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Performance-Barrier-Based Event-Triggered Control
with Applications to Network Systems

Pio Ong and Jorge Cortés

Abstract—This paper proposes a novel framework for
resource-aware control design termed performance-barrier-based
triggering. Given a feedback policy, along with a Lyapunov func-
tion certificate that guarantees its correctness, we examine the
problem of designing its digital implementation through event-
triggered control while ensuring a prescribed performance is met
and triggers occur as sparingly as possible. Our methodology
takes into account the performance residual, i.e., how well the sys-
tem is doing in regards to the prescribed performance. Inspired
by the notion of control barrier function, the trigger design allows
the certificate to deviate from monotonically decreasing, with
leeway specified as an increasing function of the performance
residual, resulting in greater flexibility in prescribing update
times. We study different types of performance specifications,
with particular attention to quantifying the benefits of the
proposed approach in the exponential case. We build on this
to design intrinsically Zeno-free distributed triggers for network
systems. A comparison of event-triggered approaches in a vehicle
platooning problem shows how the proposed design meets the
prescribed performance with a significantly lower number of
controller updates.

I. INTRODUCTION

Trading computation and decision making for less actuator,
sensing, or communication effort offers great promises for the
autonomous operation of both individual and interconnected
cyberphysical systems. The advent of increasingly capable
devices operating in complex scenarios raises the importance
of using the available resources efficiently in order to meet task
specifications, prolong battery life, and provide algorithmic
solutions that can scale up. Resource-aware control examines
the tight coupling between physical and cyber processes to
prescribe, in a principled way, when to use the available
resources while still guaranteeing a desired quality of ser-
vice. Motivated by these observations, this paper develops
an event-triggered control framework that, given a prescribed
performance specification, incorporates in the decision making
criteria the performance residual to provide design flexibility
for general nonlinear systems.

Literature Review: The event-triggered framework [2]–[4]
seeks to determine criterions to employ opportunistically the
available control resources (e.g., actuation, sensing, commu-
nication) in order to produce efficient implementations on
digital systems. Such criterions, called triggers, are commonly
obtained by examining the evolution under aperiodic sample-
and-hold executions of the Lyapunov certificates valid for
their continuous-time counterparts. This can be done in a
derivative-based fashion, i.e., by monitoring the time derivative
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of the certificate, see e.g., [2], [5]–[8], or in a function-based
fashion, i.e., by directly monitoring the value of the certificate,
see e.g., [9]–[11]. Both approaches are widely applicable.
However, derivative-based approaches tend to be conservative
because they are evaluated at the current system state without
taking into account how much the certificate has decreased
since the last update. This is tackled in dynamic event-
triggering [12] by introducing an extra variable to store an esti-
mate of this decrease and incorporate it into the trigger design.
On the other hand, function-based designs suffer from lack of
robustness to disturbances in the value of the certificate. The
work [13] uses both frameworks to mitigate these drawbacks
by estimating how much the certificate will decrease after
each trigger, which constitutes another source of conservatism,
together with its reliance on time triggering. Here, we take a
different approach to combine the derivative- and function-
based design methodologies inspired by the concept of con-
trol barrier functions, and particularly, Nagumo’s Theorem,
see e.g., [14]–[17]. The basic insight is to incorporate into
the trigger design the performance residual, i.e., how well
the system is doing in regards to a prescribed performance
specification. This specification plays the role of the “barrier”
that the system should not exceed. This makes it possible to
allow the certificate to deviate from monotonically decreasing
at all times, with the amount of deviation allowed specified as a
function of the size of the performance residual. Interestingly,
the dynamic event-triggered approach mentioned above can be
naturally interpreted within the framework proposed here.

