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Abstract

This paper considers the problem of maintaining global connectivity of a multi-robot system while executing a desired
coordination task. Our approach builds on optimization-based feedback design formulations, where the nominal cost function
and constraints encode desirable control objectives for the resulting input. We take advantage of the flexibility provided by
control barrier functions to produce additional constraints that guarantee that the resulting optimization-based controller is
continuous and maintains network connectivity. Our solution uses the algebraic connectivity of the multi-robot interconnection
topology as a control barrier function and critically embraces its nonsmooth nature. The technical treatment combines elements
from set-valued theory, nonsmooth analysis, and algebraic graph theory to imbue the proposed constraints with regularity
properties so that they can be smoothly combined with other control constraints. We provide simulations and experimental
results illustrating the effectiveness and continuity of the proposed approach in a resource gathering problem.
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1 Introduction

Multi-robot systems can accomplish a variety of tasks
through coordinated behavior in many scenarios. Such
systems are more versatile, more robust, and better per-
forming than a single specialized robot. To enjoy these
advantages, cooperative strategies for multi-robot systems
must overcome a number of hurdles, including scalability,
graceful degradation with respect to agent failures, and
connectivity maintenance, which is the focus of this work.
In fact, the ability to interchange information across the
network is critical to accomplish emergent coordinated be-
havior, such as flocking, agreement, coverage, rendezvous,
etc., cf. [Bullo et al., 2009, Mesbahi and Egerstedt, 2010,
Cortés and Egerstedt, 2017] and references therein. Con-
nectivity maintenance is hence a fundamental aspect of
cooperative strategies which must be considered in con-
junction with the objectives that the multi-robot systems
seek to achieve. This integration must be carefully balanced
to avoid getting robots in place or display erratic changes
in their motions to avoid losing connectivity. Motivated by
these observations, this paper investigates how to ensure
connectivity while efficiently managing constraints related
to the objective of the multi-robot system, with a spe-
cial emphasis on the continuity of the resulting feedback
controller.

Literature Review

Multi-robot systems rely on coordination among agents to
achieve their goals. In order to be able to interchange infor-
mation across the network, the interaction graph must be
connected. The concept of algebraic connectivity [Godsil
and Royle, 2001] of a graph, also known as Fiedler eigen-
value [Fiedler, 1973], characterizes the connectivity of a
network graph by transforming it into an eigenvalue com-
putation problem. For multi-robot systems, the network
graph is dynamically changing as the robots’ states evolves
and they navigate through their tasks. Typically, robot net-
work graphs are determined via proximity graphs [Bullo
et al., 2009, Zavlanos and Pappas, 2015], where the de-
gree of connectivity changes along the robots’ trajectories.
Connectivity maintenance of dynamic graphs can be cat-
egorized into two approaches, local and global, depend-
ing on how connectivity is enforced. In the local approach,
connectivity is maintained by reasoning over the connec-
tions present in the initial graph. This includes the direct
method of preserving all initial connections, [see e.g., Ji and
Egerstedt, 2007], which limits the graph to one arrange-
ment. This method can be improved by considering in-
stead multiple-hops neighbors and allowing rearrangements
in the edges [Zavlanos and Pappas, 2005, Schuresko and
Cortés, 2012], but its flexibility is still limited by the ini-
tial robot configuration. The global approach reasons more
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broadly over network connectivity using network-wide met-
rics such as algebraic connectivity. Under this approach,
we find works that pose connectivity as a problem of max-
imizing algebraic connectivity [Boyd, 2006, Kim and Mes-
bahi, 2006]. The idea is to find a robot motion that will
increase the algebraic connectivity. A decentralized imple-
mentation of this idea is explored in [de Gennaro and Jad-
babaie, 2006]. Nevertheless, maximizing the algebraic con-
nectivity in all scenarios can be overly restrictive. In this
regard, [Sabattini et al., 2013, Schuresko and Cortés, 2009]
introduce more flexibility by allowing algebraic connectiv-
ity to decrease when its value is large.

Our connectivity maintenance solution here is based on
the concept of Control Barrier Function (CBF) from the
safety-critical control literature. Control Barrier Func-
tions [Wieland and Allgöwer, 2007] build on the barrier
certificate [Prajna and Jadbabaie, 2004] notion, and is used
to find choices of control inputs that makes the certificate
increase, guaranteeing forward invariance of a desired set.
The CBF idea can be refined further by abandoning the
monotonicity of the certificate. This idea is related to the
concept of practical stability with Lyapunov functions,
with an additional restriction on the evolution of the cer-
tificate within the desired set [Ögren et al., 2006]. It is later
formalized in the context of safety [Ames et al., 2019] by
using Nagumo theorem [Blanchini and Miani, 2007] as the
basis for set invariance. This refined version introduces the
concept of letting the certificate also decrease depending
on the level of safety. In the context of connectivity main-
tenance, CBFs flexibly allow algebraic connectivity to de-
crease as long as the graph does not become disconnected.
CBFs are employed in both aforementioned connectivity
maintenance approaches in [Egerstedt et al., 2018] and
[Capelli and Sabattini, 2020], respectively. Regarding the
latter, there is no guarantee on the continuity of the pro-
posed feedback controller because of the lack of smooth-
ness of the algebraic connectivity. Here instead, we rely on
Nonsmooth Control Barrier Functions (NCBF) [Glotfelter
et al., 2017], a generalization of CBF, to properly account
for the nonsmoothness of algebraic connectivity and ensure
the continuity of the resulting feedback controller.

Controllers that utilize CBFs are typically based on opti-
mization formulations, [see e.g., Ames et al., 2017, 2019].
For this type of controllers, there are multiple approaches
to determine continuity. Using perturbation theory, the pa-
per [Morris et al., 2015] studies the smoothness properties
of optimization-based controllers with CBFs but the re-
sult is only applicable to continuously differentiable CBFs.
From a set-valued theory perspective, [Freeman and Koto-
tovic, 1996] shows continuity of minimum-norm controllers,
i.e., when the objective function is a norm. For more gen-
eral objective functions (like the one considered here), we
rely on Berge Maximum Theorem [Aliprantis and Border,
1999], a well-known result in parametric optimization, to
guarantee continuity of the feedback controller.

Statement of Contributions

This paper considers a multi-robot system with fully actu-
ated first-order dynamics. The underlying interaction net-
work is described by a continuously differentiable proximity

graph. We address the problem of maintaining global con-
nectivity of the multi-robot system that is operating under
some nominal control constraints. The contributions of the
paper are threefold. The first contribution is the synthesis
of two different set-valued constraint maps for global con-
nectivity maintenance. The proposed constraints are based
on NCBFs and are able to handle, in a continuous way,
the abrupt changes caused by the jumps in multiplicity
of the algebraic connectivity as a function of the network
state. Establishing this fact relies on a careful application of
various notions and results from set-valued analysis. With
our proposed constraints, the resulting optimization-based
controller is continuous, which thereby guarantees the ex-
istence of a solution and avoids issues such as chattering
in its discrete-time implementation. Our second contribu-
tion deals with the well-posedness of the considered prob-
lem. As we allow for the possibility of the network to have
control constraints beyond connectivity maintenance, one
question that we answer is in regard to the existence of a
solution to our problem, i.e., a continuous controller that
can both respect control constraints and maintain network
connectivity. We use a generalization of Artstein’s theorem
to deduce a mild and verifiable condition that guarantees
our problem is well-posed. Our final contribution are the
continuity results, as a function of the network state, for
any intersection of eigenspaces of the graph Laplacian. We
rely on this result to study how the algebraic connectivity
changes. Since the generalized gradient of algebraic connec-
tivity is related to its associated eigenspace, the results add
to the literature on regularity of algebraic connectivity. We
believe our second and third contributions may have useful
applications beyond the subject matter of this paper. We
conclude the paper by illustrating the effectiveness of our
results in a resource gathering problem, both in simulations
and an experiment. The problem consists a group of robots
trying to reach their assigned target locations which can-
not do so without losing connectivity. We show that using
our proposed results, each robot in the network completes
its tasks with continuous feedback control inputs, and the
robot network remains connected throughout.

A preliminary version of this paper appeared at the IEEE
Conference on Decision and Control [Ong et al., 2021]. The
added value of the present work is justified by the follow-
ing additions: (i) a more general control synthesis problem
formulation that incorporates a nominal constraint map,
which results in a more challenging technical analysis; (ii)
the generalization of Artstein’s theorem to formulate a rea-
sonable assumption for the well-posedness of the problem;
(iii) the establishment of the continuity property of merged
eigenspaces of the graph Laplacian as a function of the net-
work state, which was only speculated in the preliminary
version of the paper; (iv) the new simulation example along
with a validation of the results in an experiment on four
small wheeled robots. In addition, we provide throughout
the paper all the necessary background and discussions on
intuitions behind the proposed ideas.

