it qualifies as a NCBF
candidate. In fact, the generalized gradient of the eigenvalue
λm with respect to the matrix L is given by, cf. [6],

∂Lλm(L) = co
{
vmv

>
m | vm ∈ Vm

}
, (6)

where Vm = {vm ∈ Sn | Lvm = λmvm} is the set of
normalized eigenvectors of the Laplacian matrix L associated
with λm. Note that, in our treatment, λm, Vm, and L are all
state-dependent, so the generalized gradient ultimately is a
set-valued map depending on the system state x. Using the
nonsmooth chain rule [17, Thm. 2.3.10], the expression for
the weak set-valued Lie derivative [13, Rmk. 2.1] is

Lλm(x, u) = ∂Lλm(L(x)) ·
( ∑
r∈[nd]

∂L

∂xr
ur
)

Note that with a slight abuse of notation, we use the subscript
r to now refer to the entries of the whole state x and u, rather
than its robot index. The set-valued Lie derivative represents
the possible values the eigenvalue’s rate of change can take,
i.e., dλm

dt ∈ Lλm(x(t), u(t)), along the trajectory. When the
eigenvalue’s multiplicity is larger than one, the set Lλm(x)
is no longer a singleton. This can explain the chattering

behavior seen in Fig. 2 because the formula for controller (4)
only uses one of the many possible rate of change, so it does
not work with all possible values in Lλm(x, u). To deal with
all possible values, the logical solution is to work with the
minimum value of the set-valued Lie derivative Lλm(x, u),
leading to the NCBF constraint

minLλm(x, u) ≥ −α(λm(x)− ε).
This is a well-defined constraint on u for all x. Using the
constraint for m = 2, we can ensure λ2 (and consequently
all nontrivial eigenvalues) is above the threshold ε.

Lemma 4.1: (Connectivity Maintenance): For m ∈ [n],
define (x, u) 7→ µm(x, u) by

µm(x, u) = min
v∈Vm(x)

v>
( ∑
r∈[nd]

∂L

∂xr
ur
)
v. (7)

Then minLλm(x, u) = µm(x, u). Furthermore, for the
fully actuated multi-robot system (2), if the state-feedback
controller x 7→ k(x) satisfies the inequality constraint

µ2(x, k(x)) ≥ −α(λ2(x)− ε)
with a locally Lipschitz extended class K function α, then
λ2(x(t)) ≥ ε along all Carathéodory solutions (ensuring that
network connectivity is maintained). �

Based on Lemma 4.1, we define the following
optimization-based controller,

kdis(x) = argmin
u∈Rnd

J(x, u) (8)

s.t. µ2(x, u) ≥ −α(λ2(x)− ε).
Even though the controller is now well-defined, one can
still observe similar results to the ones for controller (4),
where the robots eventually become disconnected (cf. Fig. 1
and 2). This behavior stems from the lack of continuity of
the controller, which in turn is a consequence of the fact
that µ2 is discontinuous in x wherever the multiplicity of λ2
changes. In particular, the feedback controller u = kdis(x)
does not guarantee the existence of a Carathéodory solution.
To make the connectivity result in Lemma 4.1 meaningful,
it is important that the feedback controller is continuous.

B. Synthesis of NCBF Constraints for Connectivity
To design a continuous controller, we focus on the source

of the discontinuity for controller (8). The discontinuity in µ2

is due to the corresponding eigenspace changing dimensions,
resulting in a sudden jump in the minimization value. As a
result, the constraint set in (8) abruptly changes where the
multiplicity changes, i.e., it is not continuous when viewed
as a set-valued map. To deal with this, we need to take into
account the eigenvectors of those eigenvalues that contribute
to the change in multiplicity. To this end, we define

V[m](x) = span{∪2≤p≤mVp} ∩ Sn,

which is the collection of all normalized vectors spanned by
the eigenvectors associated to eigenvalues smaller than or
equal to λm. Let

µ[m](x, u) = min
v∈V[m](x)

v>
( ∑
r∈[nd]

∂L

∂xr
ur
)
v. (9)