Our technical approach also builds on the literature of
event-triggered approaches applied to the distributed control
of network systems, see e.g., [18]–[24] and references therein.
One known issue in this context is that Zeno behavior may
arise as a result of the partial availability of information
to individual agents, despite it being ruled out for its cen-
tralized counterpart. In such scenarios, it is common to use
time regularization [19]–[21], i.e., preventing by design any
update before certain fixed time (usually the minimum inter-
event time from the centralized design) has elapsed. This
requires an offline computation and the resulting executions
may behave like periodic time-triggered ones. An alternative
way of avoiding Zeno behavior is to allow for the violation
of the monotonic decrease of the certificate at all times,
see e.g., [25], [26], at the cost of only achieving practical
stability. Other works avoid Zeno behavior by either requiring
stronger system assumptions on the type of certificates [27],
[28] or their solutions are problem-specific [24], [29]. Here,
we combine the performance-barrier-based framework with
dynamic average consensus [30] to synthesize a Zeno-free
distributed design that ensure asymptotic convergence for a
general class of nonlinear systems.
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Statement of Contributions: This paper considers closed-
loop continuous-time systems evolving under a robustly sta-
bilizing feedback endowed with a certificate in the form of
an ISS-Lyapunov function. We address the problem of devel-
oping a digital feedback implementation that simultaneously
retains the stability properties, opportunistically updates the
controller, and meets a prescribed performance. The con-
tributions of the paper are threefold. The first contribution
is the synthesis of a novel framework for event-triggered
control termed performance-barrier-based design. We combine
derivative- and function-based designs by incorporating into
the trigger criterion both the time derivative and the value
of the certificate. The flexibility of the proposed approach
stems from allowing the certificate to deviate from having to
monotonically decrease at all times. In our design, a larger per-
formance residual, measured as the difference between the pre-
scribed performance and the value of the certificate, results in
a larger amount potential deviation allowed. By construction,
at any given state, the performance-barrier-based design enjoys
a longer inter-event time than the derivative-based approach,
while still achieving the prescribed performance. Our second
contribution is the characterization of the implementability and
asymptotic stability properties of nonlinear systems under the
proposed framework. We introduce the concept of class-K
performance specification function and establish, for general
nonlinear systems, a uniform lower bound in the inter-event
times of the proposed design, thereby ruling out the possibility
of Zeno behavior. For the particular case of exponential perfor-
mance specifications, which includes the case of linear control
systems, we provide an explicit expression of an improved
minimum inter-event time with respect to the derivative-based
approach. Our third contribution builds on this characterization
to develop distributed triggers for network systems using the
performance-barrier-based approach that ensure asymptotic
correctness. Our distributed design makes use of dynamic
average consensus to estimate, with some tracking error, the
terms in the trigger criterion that require global information
to be evaluated. The guarantees on the design then rely on
its ability to tolerate the tracking errors. This is where we
leverage the flexibility provided by the performance-barrier-
based approach to rule out Zeno behavior in the network
executions without using any time regularization. We conclude
the paper by illustrating the effectiveness of the proposed
framework in a vehicle platooning problem.

II. PRELIMINARIES

This section presents basic preliminaries on graph theory
and dynamic average consensus1.

1Throughout the paper, we use the following notation. We denote by N, R
and R+, the set of natural, real and nonnegative real numbers, respectively.
We let 1 denote the vector with all its entries equal to one. For n ∈ N, we use
[n] to denote {1, . . . , n}. Given x ∈ Rn, ‖x‖ denotes its Euclidean norm.
We denote by I ∈ Rn×n the identity matrix. A function f : Rn → Rn is
locally Lipschitz if, for every compact set S0 ⊂ Rn, there exists L > 0 such
that ‖f(x)−f(y)‖ ≤ L‖x−y‖, for all x, y ∈ S0. We use exp(·) to denote
the exponential function. We let Lf denote the Lie derivative along the vector
field f : Rn → Rn. A continuous function h : R→ R is of class-K if it is
strictly increasing and h(0) = 0. In addition, the function is class-K∞ if it
also satisfies limr→∞ h(r) =∞.

Graph Theory: Our exposition follows [31]. We denote
a graph by G = (V, E), with V as the set of vertices and
E ⊆ V×V as the set of edges. We consider undirected graphs,
where (i, j) ∈ E implies (j, i) ∈ E . A path between two
vertices i, j ∈ V is an ordered sequence of vertices starting
with i and ending with j such that all pairs of consecutive
vertices are elements of the set E . A graph is connected if
there exists a path between any two vertices. Vertices i, j ∈ V
are neighbors if (i, j) ∈ E . We let Ni denote the set composed
of vertex i and all its neighbors. We add the subscript xNi to
represent the subvector of a vector x formed from the entries
associated with Ni. The adjacency matrix A ∈ R|V|×|V|
has entries Aij = Aji = 1 if i and j are neighbors, and
Aij = Aji = 0 otherwise. The degree of a node i is
d(i) :=

∑
j∈Ni Aij . The degree matrix D is the diagonal

matrix with Dii = d(i). The Laplacian matrix L := D −A
has nonnegative real eigenvalues and a simple eigenvalue of
0 with an eigenvector 1 iff the graph G is connected.