2 Preliminaries

This section introduces basic notation and key concepts
from graph theory, set-valued and nonsmooth analysis, and
Nonsmooth Control Barrier Functions.
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2.1 Notation

The symbols N, R, R≥0, and R>0 represent the set of nat-
ural, real, real nonnegative, and real positive numbers, re-
spectively. We write Symn for the space of n × n sym-
metric matrices with real values. For m,n ∈ N, we denote
[m : n] = {m, . . . , n}, and we write [1 : n] simply as [n].
Given a finite set I, |I| is its cardinality. The convex clo-
sure of a set S is represented by co(S). Given x ∈ RN ,
‖x‖ denotes its Euclidean norm. We use the symbol 1 for
the vector of all ones (of appropriate dimension). The unit
sphere in Rn is denoted by Sn =

{
v ∈ Rn | ‖v‖ = 1

}
. The

open ball of radius δ > 0 centered at x∗ ∈ RN is Bδ(x∗) ={
x ∈ RN | ‖x − x∗‖ < δ

}
. Given matrices A,B ∈ Rn×n,

the Frobenius product is A ·B =
∑
i,j AijBij . We note the

property that vv> · A = v>Av, for v ∈ Rn. The Frobe-
nius norm is given by ‖A‖F = (A · A)1/2. A continuous
function α : R → R is of extended class K if α is strictly
increasing, and α(0) = 0. Moreover, supp(f) is the support
of the function f , i.e., the set of x where f(x) 6= 0.

2.2 Graphs and Laplacian Spectrum

A graph is a triplet G = (V,E,A), where V is a set of ver-
tices, E ⊆ V × V is a set of edges, and A ∈ R|V |×|V | is the
adjacency matrix, with Aij > 0 if (i, j) ∈ E, and Aij = 0
otherwise. The graph is undirected if A is symmetric. A
path is an ordered sequence of vertices such that all pairs
of consecutive vertices are elements of E. The graph is con-
nected if there exists a path between any two vertices. The
degree matrix D ∈ R|V |×|V | is a diagonal matrix whose ith
element is Dii =

∑
j∈V Aij . The Laplacian matrix L, de-

fined by L := D−A, is symmetric and positive semidefinite,
and consequently has real and nonnegative eigenvalues. We
denote these eigenvalues with φm ∈ R≥0, ordering them in
an increasing manner with the subscripts m ∈ [|V |], i.e.,
0 = φ1 ≤ φ2 ≤ . . . ≤ φ|V |. The eigenvalue φ1 = 0 is simple
(with associated eigenvector 1) if and only if the graph is
connected. This justifies the terminology of φ2 as the alge-
braic connectivity (also known as Fiedler eigenvalue). For
network systems, graphs are used to described the under-
lying interaction topology, and they can vary according to
the system states. A state-dependent graph x 7→ G(x) is
called a proximity graph [Bullo et al., 2009]. In such a case,
the Laplacian matrix x 7→ L(x) is then also a function of
state. We define the function λm(x) := (φm ◦ L)(x) to be
the Laplacian’s eigenvalues as a function of the state. Given
a trajectory t 7→ x(t), a graph remains robustly connected
at all times if λ2(x(t)) ≥ ε, where ε ∈ R>0 is a threshold
parameter providing a robustness margin in ensuring con-
nectivity.

2.3 Continuity of Set-Valued Maps

A set-valued map U : RN →→ RM assigns a subset of RM
to each point in RN . A set-valued map U is closed-valued,
convex-valued, compact-valued, and has a nonempty inte-
rior if its image at each point of its domain is closed, convex,
compact, and has a nonempty interior, respectively. All set
operations, e.g., union and intersection, between set-valued
maps are performed pointwise. Throughout the paper, we

consider set-valued maps arising from a single-valued func-
tion g : RN × RM → Rd as follows:

U(x) = {u ∈ RM | g(x,u) ≤ 0}. (1)

Given x, we say u strictly satisfies U(x) if g(x,u) < 0.

The concept of continuity for set-valued maps is more intri-
cate than the one for single-valued functions. Continuity of
set-valued maps is often broken down into different types
of hemicontinuity. Here we present the two that we rely on:
upper and lower hemicontinuity 1 .

Definition 2.1 (Set-Valued Map Continuity [Border,
1985]): A set-valued map U : RN →→ RM is

• upper hemicontinuous (UHC) at x if for any neighborhood
Ū of U(x), there exists δ > 0 such that, if ‖x − x′‖ < δ,
then U(x′) ⊂ Ū ;

• lower hemicontinuous (LHC) at x if for each u ∈ U(x)
and for any sequence {xk}k∈N converging to x, there exists
a sequence {uk}k∈N converging to u with uk ∈ U(xk);

• continuous at x if it is both UHC and LHC at x.

Note here that UHC and LHC are equivalent for single-
valued functions. For convenience, the map (hemi)continuous
if it is (hemi)continuous for all x. Interestingly for set-
valued maps of the form (1), even g being continuous is
not enough to ensure the map U is continuous. In fact,
to ensure UHC and LHC, we will resort to the additional
requirements stated in the following results.

Lemma 2.2 (UHC Requirements [Still, 2018, Lem 5.7]):
Assume g is continuous. If g is convex in u, and U(x) is
nonempty and compact at x, then U is UHC at x. �

Lemma 2.3 (LHC Requirements [Still, 2018, Lem 5.2]):
Assume g is continuous. If U has a nonempty interior and
is convex-valued, then U is LHC. �

In our treatment, we also rely on various results on how
hemicontinuity is preserved under set-valued map intersec-
tions.

Lemma 2.4 (Intersection of UHC maps [Border, 1985,
11.21a]): Let the set-valued maps U1,U2 : RN →→ RM be
UHC and closed-valued at x. The intersection U1 ∩ U2 is
also UHC at x if it is nonempty at x. �

Lemma 2.5 (Intersection of LHC maps [Lechicki and
Spakowski, 1985, Thm. B])): Let the set-valued maps
U1,U2 : RN →→ RM be LHC and locally convex-valued at
x. The intersection U1 ∩ U2 is also LHC at x if it has a
nonempty interior at x. �

2.4 Nonsmooth Analysis

Here we present basic notions of nonsmooth analysis fol-
lowing [Clarke, 1983]. Given a locally Lipschitz function

1 Sometimes referred to as semicontinuity, see e.g., AL-AS:85.
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h : RN → R, the generalized directional derivative of h at
x ∈ RN in the direction d ∈ RN is

h◦(x; d) = lim sup
x′→x,s↓0

h(x′ + sd)− h(x′)
s

.

The generalized gradient of h at x is then given by

∂h(x) = {ζ ∈ RN | h◦(x; d) ≥ ζ>x, ∀d ∈ RN}.

If the function h is continuously differentiable at x, the
generalized gradient is a singleton, ∂h(x) = {∇h(x)}.

In our analysis, we find it useful to describe how a nons-
mooth function changes along the trajectories of a dynam-
ical system. Consider the nonlinear system,

ẋ = f(x,u), (2)

with f : RN ×RM → RN , where x is the state and u is the
control input. The weak set-valued Lie derivative [Glotfelter
et al., 2017, Shevitz and Paden, 1994] is

Lfh(x,u) =
{
ζ>f ∈ R | ζ ∈ ∂h(x)

}
.

The Lie derivative describes the rate of change of h along a
trajectory of the system. Let t → u(t) be a control signal,
and t→ x(t) be a Carathéodory solution 2 to the differen-
tial equation (2), then

d

dt
h(x(t)) ∈ Lfh(x(t),u(t)), a.e. t ≥ 0. (3)

In essence, the weak set-valued Lie derivative contains all
the possible rates of change of the function h along a solu-
tion of the dynamical system.

2.5 Nonsmooth Control Barrier Functions

We use Nonsmooth Control Barrier Functions (NCBF) [Glot-
felter et al., 2017] to establish forward invariance of a
desired set. Consider the dynamical system (2) and a set
C = {x ∈ RN | h(x) ≥ 0} with a locally Lipschitz continu-
ous h : RN → R, referred to as a nonsmooth control barrier
function. Indeed, for a continuous trajectory t → x(t),
we can ensure h remains positive if we constrain h from
decreasing whenever h(x(t)) = 0. This can be done by
imposing a constraint, as a function of network state x, on
our choice of the input u with a set-valued map

U(x) =
{

u ∈ RM | minLFh(x,u) ≥ −α(h(x))
}
,

where α is a locally Lipschitz extended class K function.
Given (3), by taking the minimum element of the set-valued
Lie derivative, the constraint map enforces the bound even
for the worst-case rate of change of h. Note importantly that
the above constraint map does not only limit the choice of
u for x at the boundary of C where h(x) = 0, but also in

2 A Carathéodory solution is an absolutely continuous trajec-
tory that satisfies the system dynamics at almost every time,
in the sense of Lebesgue measure.

the interior where h(x) > 0, even when it is not necessary.
Rather than outright allowing any choice of u, the con-
straint map gradually becomes stricter for states closer to
the boundary. The idea here is to begin consider the neces-
sary constraint as the trajectory approaches the boundary,
and thereby provide some robustness to how the set C is
rendered forward invariant.