Note that µ[m](x, u) ≤ µm(x, u). One can indeed in-
terpret µ[m] as the worst-case rate of change possible
among all nontrivial eigenvalues up to λm. Therefore, µ[m],
m ∈ {2, . . . , n}, is a more conservative approximation than
µ2 for the worst-case rate of change of λ2. Even with such
conservativeness, µ[m] might still not be continuous because
of the possibility of V[m] gaining a dimension. The case
m = n is special, as µ[n] is indeed continuous, because V[n]
is continuous since it is a constant set (the space orthonormal
to the vector of all ones). We can then propose a constraint

µ[n](x, u) ≥ −α(λ2(x)− ε), (10)

which replaces µ2, in the constraint of (8), with µ[n]. Viewing
this constraint as a set-valued map, it is clearly continuous.
Nonetheless, it is too conservative.

To be less conservative in our constraint design, we
propose instead the following controller,

kcon(x) = argmin
u∈Rnd

J(x, u) (11)

s.t. µ[m](x, u) ≥ −α(λm(x)− ε), ∀m ≥ 2.

The idea here is to prescribe multiple NCBF constraints, one
for each eigenvalue. The constraint for λm will consider the
rate of change for all eigenvalues lower than or equal to λm.
To understand why the constraint here is less conservative
than (10), observe that µ[m] ≤ µ[n] and λ2 ≤ λm for all
m ≥ 2. Consequently, (10) is stricter than each individual
constraint here. In addition, the design also utilizes the CBF
concept, and hence the eigenspace for λm only becomes
relevant when the value of λm is close to ε. Our ensuing
discussion studies the continuity of the controller (11).

C. The Proposed Controller is Continuous

In this section we establish the continuity of the controller
using Berge Maximum Theorem. To do so, we assume the
following property of the cost function J .

Assumption 4.2: (Regularity of the Cost Function): The
cost J is continuous for all (x, u) and strictly convex in u. •

Convexity ensures that the controller is single-valued.
Together with the continuity of J , we may apply Berge Max-
imum Theorem if the constraint set-valued map is continuous
and compact-valued. We next analyze the properties of each
constraint when considered as a set-valued map.

Lemma 4.3: (Properties of Constraint Sets): Consider the
set valued maps U[m] : Rnd →→ Rnd defined by

U[m](x) =
{
u ∈ Rnd | µ[m](x, u) ≥ −α(λm(x)− ε)

}
.

Each map U[m] is closed-valued and convex-valued. In addi-
tion, for each x, there exists an interior point common to all
U[m](x). Consequently, each map U[m] and every intersection
among them has a nonempty interior. �

The properties from Lemma 4.3 are useful when con-
sidering the intersection of U[m]. The properties allow for
their intersection to preserve continuity of the intersecting
set. Particularly, we are interested in the continuity of the
constraint set of (11).

Proposition 4.4: (Continuity of the Constraint Set): Con-
sider the set-valued map U(x) = ∩2≤m≤nU[m](x) repre-
senting the constraint of (11). Define the set-valued map
J : Rnd →→ R by

J (x) = {u ∈ Rnd | ‖J(x, u)‖ ≤ ‖J(x, 0)‖+ c}

with c ∈ R>0. Under Assumption 4.2 and assuming the set-
valued map V[m] is continuous for all x where λm(x) 6=
λm+1(x), then U ∩J is compact-valued and continuous. �

Despite each constraint not being continuous everywhere,
Proposition 4.4 shows that the full constraint set U is
continuous under mild assumptions, see Remark 4.6. Note
that the constraint J is always inactive because u = 0 is
always a feasible point, so it does not change the controller
in any way, but it allows us to consider the constraint as a
compact set. With Lemma 4.1 and Proposition 4.4 in place,
we are ready to state our main result.