Dynamic Average Consensus: Consider a group of N agents
communicating over an undirected graph G. Each agent i ∈
V = [N ] has a continuously differentiable reference signal
Wi : [0,∞)→ R. Dynamic average consensus aims at making
the agents track asymptotically the average of the reference
signals. For convenience, let W = (W1, . . . ,WN ). Here we
employ the dynamic average consensus algorithm [30],

ẏ = Ẇ − ρLy, (1)

where each component of y ∈ RN is the agents’ estimate of
the average, ρ > 0 is a rate of convergence parameter, and L is
the Laplacian matrix of the graph. The following result shows
that with the correct initialization and a suitable assumption
on the evolution of W , each state yi asymptotically tracks
the average 1>W (t)/N of the reference signal. The result is
a refinement of [30, Thm.2] to reference signals whose time
derivative is bounded exponentially and its proof is presented
in the appendix.

Lemma II.1. (Tracking Error Bound): Consider the dy-
namic average consensus dynamics (1) with a reference sig-
nal W whose time derivative is bounded exponentially, i.e.,
‖Ẇ (t)‖ ≤ cẆ exp(−rt) with a constant cẆ > 0, for time
t ∈ [0, s). Define the tracking error as ε := y − 11

>W/N .
If the initialization of y is such that 1>y(0) = 1

>W (0)/N ,
then the tracking error is also bounded for time t ∈ [0, s) as

‖ε(t)‖ ≤
cẆ

ρλ2 − r
exp(−rt)

+

(
‖ε(0)‖ −

cẆ
ρλ2 − r

)
exp(−ρλ2t) (2)

where λ2 is the second smallest eigenvalue of the Laplacian
matrix L.

III. PROBLEM FORMULATION

Consider a nonlinear control system of the form

ẋ = F (x, u), x ∈ Rn, u ∈ Rm,

with F : Rn × Rm → Rn. The digital implementation of
a desired feedback policy κ : Rn → Rm as u = κ(x)
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can be accomplished through a sample-and-hold strategy. This
consists of updating the control signal at a specific time tk, for
k ∈ {0} ∪N, and keeping it constant up until tk+1, when the
evaluation of the feedback policy provides the next adjustment.
As a result, the closed-loop system is

ẋ = F (x, κ(x+ e)) = f(x, e), (3)

where the error e = xk − x is the state deviation from the
last update at iteration k (here, we use the shorthand notation
xk = x(tk)). The challenge is then how to prescribe the
sequence of update times {tk} in order to ensure that the dig-
ital implementation retains the convergence and performance
properties of the original continuous-time system.

Event-triggered control looks past time-periodic implemen-
tations to identify a state-dependent trigger criterion to de-
termine the update times. To come up with such a criterion
for a general nonlinear system, a common starting point is
to assume that there exists an Input-to-State Stability (ISS)
Lyapunov function for (3), see e.g., [2], [5], [6]. Formally,
we assume there exists a smooth function V : Rn → R and
class-K∞ functions α, α, α, and γ satisfying

α(‖x‖) ≤ V (x) ≤ α(‖x‖), (4a)
LfV (x, e) ≤ −α(‖x‖) + γ(‖e‖). (4b)

The seminal work [2] provides the trigger design

tk+1 =
{
t ≥ tk | − σα(‖x(t)‖) + γ(‖e(t)‖) = 0

}
, (5)

with design parameter σ ∈ (0, 1). Under (5), the rate of change
of the Lyapunov function along (3) satisfies

d

dt
V (x(t)) ≤ (σ − 1)α(‖x(t)‖).