3 Problem Statement

Consider a group of n robots, evolving according to a single-
integrator dynamics of the form

ẋr = ur, ∀r ∈ [n], (4)

where xr ∈ Rdr and ur ∈ Rdr are the state and the con-
trol input associated with the r-th robot (note that the
state dimensions of each robot might be different). For con-
venience, we define state and input variables for the net-
work system as follows: let N =

∑
r∈[n] dr and denote

x =
[
x>1 , . . . , x

>
n

]> ∈ RN and u =
[
u>1 , . . . , u

>
n

]> ∈ RN .

We use the shorthand notation fsi : RN × RN → RN to
refer compactly to the dynamics (4) for the whole group of
agents. The underlying interaction topology is specified by
a proximity graph x 7→ G(x) = ([n], E(x),A(x)), for which
we assume that the function x 7→ A(x) is continuously dif-
ferentiable 3 .

We are interested in designing a continuous controller
k : RN → RN such that the network system under feed-
back u = k(x) enjoys some desirable performance and
asymptotic guarantees. Continuity is an important prop-
erty, both from a theoretical and practical viewpoint. Re-
garding the former, continuity guarantees the existence of
Carathéodory solutions [Hale, 1969, Thm. 5.1]. At the same
time, continuity makes it easier for the desired feedback
control signal to be implemented on digital platforms.

A commonly used design methodology to synthesize con-
trollers is based on optimization and takes the form

kopt(x) = argmin
u∈U(x)

J(x,u), (5)

where J : RN × RN → R is a cost function encoding some
desirable objective (e.g., minimal deviation from a pre-
scribed input, minimum-energy control specifications) and
U : RN →→ RN is a set-valued map encoding constraints on
the control input at each x (e.g., bounds on magnitude, sta-
bility performance using control Lyapunov function). This
formulation is flexible as it allows to address simultaneously
different performance requirements: the map U can be itself
an intersection of multiple set-valued maps, each represent-
ing a different control constraint from a performance aspect
(input boundedness, infinitesimal decrease of certificate).

We consider the scenario where the robot group has a nom-
inal control constraint map x 7→ Unom(x), defined via a

3 This assumption is satisfied by commonly employed weight
assignments [Schuresko and Cortés, 2009, Gasparri et al., 2017].
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function gnom : RN × RN → Rdnom as

Unom(x) = {u ∈ RN | gnom(x,u) ≤ 0}.

The components of gnom here represent constraints that the
robot group must respect to achieve different control per-
formances and goals. This nominal constraint map, how-
ever, does not encode any network connectivity constraint.
We are then interested in solving the following problem.

Problem 1 (Continuous Connectivity Controller Design
Problem): Consider the multi-robot system (4) operating
with the optimization-based controller (5). Design the con-
straint map U so that:

• the controller kopt is continuous;
• the nominal constraint map is respected, i.e., U ⊆ Unom;
• the underlying graph G remains connected at all time. •

We make the following assumptions on the cost function J
and the nominal constraint map Unom to make sure Prob-
lem 1 is solvable. First, Unom should be large enough so that,
at each state, there exists a control that can simultaneously
maintain connectivity and satisfy the nominal constraints
(we formulate this assumption mathematically later in our
technical discussion, cf. Remark 5.3). As one can expect,
continuity of kopt is related to continuity of the cost func-
tion J and the constraint map U . In this regard, Berge Max-
imum Theorem [Aliprantis and Border, 1999, Thm. 17.31]
states that, if J and U are continuous, U is compact-valued,
and the resulting kopt is single-valued, then kopt is continu-
ous. Based on this result, we make the following continuity
assumption.

Assumption 3.1 (Continuity Assumption on Cost and
Nominal Constraint): The functions J and gnom are con-
tinuous. •

We do not make a direct assumption on the continuity
of Unom for greater generality. In fact, such assumption
would rule out many commonly used constraint maps (e.g.,
control affine constraint maps are typically not UHC). As
such, we rely instead on the following assumption.

Assumption 3.2 (Convexity Assumption on Cost and
Nominal Constraint): The function J is strictly convex in
u and gnom is convex in u. •

Although convexity is not required by Berge Maximum
Theorem, the above assumption is justified by several rea-
sons. First, the assumption helps us make the optimiza-
tion problem that defines the controller a convex program,
which opens the way to employing available convex opti-
mization methods to compute the controller. In addition,
the strict convexity assumption also ensures that the con-
troller is single-valued for any given x, which is a require-
ment of Berge Maximum Theorem. More importantly, the
convexity assumption also opens up the possibility of U be-
ing defined by unbounded constraints, despite the compact-
valued requirement in Berge Maximum Theorem. To recon-
cile this, we consider the sublevel sets of J . Suppose for each
x, there exists a control x 7→ ū(x) such that ū(x) ∈ U(x),

and define

Jū(x) = {u ∈ RN | ‖J(x,u)‖ ≤ ‖J(x, ū(x))‖+ δJ} (6)

with δJ ∈ R>0. Note that this set-valued map is compact-
valued due to strict convexity of J . In addition, when Jū
is considered in conjunction with U , it is always inactive at
the optimizer because ū is a feasible point. Consequently,
for a properly designed U , even if it is not compact-valued,
we may consider U ∩ Jū as the constraint map without
changing the optimizer at each x and apply Berge Maxi-
mum Theorem.

4 Discontinuity in the Naive Connectivity Main-
tenance Solution

In this section we make a first attempt at solving Problem 1
using algebraic connectivity as a nonsmooth control barrier
function. We show that the proposed solution falls short
because the resulting feedback controller is discontinuous.
This exercise serves two purposes. On the one hand, it mo-
tivates the technical refinement pursued in our exposition
later. On the other, it helps us pinpoint the obstructions
associated with solving Problem 1, providing the necessary
exposition for the rationale behind our solutions.

For maintaining connectivity, it seems natural to use the
algebraic connectivity as a NCBF to guarantee λ2 remains
positive along the trajectory. This is essentially the ap-
proach taken in [Capelli and Sabattini, 2020] (with the dif-
ference that we explicitly account for the nonsmoothness
of λ2 in the exposition here). Consider the safe set of con-
nected robot configurations

Cε :=
{
x ∈ RN | λ2(x) ≥ ε

}
,

with ε ∈ R>0. Let x 7→ h(x) = λ2(x) − ε be our candi-
date NCBF. Resorting to the discussion of Section 2.5, we
specify a constraint map for the purpose of connectivity
maintenance.

Lemma 4.1 (Connectivity Maintenance Constraint Map):
Consider the multi-robot system (4) operating with a con-
troller x 7→ k(x). Given a locally Lipschitz extended class
K function α, define the constraint map

Ucm(x) :=
{
u ∈ RN | minLfsiλ2(x,u) ≥ −α(λ2(x)− ε)

}
.

If k(x) ∈ Ucm(x) for all x ∈ Cε, then for any initial con-
nected network configuration x0 ∈ Cε, λ2(x(t)) ≥ ε along
all Carathéodory solutions of the closed-loop system under
u = k(x), ensuring that network connectivity is maintained.

Lemma 4.1 is a direct result of using h(x) = λ2(x) − ε as
a NCBF, cf. [Glotfelter et al., 2017, Thm.3]. Note impor-
tantly that connectivity maintenance is only guaranteed
along Carathéodory solutions, which may not exist if k
is not continuous. In particular, consider an optimization-
based controller (5) naively defined with the connectivity
maintenance constraint map,

kdis(x) := argmin
u∈Ucm(x)

J(x,u). (7)
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Unfortunately, this controller is not guaranteed to be con-
tinuous. This can cause a number of undesired phenom-
ena. For example, sample-and-hold implementations of
the controller may exhibit chattering behavior because its
continuous-time counterpart is not continuous (cf., Fig. 2c
in Sec. 7). Indeed, the continuity issue arises because Ucm

itself is not continuous and does not meet the requirement
of Berge Maximum Theorem.