Theorem 4.5: (Continuous Connectivity Maintenance
Controller): Consider the fully actuated multi-robot
system (2) with a state-feedback control x 7→ kcon(x)
defined by the optimization-based controller (11). Then
λ2(x(t)) ≥ ε along all Carathéodory solutions. Moreover,
assume the cost function J satisfies Assumption 4.2 and
the set-valued map V[m] is continuous for all x where
λm(x) 6= λm+1(x). Then kcon is continuous. �

Theorem 4.5 ensures the continuity of the controller,
given that J is properly chosen. The continuity, in turn,
guarantees that a Carathéodory solution exists, for which
the connectivity of the multi-robot system is maintained in a
minimally invasive way. Consequently, the set-valued map U
in (11) solves Problem 3.1. Although we only consider the
connectivity maintenance constraint in the controller kcon,
this can be extended to include other constraints. Notably,
more constraints can be added while retaining the continuity
of the feedback controller, as long as they are continuous,
closed and convex-valued, and their intersection with U has
a nonempty interior with u = 0 being a feasible point.

Remark 4.6: (Eigenspace Span Continuity Assumption):
We believe that the assumption on the eigenvector span V[m]

in Theorem 4.5 is mild and might indeed hold always. The
intuition comes from the fact that the set of eigenvectors
changes continuously as long as the corresponding eigen-
value does not change multiplicity. In our case, we believe
that the space spanned by the eigenvectors for the first m
eigenvalues should also be continuous as long as it does not
gain a new dimension. In fact, we can prove this is true if
all the eigenvalues higher than λm are simple. This is done
by noticing how the eigenvector span must be orthogonal to
the rest of the eigenvectors. With the possibility of higher
multiplicity involved, the formal justification becomes more
complicated and we do not include it for space reasons. •

V. SIMULATION RESULTS

To verify the effectiveness of the proposed controller (11)
we replicated the same simulation reported in Section III.
We used the same initial positions, the same parameters,
and the same desired input udes. Fig. 3 reports the behavior
of the three nontrivial eigenvalues of L with the proposed
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Fig. 3. Eigenvalues (λ2, λ3, λ4) with the proposed controller u =
kcon(x). All the eigenvalues are constrained above ε, and for λ2 this means
that the multi-robot system remains connected.
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Fig. 4. The continuous controller kcon(x), solution of (11). It is clear that
even in case of higher multiplicity the controller remains continuous. We
report all the components of kcon(x).

controller. In particular, λ2 never drops below the threshold ε,
ensuring connectivity of the multi-robot system. Regarding
the continuity of the controller, which has been proven in
Theorem 4.5, we refer to Fig. 4, which depicts the inputs
applied to the robots. Comparing with Fig. 2, it is clear how
the proposed method provides a continuous controller.

In addition to the continuity of the controller, the sim-
ulation results also demonstrate the effectiveness of the
proposed method. Notably, Fig. 3 shows that all eigenvalues
slow down smoothly as they approach the threshold. This
behavior is expected and intended as we have placed a
NCBF constraint on each eigenvalue. Another important
aspect to note is that, placing additional constraints does not
compensate the performance of the NCBF on λ2. By this,
we mean the additional constraints do not overconstrain λ2,
if any at all. As seen in Fig. 3, λ2 is still allowed to approach
the threshold as long as it is slow in its approach.

VI. CONCLUSIONS AND FUTURE WORK

We have proposed a novel optimization-based controller
for connectivity maintenance of multi-robot systems using
NCBFs. We have observed that the solution proposed in the
literature neglects to account for the lack of smoothness of
the algebraic connectivity and identified an example scenario
where the controller leads the multi-robot system to prob-
lematic configurations where it becomes ill-defined. We have
employed tools from nonsmooth analysis and set-valued the-
ory to identify appropriate constraints for the optimization-
based controller than can handle the nonsmoothness of the
eigenvalues without being overly conservative. We have
shown the continuity of the proposed controller. Future
work will explore dropping the continuity assumption on
eigenspace spans (cf. Remark 4.6) and study the robustness
properties of the proposed controller resulting from enforcing

NCBFs for each eigenvalue. Particularly, we would like to
study the ability of the controller to maintain connectivity un-
der the effect of communication and implementation delays.
We also plan to develop suitable methods for implementing
the controller in real time, including event-triggered imple-
mentations, and explore the design of distributed versions.
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