Therefore, by design, the certificate V decreases along the
trajectories of the sample-and-hold implementation. Stability
cannot be established from this fact alone, however, due to
the possibility of Zeno behavior: the state-dependency of the
trigger criterion makes it possible for the inter-event time
between consecutive updates to become increasingly small.
This, in turn, leaves open the possibility of an infinite number
of updates within a finite period of time. A common strategy
to rule out Zeno behavior is to establish the existence of a
minimum inter-event time (MIET). For the trigger design (5),
the existence of a MIET can be established under mild
assumptions, cf. [2].

Triggering according to state-triggered criteria like (5) might
lead to fewer controller updates than a time-triggered imple-
mentation at the cost of impacting performance (as measured,
for instance, by the rate of decrease of the certificate V ).
Ideally, one would like the system to trigger as sparingly as
possible while still guaranteeing a prescribed performance re-
garding convergence. In that regard, (5) tends to overprescribe
updates, as the criterion looks exclusively at the derivative
of the certificate without taking into account how much the
certificate has decreased since the last update, cf. Figure 1(a).
We refer to the difference between the prescribed performance
and the value of the certificate as the performance residual.
Presumably, allowing the certificate to momentarily violate the
derivative condition, with leeway specified as an increasing

(a) (b)

Fig. 1. Prescribed performance (dashed line) and evolution of the certificate
(solid line) under state-dependent triggering. (a) the controller update (black
circle) prescribed by (5) does not take into account the performance residual,
which would otherwise be positive until the curve of the certificate meets
the prescribed performance (empty circle). (b) a possible evolution of the
certificate that momentarily violates (gray area) the derivative condition on
the certificate specified by (5), does not require a controller update while
always meeting the performance specification.

function of the performance residual, could result in execu-
tions with even fewer controller updates that still meet the
performance requirements, cf. Figure 1(b). In the context of
network systems, the overprescription of controller updates is
also related to the fact that the design of distributed event-
triggered schemes based on (5) might result, in general, in
sample-and-hold implementations that do not have a MIET,
see [3], [20], [25], [32].

The formalization of the ideas described above leads us to
propose the performance-barrier-based design methodology
for trigger design. In Section IV, we limit our discussion to
linear systems to motivate and introduce the basic idea. We
develop it further for general nonlinear systems in Section V.
As we show in our exposition, the new approach naturally
leads to longer inter-event times while meeting the specified
performance. This provides the necessary groundwork for
tackling the design of Zeno-free distributed event-triggered
schemes for network systems in Section VI.

IV. PERFORMANCE-BARRIER-BASED EVENT-TRIGGERED
CONTROL DESIGNS FOR LINEAR SYSTEMS

Here we introduce the performance-barrier-based ETC
framework. In this section, we limit our discussion to linear
systems for simplicity of exposition. Consider the sample-and-
hold linear control system

ẋ = Ax+BKxk = (A+BK)x+BKe, (6)

with matrices A ∈ Rn×n, B ∈ Rn×m and K ∈ Rm×n so that
A + BK is Hurwitz. In this case, it is easy to guarantee the
existence of an ISS Lyapunov function satisfying (4). In fact,
using the fact that A + BK is Hurwitz, there exists positive
definite matrices P and Q such that

V (x) = x>Px (7a)

is an ISS Lyapunov function with

LfV (x, e) = −x>Qx+ 2x>PBKe

≤
(
‖PBK‖

θ
− λmin(Q)

)
‖x‖2 + θ‖PBK‖‖e‖2

:= −cα‖x‖2 + cγ‖e‖2, (7b)
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where λmin(Q) is the minimum eigenvalue of Q and Young’s
inequality [33] is applied with θ > 0 selected appropriately
so that cα, cγ are positive. In particular, for the original
continuous-time system (e ≡ 0 in (6)), one obtains the
performance guarantee

V (x(t)) ≤ V (x0) exp
(
cα‖P‖−1t

)
, (8)

where x0 denotes the initial condition. We next turn to the
trigger design.