To pinpoint the root cause of the discontinuity of Ucm,
we review the generalized gradient of the Laplacian’s
eigenvalues. Each eigenvalue function φm is globally Lip-
schitz with respect to the entries of the Laplacian matrix
(cf., [Schuresko and Cortés, 2009, Lem. 1] and [Lewis, 1996,
Thm. 2.4]). As a result, if L is a continuously differentiable
function of the network state, then λm = φm ◦ L is also
Lipschitz. Therefore, generalized gradients are well-defined
for the eigenvalue functions. Mathematically, the general-
ized gradient of φ is given by, cf. [Schuresko and Cortés,
2009, Thm. 1],

∂φm(L) = co
{
vmv>m | vm ∈ Vm(L)

}
, (8)

where Vm(L) := {vm ∈ Sn | Lvm = φm(L)vm} is the
set of normalized eigenvectors associated with φm. Using
the nonsmooth chain rule [Clarke, 1983, Thm. 2.3.10], the
expression for the weak set-valued Lie derivative [Glotfelter
et al., 2017, Rmk. 2.1] of λm with respect to the system (4)
is

Lfsiλm(x,u) = ∂φm(L(x)) ·
( ∑
i∈[N ]

∂L

∂xi
ui

)
.

In the constraint map Ucm, we use the minimal value of this
set to bound the worst-case rate of change of λm along the
control choice u. Unfortunately, this minimal value is not
a continuous function of x. The following result helps us
understand why.

Lemma 4.2 (Equivalent Minimization of the Eigenvalue’s
Set-Valued Lie Derivative): Consider the multi-robot system
(4). For m ∈ [N ], let (x,u) 7→ µm(x,u),

µm(x,u) := min
v∈Vm(x)

v>
( ∑
i∈[N ]

∂L

∂xi
ui

)
v. (9)

Then minLfsiλm(x,u) = µm(x,u) for any x and u.

PROOF. Let D ∈ ∂φm(L(x)) be the element of the gen-
eralized gradient (8) corresponding to the minimum value
in Lfsiλm(x,u), i.e.,

minLfsiλm(x,u) = D ·
( ∑
i∈[N ]

∂L

∂xi
ui

)
.

Since D ∈ Rn×n, there exists n2 + 1 points {Di}n
2+1
i=1 (cf.

Carathéodory theorem on convex hulls [Rockafellar, 1970,
Thm. 17.1]) in

{
vmv>m | vm ∈ Vm(L(x))

}
such that D =

∑n2+1
i=1 σiDi, with

∑n2+1
i=1 σi = 1. Therefore,

minLfsiλm(x,u) = (

n2+1∑
i=1

σiDi) ·
( ∑
i∈[N ]

∂L

∂xi
ui

)
.

Because of the minimization, we can reason by way of con-
tradiction that D = Di for all i ∈ [n2 + 1]. Hence, D ∈{
vmv>m | vm ∈ Vm(x)

}
, and µm(x,u) = minLfsiλm(x,u),

concluding the proof. 2

Lemma 4.2 transforms the minimization of the set-valued
Lie derivative into an equivalent one with respect to eigen-
vectors. From this perspective, it is easy to identify the rea-
son for the discontinuity in the minimum value. Whenever
the multiplicity of an eigenvalue changes, so does the di-
mension of its eigenspace. Consequently, the minimization
may abruptly drop in value. We rely on this key insight to
synthesize our design in the next section.

5 Continuous Connectivity Maintenance Con-
straint Maps

In this section, we propose our solution to Problem 1. We
construct two constraint maps for the purpose of connec-
tivity maintenance. The first solution directly addresses the
discontinuity issue in the naive solution. This is done by
adjusting conservatively the discontinuous term discussed
in Section 4. Our second solution refines the first to reduce
its conservatism. For clarity of exposition, here we just ex-
plain the proposed solutions, and delay the formal technical
analysis to Section 6 below.

We first design a connectivity maintenance constraint map
by replacing the discontinuous term µm. The discontinuity
in µm is due to the abrupt change in the eigenspace being
considered in the minimization (9). One possible fix is to
augment the eigenspace preemptively so that there is no
abrupt expansion. For I ⊆ [n], consider

VI(x) := span
{ ⋃
p∈I
Vp(x)

}
∩ Sn,

the normalized span of eigenspaces corresponding to the
eigenvalues {λp}p∈I at x. We refer to the set-valued map
VI as the normalized merged eigenspace. We use this set-
valued map to define

µI(x,u) := min
v∈VI(x)

v>
( ∑
i∈[N ]

∂L

∂xi
ui

)
v, (10)

which we refer to as the merged lower bound (of the eigen-
values’ rate of change) as it bounds the rate of change of
all the eigenvalues {λp}p∈I at x for a given u.

We are interested in using the merged lower bound to re-
place the discontinuous function µ2 used in Ucm, in order
to avoid sudden changes in its value. For instance, noticing
how the eigenspace V2 expands into V[2:3] when λ2 = λ3,
we want to replace µ2 with µ[2:3]. This way, we avoid the
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abrupt change in the connectivity maintenance constraint
map that occurs when λ2 = λ3. However, with this ap-
proach, a discontinuity would still arise when λ3 = λ4

since the eigenspace of λ4 is not considered in the merged
eigenspace. To address this, we can indeed use µ[2:n], cor-
responding to the merged eigenspace of all nonzero eigen-
values, as stated in the following result.

Theorem 5.1 (Strict Connectivity Constraint Map for
Continuous Controller): Consider the multi-robot sys-
tem (4). Given a locally Lipschitz extended class K func-
tion α, define the constraint map

Ustr(x) :=
{
u ∈ RN | µ[2:n](x,u) ≥ −α(λ2(x)− ε)

}
. (11)

If, for each x, there exists a control input u ∈ RN that
strictly satisfies the constraint map Ustr∩Unom(x), then un-
der Assumptions 3.1 and 3.2, the optimization-based con-
troller

kstr(x) := argmin
u∈Ustr∩Unom(x)

J(x,u) (12)

is continuous on Cε, and the closed-loop feedback u = kstr(x)
renders λ2(x(t)) ≥ ε at all time, ensuring that network
connectivity is maintained, for any given initial condition
x0 ∈ Cε.

While Theorem 5.1 provides a solution to Problem 1, it is
undoubtedly conservative. By design, the constraint map
Ustr bounds the rate of change of λ2 as if it always has
the highest possible multiplicity of n − 1 for a connected
robot configuration. As a result, in the situation when the
multiplicity of λ2 is unlikely to change, e.g., when λ2 is far
apart from λ3, the design is conservative. This conservatism
is also illustrated later in our simulations of Section 7.

To be less conservative, our next design takes into account
how far the multiplicity of the eigenvalues is from changing.
Instead of defining a NCBF constraint map for only λ2, the
design considers NCBFs for all the nonzero eigenvalues. We
then replace each µm with the merged lower bound µ[2:m].
Formally, for eachm ∈ [2 : n], consider the constraint maps,

U[2:m](x) :=
{
u ∈ RN | µ[2:m](x,u) ≥ −α(λm(x)− ε)

}
with a locally Lipschitz extended class K function α and
a constant ε ∈ R>0. The aggregations of the constraint
maps of this form gives rise to our design for connectivity
maintenance.

Theorem 5.2 (Aggregate Connectivity Constraint Map
for Continuous Controller): Consider the multi-robot sys-
tem (4). Given a locally Lipschitz extended class K func-
tion α, define the constraint map

Uagg(x) :=
⋂

m∈[2:n]

U[2:m](x). (13)

If, for each x, there exists a control input u ∈ RN that
strictly satisfies Uagg∩Unom(x), then under Assumptions 3.1
and 3.2, the optimization-based controller

kagg(x) := argmin
u∈Uagg(x)∩Unom(x)

J(x,u) (14)

is continuous on Cε, and the closed-loop feedback u =
kagg(x) renders λ2(x(t)) ≥ ε at all time, ensuring that
network connectivity is maintained, for any given initial
condition x0 ∈ Cε.

The idea behind the design of the aggregate constraint (13)
is as follows. Consider a state x where λm−1(x) = λm(x).
At this state, U[2:m−1](x) abruptly shrinks to U[2:m−1](x)

due to the value of the merged lower bound µ[2:m−1](x,u)
dropping to that of µ[2:m](x,u), for any given u. Never-
theless, the constraint map U[2:m] is also considered in the
aggregate constraint map Uagg, and the fact that it expe-
riences no abrupt change there is enough to prevent Uagg

from changing abruptly at that state.

Both constraint maps (11) and (13) ensure continuity of
the corresponding optimization-based controller and solve
Problem 1. In general, for m ∈ [2 : n], one has Ustr ⊆
U[2:m] because µ[2:n] ≤ µ[2:m] and λm ≥ λ2. Therefore,
Ustr ⊆ Uagg, with equality holding on those states where
λn(x) = λ2(x). Consequently, Uagg imposes less conser-
vative constraints than Ustr. This is because the aggre-
gate constraint Uagg only gradually becomes stricter as the
gap between each eigenvalue and the lowest λm − λ2 gets
smaller, unlike the strict constraint Ustr that is agnostic to
the gap.