A. Derivative- and Function-Based Trigger Designs

For the sample-and-hold linear system (6), the derivative-
based trigger design (5) takes the form

tk+1 = min
{
t ≥ tk | − σcα‖x‖2 + cγ‖e‖2 = 0

}
,

with the certificate along any trajectory satisfying
d
dtV (x(t)) ≤ (σ − 1)cα‖x(t)‖2. Using this inequality,
the evolution of the certificate satisfies

V (x(t)) ≤ V (x0) exp
(
(σ − 1)cα‖P‖−1t

)
. (9)

A higher value of σ ∈ (0, 1) results in a longer inter-event
time and a slower exponential rate on the evolution of the
certificate. This presents a trade-off for design. In order to
compare different designs fairly, it would seem reasonable to
establish a common performance criterion. Given the exponen-
tial convergence characteristic of linear systems, prescribing
a desired rate of convergence r > 0 is a natural candidate.
Formally, we specify

V (x(t)) ≤ V (x0) exp(−rt), (10)

at all time and for any initial condition. Given the per-
formance (8) of the continuous state-feedback system, we
require r < cα‖P‖−1. Since the derivative-based trigger is
guaranteed to perform according to (9), one can see that
σ = 1 − r‖P‖

cα
is the value that yields the longest inter-event

time (for the derivative-based design) while still satisfying the
performance specification. The following result summarizes
the asymptotic convergence properties under the derivative-
based trigger design.

Lemma IV.1. (Derivative-Based Design – Linear Case):
Consider the sample-and-hold linear system (6) with an ISS
Lyapunov function (7). Given a desired rate of convergence
r < cα‖P‖−1 and σ ∈ (0, 1 − r‖P‖

cα
), let g : Rn × Rn → R

be any function such that

LfV (x, e) ≤ g(x, e) ≤ (σ − 1)cα‖x‖2 + cγ‖e‖2.

Define the derivative-based trigger time as

tdk+1 = min
{
t ≥ tk | g(x(t), e(t)) + rV (x(t)) ≥ 0

}
. (11)

There exists a MIET τd
σ > 0 such that if V (x(tk)) ≤

V (x0) exp(−rtk), then tdk+1 − tk ≥ τd
σ . As a consequence,

if the trigger sequence {tk}∞k=0 is defined iteratively via the
derivative-based trigger, then V (x(t)) < V (x0) exp(−rt) for
all t > 0, and the origin is globally exponentially stable. �

Lemma IV.1 is essentially presented in [2]. We omit its proof
as it is a special case of Proposition IV.3 below. The basic idea

behind the design (11) is to keep the time derivative of the
Lyapunov function below an amount that, by application of the
Comparison Lemma [34, Lemma 3.4], would make the system
satisfy the desired performance, i.e., d

dtV (x(t)) < −rV (x(t)).
As a result, the gap V (x0) exp(−rt) − V (x(t)) between the
desired performance and the Lyapunov function, which we
call performance residual, is always increasing until the next
update, see Figure 1. While meeting the desired specifications
means keeping the performance residual nonnegative, doing so
by having it always increase is overly conservative. To produce
a less conservative design, one can instead look at the value of
the Lyapunov function itself (rather than its time derivative),
as specified in the following result.

Lemma IV.2. (Function-Based Design – Linear Case): Con-
sider the sample-and-hold linear system (6) with an ISS
Lyapunov function (7). Given a desired rate of convergence
r < cα/‖P‖, define the function-based trigger time as

tfk+1 =min
{
t > tk | 0 ≥ V (x0) exp(−rt)− V (x(t))

}
. (12)

There exists a MIET τ f
r > 0 such that if V (x(tk)) ≤

V (x0) exp(−rtk), then tfk+1 − tk ≥ τ f
r . As a consequence,

if the trigger sequence {tk}∞k=0 is defined iteratively via the
function-based trigger, then V (x(t)) ≤ V (x0) exp(−rtk), and
the origin is globally exponentially stable. �

The function-based design relies on the idea of directly
enforcing V (x(t)) ≤ V (x0) exp(−rt). A problem with this
design, however, is that it waits until the last moment, i.e.,
when the performance residual becomes zero (empty circle in
Fig. 1(a)), to prescribe a controller update. Consequently, the
implementation is not robust to errors (e.g., delays in evalua-
tion or actual implementation). The performance-barrier-based
trigger design, proposed next, is motivated by the idea of
overcoming the conservatism of the derivative-based design
and the lack of robustness of the function-based one.

B. Performance-Barrier-Based Trigger Design

Our ensuing design builds on the observation that to ensure
that the evolution of V satisfies the specified performance,
V needs to decrease faster than (or at the same rate as) the
specification only when their values are equal. Formally, this
can be established using Nagumo theorem [16]: V (x(t)) ≤
V (x0) exp(−rt) if and only if

d

dt
V (x(t)) ≤ −rV (x(t)) when V (x(t)) = V (x0) exp(−rt).

(13)

Note that this condition does not restrict how fast V changes
when V (x(t)) < V (x0) exp(−rt), no matter how small
the performance residual is. One can readily see that the
condition (13) suffers from the same lack of robustness as
the function-based design. To address this, and inspired by
how control barrier functions [15], [17] restrict the speed of
their own evolution as the state approaches the boundary of
the safe set, we instead prescribe

d

dt
V (x(t)) + rV (x(t)) ≤ cβ

(
V (x0) exp(−rt)− V (x(t))

)
,
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with a nonnegative constant cβ ≥ 0. The key idea is restricting
how fast V can increase proportionally to the performance
residual. The following result summarizes the asymptotic
convergence properties under this type of prescription.

Proposition IV.3. (Performance-Barrier-Based Design – Lin-
ear Case): Consider the sample-and-hold linear system (6)
with an ISS Lyapunov function (7). Given a desired rate of
convergence r < cα/‖P‖ and σ ∈ (0, 1 − r‖P‖

cα
), let g be as

in Lemma IV.1. Define the performance-barrier-based trigger
time as

tpk+1 = min
{
t ≥ tk | g(x(t), e(t)) + rV (x(t))

≥ cβ
(
V (x0) exp(−rt)− V (x(t))

)}
. (14)

Let G(τ) = exp(Aτ) +
∫ τ

0
exp(A(τ − s))dsBK and

M(τ) = cβP exp(−rτ)− cγ‖I−G(τ)‖2

−G(τ)>((cβ + r)P + (σ − 1)cαI)G(τ). (15)

The constant

τp
σ := min{τ > 0 | det(M(τ)) = 0}, (16)

is a MIET such that if V (x(tk)) ≤ V (x0) exp(−rtk), then
tpk+1 − tk ≥ τp

σ . As a consequence, if the trigger sequence
{tk}∞k=0 is defined iteratively via the performance-barrier-
based trigger, then V (x(t)) ≤ V (x0) exp(−rt) for all time,
and the origin is globally exponentially stable.

Proof. First, we note that we can derive from the trigger de-
sign, V (x(t)) ≤ V (x0) exp(−rt) for every interval [tk, t

p
k+1),

but we have omitted the proof here because it will appear in
the proof of Proposition V.3 later for the more general case.
Nevertheless, we will prove here the result on the MIET, which
will rule out the the sequence {tk}∞k=0 converging to a finite
value (Zeno behavior). We start by deducing for each update

V (x(tk)) ≤ V (x0) exp(−rtk)

V (x(tk)) exp(−r∆tk) ≤ V (x0) exp(−rt)

for the time t ∈ [tk, tk+1] where ∆tk = t − tk. Using
this bound to lower bound the right-hand side of the trigger
condition in (14), as well as using the definition of g to upper
bound the left-hand side, we derive the condition

x>(rP + (σ − 1)cαI)x+ cγ‖e‖2

= cβ(V (xk) exp(−r∆tk)− x>Px) (17)

which must be met earlier. Note we have replaced inequality
with equality due to continuity of all the terms along the
trajectory. Under system (6), we can find the expression for the
state during each iteration as x(t) = G(∆tk)xk. Substituting
the state and moving everything of the left-hand side to the
right, (17) becomes

0 = x>kM(∆tk)xk.

We know that M(0) � 0 because the right-hand side of
(17) is zero, and the left-hand side is negative at time tk
due to the definition of r. The MIET is given by when
M(τ) transits from positive definite to semi-positive definite
which is when there exists an xk such that the condition is

satisfied. Therefore, the MIET is given by (16). As a result,
V (x(t)) < V (x0) exp(−rt) for all time. Lastly, the origin can
be deemed exponentially stable as we can derive

‖x‖ ≤ ‖x0‖
‖P‖1/2

λmin(P )1/2
exp(−rt/2),

concluding the proof.