Remark 5.3 (Strictly Satisfying Feasible Controls Re-
quirement): We note that both Theorems 5.1 and 5.2
require the existence, at each x, of a control u strictly
satisfying the corresponding constraint map. This is our
conceptualization of the fact that, in order for Problem
1 to be solvable, there must exist at each state a control
that can simultaneously maintain connectivity and satisfy
the nominal constraints. The choice of class K function
also provides flexibility in this regard because, if a control
exists that satisfies the constraints at x for α1, then the
same control strictly satisfies the constraints for α2 with
α1 < α2, as long as λ2(x) 6= ε. Finally, as we show later in
our analysis (cf. Lemma 6.4), the existence of strictly sat-
isfying feasible control at each state is enough to guarantee
the existence of a continuous controller. While this lat-
ter condition would be enough to establish Theorems 5.1
and 5.2, the existence of strictly satisfying feasible control
is easier to check as it consists of a pointwise condition at
each network state x, instead of the analysis across the
states required to ensure continuity. •

Remark 5.4 (Computation of Proposed Controllers): For
each x, the computation of the controllers kstr and kagg

are convex optimization problems (as we show later, the
constraint maps are convex-valued, and the cost function
J is convex by assumption). This means that one can uti-
lize the wide variety of existing methods and solvers avail-
able for convex optimization, cf. [Boyd and Vandenberghe,
2009, Rockafellar, 1970], to compute the controllers. In im-
plementing these methods, one must pay attention to the
fact that obtaining the value of each merged lower bound
function µ[2:m] is itself an optimization problem. Neverthe-
less, this can be addressed by casting the computation of
the merged lower bounds as an eigenvalue problem. To see
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why this is so, note the following relationship

µ[2:m](x,u) = min
v∈V[2:m](x)

v>
( ∑
i∈[N ]

∂L

∂xi
ui

)
v

= min
ξ∈Sm−1

ξ>[v]>2:m(x)
( ∑
i∈[N ]

∂L

∂xi
ui

)
[v]2:m(x)ξ

:= min
ξ∈Sm−1

ξ>Zm(x,u)ξ,

where [v]2:m(x) is the matrix created by concatenating
orthonormal eigenvectors of {λp}p∈[2:m]. It then follows
that µ[2:m](x,u) is the minimum eigenvalue of the ma-
trix Zm(x,u) defined above. This formulation as eigenvalue
problem is advantageous for two reasons: it makes the eval-
uation of the function easy using standard linear algebraic
routines and, for gradient-based optimization methods, it
facilitates the computation of the generalized gradient of
the merged lower bound. •

6 Technical Analysis of the Proposed Solutions

This section provides the proofs of the results presented in
Section 5. Before presenting them, we establish a number
of auxiliary results that characterize the properties of the
merged lower bounds involved in the construction of the
constraint set-valued maps.

6.1 Properties of Merged Lower Bounds

We first examine the properties of functions µI of the
form (10) defining our proposed constraint sets. The defi-
nition of such functions relies critically on the normalized
merged eigenspace VI . The following result characterizes
the continuity properties of the latter.

Theorem 6.1 (Continuity of Normalized Merged Eigenspaces):
Let L : RN → Symn be a continuous function. Given
I ⊂ [n], the normalized merged eigenspace VI is continuous
at any x such that λi(x) 6= λj(x) for all i ∈ I and j 6∈ I,
i.e., where none of the considered eigenvalues is equal to
any of the remaining eigenvalues. �

Due to its length, the proof of this result is provided in
the Appendix. Building on this result, the continuity of
the merged lower bounds follows from a direct application
of the Berge Maximum Theorem [Aliprantis and Border,
1999, Thm. 17.31].

Corollary 6.2 (Continuity of Merged Lower Bounds):
Given I ⊂ [n], the function µI is continuous at any (x,u)
such that λi(x) 6= λj(x) for all i ∈ I and j 6∈ I. �

In particular, we consider indices I = [2 : m] of ordered
eigenvalues on the domain where the graph remains con-
nected Cε (i.e., where λ1(x) 6= λ2(x)). Thus, µ[2:m] is con-
tinuous at any x such that λm(x) 6= λm+1(x), and µ[2:n] is

continuous everywhere on Cε × RN .

Besides continuity of µ[2:m], another crucial property to
show is convexity of the constraint maps Ustr and Uagg. To

this end, we establish the concavity property of the merged
lower bounds.

Lemma 6.3 (Concavity of Merged Lower Bounds): For
any I ⊆ [n], µI is concave in u. Consequently, the con-
straint maps Ustr and Uagg are convex-valued.

PROOF. Given any u1,u2 ∈ RN and 0 ≤ γ ≤ 1, we have

µI(x,γu1 + (1− γ)u2)

= min
v∈VI(x)

v>
( ∑
i∈[N ]

∂L

∂xi
(γu1

i + (1− γ)u2
i )
)
v

≥ min
v∈VI(x)

(
γv>

( ∑
i∈[N ]

∂L

∂xi
u1
i

)
v
)

+ min
v∈VI(x)

(
(1− γ)v>

( ∑
i∈[N ]

∂L

∂xi
u2
i

)
v
)

= γµI(x,u1) + (1− γ)µI(x,u2).

Therefore, µI is concave in u. 2

Having established the continuity and concavity properties
of the merged lower bounds µI , we next turn our attention
to characterize the properties of the constraint maps.

6.2 Equivalent Constraint Maps

In general, the constraint maps Ustr and Uagg might not be
UHC because they are unbounded. To make sure the re-
quirements of Lemma 2.2 as well as Berge Maximum The-
orem are met, we explain here how to consider, following
Section 3, equivalent constraint maps that are compact-
valued. This procedure involves using sublevel sets of the
cost function J , which are compact due to Assumption 3.2.
In order to do so, we require a feasible control function
x 7→ ū(x) to define Jū as in (6). Note, importantly for our
purposes, that the function ū must be continuous so that
Jū is also continuous. The next result shows that, under
the assumptions of Theorems 5.1 and 5.2, such continuous
feasible control function always exists.

Lemma 6.4 (Generalization of Artstein’s Theorem): Con-
sider a set-valued map U : RN →→ RM defined with a vector-
valued function g : RN → RM as

U(x) = {u ∈ RM | g(x,u) ≤ 0}.

If g is continuous and U is convex-valued, and, for each x,
there exists a control input u that strictly satisfies U(x),
then there exists a C∞ function ū : RN → RM such that
ū(x) ∈ U(x).

PROOF. For each x, let uint(x) denote the control in-
put such that g(x,uint(x)) > 0. Due to continuity of g,
there exists a neighborhood of x, denoted by W(x), such
that uint(x) ∈ U(x′) for all x′ ∈ W(x). The collection
of {W(x)}x∈RN is an open cover for RN . Then, because
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we deal with a Euclidean space that is a differentiable
manifold, there exists a countable partition of unity {ψj}
subordinate to the cover, cf. [Warner, 1989, Thm. 1.11].
In other words, for each j, there exists an x such that
supp(ψj) is a subset of W(x), each of which has an associ-

ated control ujint ∈ U(x) for x ∈ supp(ψj). Then we define

ū(x) =
∑
j ψj(x)ujint, which satisfies the statement due to

convexity of the map U . 2

Lemma 6.4 is a generalization of Artstein’s Theorem [Art-
stein, 1983, Thm. 4.1] on the existence of a continuous con-
troller given a control Lyapunov function. The proof of the
result, included here for completeness, is also a slight modi-
fication of the original proof. Because the functions defining
U = Ustr are continuous, we can directly apply Lemma 6.4.
On the other hand, U = Uagg is defined with discontinuous
functions; nevertheless, from its construction, one can still
employ the argument presented in the proof of Lemma 6.4
(i.e., there exists uint at each x belonging to Uagg(x′) for
all x′ in a neighborhood W of x, and so on). As a result,
for each of the cases U = Ustr and U = Uagg, there exists
a continuous feasible control function ū, which we use to
define the corresponding set-valued map Jū. This map is
convex-valued and compact-valued due to it being a sub-
level set of a strictly convex function J , cf. Assumption 3.2.
Then according to Lemmas 2.2 and 2.3, it is also continuous
due to the functions ū and J being continuous, cf. Assump-
tion 3.1. We then consider the intersections Ustr∩Unom∩Jū
and Uagg∩Unom∩Jū, where the inclusion of Jū make these
constraint maps compact-valued. For the purpose of our
analysis, we equivalently define kstr and kagg with these
constraint maps as the constraint to the optimization.

6.3 Continuity of the Connectivity Maintenance Con-
trollers

With the preparations from prior sections, we are now ready
to prove our results on continuity of kstr and kagg.

PROOF. [Proof of Theorem 5.1] Consider the constraint
set Ustr ∩ Unom ∩ Jū. We note the followings: (i) all the
functions defining the constraint map are continuous due
to Assumption 3.1 and µ[2:n] being continuous everywhere

(on Cε × RN ); (ii) the map is convex-valued because all
intersecting maps are convex-valued; (iii) the map has a
nonempty interior by assumption; (iv) the map is compact-
valued because the intersecting maps are closed-valued and
Ju is compact-valued. Thus, we may apply Lemmas 2.2
and 2.3, to show continuity of this constraint map. By Berge
Maximum Theorem [Aliprantis and Border, 1999, Thm.
17.31], kstr is a continuous function as stated. Lastly, from
the relationship

minLfsiλ2(x,u) = µ2(x,u) ≥ µ[2:n](x,u),

it follows that kstr(x) ∈ Ustr(x) ⊆ Ucm(x). As a result,
Lemma 4.1 ensures λ2(x(t)) ≥ ε, and the proof con-
cludes. 2

We next prove the continuity result for kagg, which is more
complicated due to the merged lower bounds used not being
continuous everywhere.

PROOF. [Proof of Theorem 5.2] Consider the constraint
map Uagg ∩ Unom ∩ Jū. Because each µ[2:m] is not contin-
uous everywhere, we can only conclude continuity using
Lemmas 2.2 and 2.3 wherever µ[2:m] are continuous for all
m ∈ [2 : n]. For the remaining states, we show continuity
of the constraint map by proving separately below that it
is UHC and LHC. Note that once we prove continuity, the
theorem statements are established analogously as we did
in the proof of Theorem 5.1

Upper Hemicontinuity: We begin by consider the partial
constraint map Jū ∩ U[2:n]. This set-valued map is con-
tinuous on Cε because of the continuity of µ[2:n]. Consider
its intersection with Jū ∩ U[2:n−1]. At the states where
λn(x) = λn−1(x), notice that U[2:n](x) = U[2:n−1](x), so
the intersection Jū ∩ (

⋂
m∈[n−1:n] U[2:m])(x) is exactly the

same set as Jū∩U[2:n](x) at those x. For other states x, we
know that the former map is a subset of the latter. Then,
directly from the definition of UHC for Jū ∩ U[2:n], we can
conclude UHC for the intersection Jū∩ (

⋂
m∈[n−1:n] U[2:m])

at x where λn(x) = λn−1(x). Elsewhere, the intersection
can be proven UHC directly via Lemma 2.2, so it is contin-
uous everywhere on Cε. With the same line of reasoning, we
can continue to show by induction that Jū ∩ Uagg is UHC
on Cε. Then intersecting with Unom, we conclude the set-
valued map Uagg ∩ Unom ∩ Jū is UHC from Lemma 2.4.

Lower Hemicontinuity: We begin by defining the following
auxiliary set-valued maps for m ∈ [2 : n],

Hm(x) =
{
u ∈ Rn | µ[2:m](x,u) ≥ −α(λm−1(x)− ε)

}
.

By definition, Hm(x) ⊆ U[2:m−1](x) because µ[2:m](x,u) ≤
µ[2:m−1](x,u), and Hm(x) ⊆ U[2:m](x) because λm−1(x) ≤
λm(x). In addition, note that Hm is convex-valued be-
cause the merged lower bound µ[2:m] in concave in u, cf.
Lemma 6.3, and it has a nonempty interior as it is a sub-
set of U[2:m], which has a nonempty interior by assump-
tion. Then, by Lemma 2.3 it is LHC for all x ∈ Cε where
λm(x) 6= λm+1(x) (withHn continuous everywhere on Cε).

We prove LHC of Uagg by induction. We start by consid-
ering the maps U[2:n] and Hn, which are both LHC on Cε.
We then consider the intersection U[2:n] with U[2:n−1]. For
x where λn(x) = λn−1(x), the two eigenvalues share the
same eigenspaces. Thus, it is also the case that µ[2:n](x) =
µ[2:n−1](x), and we find thatHn(x) = U[2:n](x)∩U[2:n−1](x)
for all x where the two eigenvalues are equal. From this
and the fact that Hn is a subset of U[2:n] ∩ U[2:n−1] in gen-
eral, we can use the LHC of Hn, at x where λn(x) =
λn−1(x) to deduce LHC for U[2:n] ∩ U[2:n−1] there. Else-
where, the set U[2:n] ∩ U[2:n−1] can be proven continuous
directly from Lemma 2.3, so it is LHC everywhere on Cε.
Then using Lemma 2.5, we also deduce that the intersec-
tion Hn ∩ (U[2:n] ∩ U[2:n−1]) is LHC on Cε.

To continue with the induction proof, assume the set-valued

9



maps ⋂
m≤p≤n

U[2:p] and Hm ∩
⋂

m≤p≤n
U[2:p]

are LHC. Then we can follow the arguments above to also
deduce that their intersections with U[2:m−1] are also LHC.
Hence,Uagg is LHC. Then the LHC of the intersectionUagg∩
Unom∩Jū follows via Lemma 2.5, concluding the proof. 2

7 Simulations and Experimental Validation

In this section we report the simulations and the experi-
ment we have carried out to verify the effectiveness of the
proposed controller. We consider a resource gathering prob-
lem with a group of four (n = 4) robots, moving in a two-
dimensional space (dr = 2 for all agents). Each robot is
tasked with visiting its own target region. If the robots were
to individually move directly to their targets, the network
will be disconnected. Therefore, we prioritize the order in
which the robots reach their targets and use our proposed
controller to maintain the connectivity among them. We
consider the mission accomplished when the target location
is visited by the corresponding robot, and we change the
task prioritization to the next robot.

The nominal controller carries each robot towards the cor-
responding target with a conical potential field:

unom,r(xr) = vnom
er(xr)

‖er(xr)‖
, ∀ ∈ [n], (15)

where xr is the position of the r-th robot and er(xr) =
xtarget,r − xr is the error between the center of the
robot’s target region and its position, and vnom ∈ R>0

is a constant velocity parameter. By denoting knom(x) =
[unom,1(x1)>, . . . , unom,4(x4)>]>, our cost function

J(x,u) = ‖u− knom(x)‖2 (16)

measures the deviation of the control decision from the
nominal controller. In order to ensure that our prioritized
robot, indexed P , makes progress towards its target, we en-
force the following constraint map,

Unom(x) =
{
u ∈ RN | kv2

nom − u>nom,PuP ≤ 0
}
, (17)

where k ∈ R>0 is a constant parameter to restrict how
much uP should point in the direction of unom,P . Once the
robot reaches its assigned target region, its unom,P is set
equal to zero. This represents the fact that after having ac-
complished its task, the robot is relieved from its mission,
and prefers to conserve energy by not moving. Note that
it continues to collaborate at maintaining the connectivity.
Also after the prioritized robot achieves its mission, we ad-
just Unom by changing the index to correspond to the next
robot that has yet to achieve its goal.

Note that the objective (16) and the nominal con-
straint (17) verify both Assumptions 3.1 and 3.2 for any
priority robot (we disregard the jumps in Unom due to
the transitions when a robot reaches its target region and
the identity of the priority robot changes). We show that

our proposed controllers from Theorem 5.1 and 5.2 are
continuous for the duration between events when the pri-
oritized robots achieve its goal. For both our simulations
and our experiment, we use projected saddle-point dynam-
ics [Cherukuri et al., 2017] to solve the convex optimization
problems and compute our controllers in MATLAB®.

7.1 Simulations

Our simulations highlight the differences among the differ-
ent controllers: kdis, defined in (7), kstr, defined in (12), and
kagg, defined in (14). The initial positions, the robots’ tar-
gets, and the parameters (vnom = 0.5, k = 0.75, ε = 0.1) are
the same in each simulation. Fig. 1 reports the eigenvalues
of the Laplacian matrix during the simulations. It is clear
how both the aggregate (Fig. 1a) and the strict controller
(Fig. 1b) maintain the connectivity constraint, unlike the
discontinuous one that leads to disconnection (Fig. 1c). Re-
garding overall performance, the aggregate controller (1542
steps) outperforms the strict one (2199 steps). This cor-
roborates the hypothesis that the strict controller over-
constrains the robots’ motion, hence resulting in a worse
performance in terms of the total time it takes for the net-
work to complete its goals. Figs. 2a and 2b show the contin-
uous input produced by the aggregate and the strict con-
trollers, and Fig. 2c shows the discontinuous one generated
by the discontinuous controller. Fig. 3 reports the evolution
of the function defining the nominal constraint map Unom

under the strict and the aggregate controllers. In the cor-
responding slot of time, the robot that has the target with
the highest priority respects the constraint, while the oth-
ers cooperate to maintain connectivity, minimally changing
their nominal control law. We do not report the plot for the
discontinuous controller as it is highly jittering, confirming
what is already displayed in Fig. 2c.

7.2 Experimental Validation

We also carry out an experiment for the same resource gath-
ering problem, cf Fig. 4. We use four small wheeled robots
(ePucks) that are controlled via Bluetooth from a central
unit that performs the calculations. The central unit is also
connected to an Optitrack system, which provides the posi-
tion of the robots. In order to transform the input calculated
for the single-integrator dynamics to the unicycle dynamics
of the robots, we use a simple input-output state-feedback
linearization [Oriolo et al., 2002]. We tested only the pro-
posed controller kagg, as the simulations in Section 7.1 ver-
ified that it is the best both in terms of performance and
connectivity maintenance. We set the main parameters as
vnom = 0.1, k = 0.75, and ε = 0.3. We report an example
of the experiments in an accompanying video.

Fig. 5 reports the eigenvalue evolution during the experi-
ment, further confirming the effectiveness of the proposed
method in maintaining connectivity. Fig. 6 shows the tra-
jectories followed by the robots, accomplishing the gather-
ing task. It is evident how each target had been reached
by the corresponding robot, and in the final positions (re-
ported with triangles) it is possible to see how the robots
that have already reached their target cooperate to con-
nectivity. Fig. 7 shows the applied control inputs: here, the
jittering is due both to the non-idealities introduced while
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(a) Aggregate controller
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(b) Strict controller
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Fig. 1. Eigenvalue evolution during the simulations under the
different controllers. The dashed black lines represent the end
of the network task.

using wheeled robots, which hardly instantaneously follow
an omnidirectional dynamics, and the time needed for the
calculation, which sometimes introduces a small delay. In
fact, the time required to let the saddle-point dynamics con-
verge is longer than the time needed to update the control
input of the robots, which run at 10 Hz. Despite the lim-
itations of the calculation and of the input of the robots,
we achieve good performance also in satisfying the nominal
constraint, cf. Fig. 8.

8 Conclusions

We have considered the problem of maintaining network
connectivity in multi-robot systems while satisfying nom-
inal requirements that encode desired control objectives.
Our solution employs the algebraic connectivity of the
interconnection topology as a nonsmooth control bar-
rier function to produce additional constraints for the
optimization-based synthesis of the controller that guar-
antee it is continuous and maintains network connectivity.
The technical approach fully embraces the nonsmooth
nature of the algebraic connectivity and other spectral
functions of the Laplacian matrix corresponding to the in-
terconnection graph. This has led us to define two different
continuous set-valued constraint maps, one that reasons
with the merged lower bound of all the eigenvalues’ rate
of change at once and another, less conservative, that in-
stead reasons over merged lower bounds of an increasing
number of eigenvalues’ rate of change. We have illustrated

0 400 800 1,200 1,600 2,000 2,400

−0.5

0

0.5 1 2 3 4

Step

k
a
g
g

(a) Aggregate controller

0 400 800 1,200 1,600 2,000 2,400

−0.5

0

0.5 1 2 3 4

Step

k
st
r

(b) Strict controller

0 400 800 1,200 1,600 2,000 2,400
−2

−1

0

1

2
1 2 3 4

Step

k
d
is

(c) Discontinuous controller

Fig. 2. Control inputs during the simulations of different con-
trollers. We report all the components of the control input for
each robot.
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(b) Strict controller

Fig. 3. Nominal constraint (17) during the simulations. The
dashed red lines represent the instant in which the robot priority
changes, due to the fact that a target has been reached. The
number for each time slot corresponds to the robot with the
highest priority.

the effectiveness of our approach in both simulation and
experiment in a resource gathering multi-robot scenario.
Future work will investigate the application of the method-
ology proposed here to the synthesis of distributed con-
trollers for connectivity maintenance, the resource-aware
design of aperiodic sample-and-hold implementations of
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Fig. 4. Experimental setup: 4 ePucks and their corresponding
targets.
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Fig. 5. Eigenvalue evolution during the experiment. The dashed
black lines represents the end of the task.
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Fig. 6. Trajectories followed by the robots during the experi-
ment. The dotted red circles represent the region where we con-
sider the target reached (circle of 15 cm of radius around the
target). The numbers represent the order of priority of the tar-
gets. The initial and final positions are reported with asterisks
and triangles, respectively.

the proposed controllers that do not require solving convex
optimization problems at every state, and the extension of
our results to more general control-affine systems.

A Appendix

Here we provide several results on the continuity proper-
ties of eigenspaces, with the ultimate goal of establishing
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Fig. 7. Control input applied to the robots in the experiment.
We report all the components of the control input for each
robot. These inputs have been transformed via input-output
state-feedback linearization to be executed by the robots.
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Fig. 8. Nominal constraint (17) during the experiment. The
dashed red lines represent the instant in which the robot priority
changes, due to the fact that a target has been reached. The
number for each time slot corresponds to the robot with the
highest priority.

that the merged eigenspaces are a continuous function of
the state as long as its dimension remains constant, cf. The-
orem 6.1 4 .

Given indices I ∈ [n], consider the merged eigenspaces VI .
For the purpose of analysis, instead of writing VI as a span,
we write out the full set definition as follows

VI(x) =
{

v ∈ Rn | (L(x)− λi(x)I)ξi = 0, ∀i ∈ I,

v =
∑
i∈I

ciξi, c ∈ R|I|, ‖v‖ = 1
}
. (A.1)

For this set-valued map, we will show UHC and LHC sep-
arately.

A.1 Upper Hemicontinuity of Merged Eigenspaces

For the analysis of (A.1), it is convenient to use the eigen-
basis as the coordinate system. Given a state x∗ ∈ RN
at which we seek to prove continuity, let the matrix T ∈
Rn×n be an orthonormal eigenbasis of the symmetric ma-
trix L(x∗). Furthermore, for each eigenvalue λi(x

∗), we de-
fine Ti ∈ Rn×n with a permutation so that the eigenvectors
associated with λi(x

∗) appear in the last columns of the
matrix. As a consequence, we can define the similar matrix

D(i)(x) := T>i L(x)Ti.

4 Although this result is seemingly intuitive, we have not found
it in the literature. There are results (e.g., [Kato, 1976, Ch.
2.5.3]) that study the continuity properties of eigenvectors when
their eigenvalues have multiplicity of one, a case where the eigen-
vectors can be viewed as a single-valued function. Instead, we
investigate eigenspaces of eigenvalues with higher multiplicity,
which requires set-valued analysis.
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Note importantly that the matrix Ti is defined in relation
to the state x∗ and is constant for all x, so D(i) is con-
tinuous. On the other hand, Ti being constant does not
guarantee that D(i) will be diagonal at the states other
than x∗. Furthermore, by defining the matrix B(i)(x) :=
D(i)(x)−λi(x)I, we can equivalently write each eigenequa-
tion with [

B
(i)
aa(x) B

(i)
ab (x)

B
(i)
ab (x)> B

(i)
bb (x)

][
wi,a

wi,b

]
= 0, (A.2)

where wi is the vector ξi in the coordinate system Ti, i.e.,
ξi = Tiwi. Above, we partition the matrix B(i) and the vec-
tor wi so that wi,b has the same dimension as the eigenspace
associated with λi at x∗. The next result shows that each
individual eigenspace, when normalized, is already UHC.

Lemma A.1 (UHC of individual eigenspaces): Consider a
continuous function L : RN → Symn. Given a state x∗

and δw > 0, there exists δx > 0 small enough such that
if x ∈ Bδx(x∗), then for any wi satisfying B(i)(x)wi = 0,
there exists w∗ satisfying B(i)(x∗)w∗ = 0 with ‖wi−w∗‖ <
δw‖wi‖.

PROOF. Because B
(i)
aa(x∗) is invertible, there exists δ̄x >

0 such that B
(i)
aa(x) remains invertible for each x ∈ Bδ̄x(x∗).

From (A.2),

wi,a = B(i)
aa(x)−1B

(i)
ab (x)wi,b.

Because B
(i)
aa(x)−1B

(i)
ab (x) is continuous on Bδ̄x(x∗), given

δw, there exists 0 < δx < δ̄x such that ‖B(i)
aa(x)−1B

(i)
ab (x)‖F <

δw/
√

2 for all x ∈ Bδx(x∗). Then,

‖wi,a‖ ≤ ‖B(i)
aa(x)−1B

(i)
ab (x)‖F ‖wi,b‖ < δw‖wi‖/

√
2.

This also implies ‖wi,b‖ > ‖wi‖(1 − δw/
√

2). Let w∗ =[
0 w>i,b‖wi‖/‖wi,b‖

]>
(and w∗ = 0 if ‖wb‖ = 0), then

B(i)(x∗)w∗ = 0 because B
(i)
ab (x∗) and B

(i)
bb (x∗) are zero by

construction. Also, we can bound the distance

‖wi −w∗‖ =

∥∥∥∥∥
[
wi,a

wi,b

]
−
[

0

wi,b‖wi‖/‖wi,b‖

]∥∥∥∥∥
= (‖wi,a‖2 + ‖wi,b‖2(1− ‖wi‖/‖wi,b‖)2)1/2

= (‖wi,a‖2 + (‖wi,b‖ − ‖wi‖)2)1/2

< δw‖wi‖,

and the proof concludes. 2

From this result for individual eigenspaces, we can deduce
further that any merged eigenspace is UHC.

Theorem A.2 (UHC of Merged Eigenspaces): Consider a
continuous function L : RN → Symn. For any I ⊆ [n], the
merged eigenspace VI is UHC.

PROOF. Given any v ∈ VI(x) in (A.1), we assume, with-
out loss of generality, that if λj(x) = λi(x) for some i > j,
the associated eigenvector ξj is zero. This way, there is only
one nonzero vector ξi from each eigenspace. In addition, by
scaling ξi, we can assume c = 1. Using these simplifica-
tions, ‖ξi‖ ≤ 1 because of the orthogonality of eigenspaces
and the fact ‖v‖ = 1. Thus, when we transform the coordi-
nate frame wi = T>i ξi, we also guarantee ‖wi‖ ≤ 1. This
is particularly useful when we apply Lemma A.1 as follows.

Consider any arbitrary x∗ at which we wish to prove UHC
for VI . Lemma A.1 guarantees for any given δw > 0 the ex-
istence of a small enough neighborhood Bδx(x∗) such that
for every x ∈ Bδx(x∗), any wi satisfying B(i)(x)wi = 0 has
a corresponding w∗i ∈ Bδw(w) satisfying B(i)(x∗)w∗i = 0.
Through coordinate transformation ξ∗i = Tiw

∗
i , we de-

duce that given the set of vectors {ξi}i∈I defining v, there
exists a corresponding set of vectors {ξ∗i }i∈I such that
ξi ∈ Bδw(ξi) and (L(x) − λi(x)I)ξ∗i = 0. We then define
v∗ = (

∑
ξ∗i )/‖∑ ξ∗i ‖, which is an element of the set VI(x∗)

by definition.

We next prove that v∗ is close to v for a small enough δw.
From the condition 1 = ‖v‖ = ‖∑(ξ∗i +(ξi− ξ∗i ))‖, we can
bound the norm ‖∑ ξ∗i ‖ ∈ (1− nδw, 1 + nδw). With these
facts, we bound the distance

‖v − v∗‖ =

∥∥∥∥∑ ξi −
∑
ξ∗i

‖∑ ξ∗i ‖

∥∥∥∥
≤ ‖

∑
(ξi − ξ∗i )‖+

∥∥∥∥∑(
ξ∗i −

ξ∗i
‖∑ ξ∗i ‖

)∥∥∥∥
≤ nδw + (1 + nδw)nδw/(1− nδw)

= 2nδw/(1− nδw).

Given any δv, we can pick δw small enough so that ‖v −
v∗‖ < δv, i.e., v ∈ Bδv(v∗).

We have shown that given any δv > 0, there exists δx > 0
such that any v ∈ VI(x), for x ∈ Bδx(x∗), has a corre-
sponding v∗ ∈ VI(x∗) such that v ∈ Bδv(v∗). In other
words, VI(x), for x ∈ Bδx(x∗), is a subset of a δv neighbor-
hood of VI(x∗), which is precisely the definition of UHC,
concluding the proof. 2

A.2 Lower Hemicontinuity of Merged Eigenspaces

Unlike the case of UHC, individual normalized eigenspaces
are not LHC everywhere. Therefore, we proceed directly to
the analysis of the merged eigenspaces. We define, for an
index set I ⊆ [n], an orthonormal eigenbasis matrix TI ∈
Rn×n, with the eigenvectors associated with λi(x

∗) for i ∈ I
showing up in the last columns of the matrix. Then, we
define the matrix

DI(x) = T>I L(x)TI .

The next result establishes the LHC property of the merged
eigenspaces.

Theorem A.3 (LHC of Merged Eigenspaces): Consider a
continuous function L : RN → Symn. For any I ⊆ [n], the
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merged eigenspace is LHC at x where λi(x) 6= λj(x) for all
i ∈ I and j 6∈ I, i.e., where none of the eigenvalues consid-
ered in the span is equal to any of the remaining eigenvalue.

PROOF. Consider the change of coordinate frame ξi =
TIwi, for each i ∈ [n]. The merged eigenspace given by
(A.1) can be rewritten as

VI(x) =
{

v ∈ Rn | (DI(x)− λi(x)I)wi = 0, ∀i ∈ I,

v = TIWc, c ∈ R|I|, ‖v‖ = 1
}
,

where W ∈ Rn×|I| is a matrix constructed by stacking wi

together. By construction, given an element v∗ ∈ VI(x∗),
it must take the form v∗ = TI

[
0
ψ

]
for some ψ ∈ R|I|.

Consider x∗ at which we wish to prove LHC for VI . We next
show the existence of v ∈ VI(x) close enough to v∗ for all x
close enough to x∗. First, we partition the eigenequations,

([
DIaa(x) DIab(x)

DIab(x)> DIbb(x)

]
− λi(x)I

)[
wi,a

wi,b

]
= 0,

so that wi,b has the dimension of |I|. The matrix DIaa(x∗)
is a diagonal matrix of eigenvalues λj(x

∗) for j 6∈ I. Be-
cause λj(x

∗) 6= λi(x
∗) for any i ∈ I and j 6∈ I, the matrix

DIaa(x) − λi(x)I is invertible at x = x∗. Then due to con-
tinuity of the matrix, there exists δ̄x such that it remains
invertible for x ∈ Bδ̄x(x∗), and we can find the following
relationship,

wi,a = (DIaa(x)− λi(x)I)−1DIab(x)wi,b.

Due to continuity of the matrix DI and the fact that DIab(x)
is a zero matrix at x = x∗, we can further find that given δw,
there exists 0 < δx ≤ δ̄x such that ‖wi,a‖ ≤ δw‖wi,b‖ for all
x ∈ Bδx(x∗). With this property, we construct v ∈ VI(x)
with the following procedure.

We begin by selecting the set of eigenvectors {wi}i∈I to be
orthonormal to one another. This set of eigenvectors must
exist because DI(x) is symmetric. With this choice, we can

show that when we partition the matrix W =
[
Wa

Wb

]
, Wb is

an invertible matrix for x ∈ Bδx(x∗). We prove this state-
ment by contradiction. Assume that Wb is not full rank,
then there exists a vector 0 6= c ∈ R|I| such that Wbc = 0.
In addition, W>W = I because wi are orthogonal to each
other. Thus,

‖c‖ = ‖W>Wc‖ = ‖W>
a Wac‖ ≤ δ2

w|I|2‖c‖,

which is a contradiction for small δw. Since Wb is invertible,
we can define the vector

v̄ = TIWW−1
b ψ = TI

[
WaW

−1
b ψ

ψ

]
,

which we use to construct v ∈ VI(x) Before doing so, we
upper bound WaW

−1
b ψ. Note that

‖WaW
−1
b ψ‖ = ‖Wa(W>b Wb)

−1W>
b ψ‖

≤ ‖Wa‖‖(W>
b Wb)

−1‖‖Wb‖.

Here, we can bound ‖Wb‖ ≤ |I| due to normality of each
wi. Also from the earlier fact ‖wi,a‖ ≤ δw‖wi,b‖ ≤ δw,
we bound ‖Wa‖ ≤ δw|I|. As for the ‖(W>

b Wb)
−1‖, we

investigate the smallest eigenvalue of (W>
b Wb). Due to

orthonormality,

w>i,bwj,b =

{−w>i,awj,a i 6= j,

1−w>i,awj,a i = j.

Combined with the fact ‖wi,a‖ ≤ δw, we upper bound the
off-diagonal entries of W>

b Wb with δ2
w, and we lower bound

the diagonal entries with 1−δ2
w. Using the Gershgorin circle

theorem [Bullo et al., 2009, Thm. 1.3], the smallest eigen-
value of W>

b Wb is lower bounded by 1−|I|δ2
w. Using these

bounds, we find

‖WaW
−1
b ψ‖ ≤ δw|I|

1− δ2
w

:= δv.

Note here that smaller δv corresponds to small δw < 1.

Finally, we select c = w−1
b ψ/‖v̄‖ to construct v = v̄/‖v̄‖,

which is an element of VI(x). Let θ be the angle between
the unit vectors v and v∗. Then, we bound

‖v − v∗‖ ≤ θ ≤ tan θ =
‖WaW

−1
b ψ‖

‖ψ‖ ≤ δv.

Thus, we have proven that given any δv > 0, there exists
δx > 0 such that if x ∈ Bδx(x∗), then there exists v ∈ VI(x)
where v ∈ Bδv(v∗). This is sufficient to prove that given any
sequence {xk}k∈N converging to x∗, there exists a sequence
{vk}k∈N, with vk ∈ VI(xk), converging to v∗, concluding
the proof. 2
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