Proposition IV.3 generalizes both Lemmas IV.1 and IV.2.
Note that the trigger design (11) is recovered by selecting
cβ = 0 in (14), and the trigger design (12) corresponds to
the limit of (14) as cβ → ∞. Directly from the construction
of the trigger designs, one can deduce tdk+1 ≤ tpk+1 ≤ tfk+1

(inequalities are strict if g is continuous). Therefore, we
can adjust the parameter cβ to control the inter-event times,
which is also evident in the expression for the MIET. Note
that the performance-barrier-based design enjoys longer inter-
event times than the derivative-based one while still being
able to achieve the prescribed performance. Although the
performance-barrier-based strategy does not have a MIET as
large as the function-based one, it does not suffer from the
same lack of robustness to errors The design also includes
the flexibility of using the surrogate function g if it is more
convenient or easier to evaluate. Finally, Proposition IV.3
also provides a method to calculating the MIET using the
design (14) for linear control systems. The expression only
depends on time (not on the state), which means that it can
be calculated offline.

V. PERFORMANCE-BARRIER-BASED EVENT-TRIGGERED
CONTROL DESIGNS FOR NONLINEAR SYSTEMS

In this section we expand our presentation of the
performance-barrier-based event-triggered control design to
general nonlinear systems (3). Our starting point is the avail-
ability of an ISS Lyapunov function (4) in tandem with the
feedback policy κ. Unlike the case of linear systems, the
evolution of the Lyapunov function along the trajectories of
the closed-loop system might not be exponentially decaying,
and this raises the question of how to suitably define a perfor-
mance specification. We do this by considering a continuously
differentiable, time-dependent function S(·;x0) : R+ → R+,
parametrized by the initial condition x0, encoding the desired
behavior as

V (x(t)) ≤ S(t;x0). (18)

We use Nagumo theorem [16] to write an equivalent condition
(assuming that V (x0) ≤ S(0;x0)) to the requirement (18) as

d

dt
V (x(t)) ≤ d

dt
S(t;x0) when V (x(t)) = S(t;x0). (19)

With this in mind, we seek to identify different types of per-
formance specification functions S that allow us to establish
the existence of a MIET. In the following, we discuss several
classes of specification functions.

A. Class-K Derivative Performance Specification

This class of specification function is an extension of the
exponential decrease of the linear case. In particular, note that
the desired convergence rate r is limited in the linear case by
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the performance (8) of the original continuous-time system.
Similarly, in the nonlinear case, we look at the performance
under the continuous-time controller implementation (e ≡ 0
in (3)). Hence, let h : R+ → R+ be such that

LfV (x, 0) ≤ −α(‖x‖) < −h(V (x)),

for all x. In other words, h expects a slower convergence
than the natural convergence of the system with a continuous
controller.

Definition V.1. (Class-K Derivative Specification): For σ∗ ∈
(0, 1), let h : R+ → R+ be locally Lipschitz and class-K with
h(V (x)) ≤ (1 − σ∗)α(‖x‖) for all x. A function S(·;x0) :
R+ → R+ is a class-K derivative performance specification
if it is the unique solution to the differential equation

Ṡ = −h(S), S(0;x0) ≥ V (x0),

for any initial condition x0. •

According to this definition, S is strictly decreasing in time
and limt→∞ S(t;x0) = 0 for all x0, and is increasing in
‖x0‖, cf. [34, Lemma 4.4] (with a slight abuse of notation,
writing the specification in the form S(‖x0‖, t) makes it a
class KL function). Note that the exponential rate specification
is a particular case of Definition V.1 (by setting h(s) = −r s).
The following result expands the treatment in [2] regarding
derivative-based triggers to account for this notion of perfor-
mance specification and follows a similar line of reasoning.

Proposition V.2. (Derivative-Based Design – Class-K Deriva-
tive): Consider the sample-and-hold nonlinear system (3) with
an ISS Lyapunov function (4). Given a class-K derivative per-
formance specification S and σ ∈ (0, σ∗), let g : Rn×Rn → R
be any function such that

LfV (x, e) ≤ g(x, e) ≤ (σ − 1)α(‖x‖) + γ(‖e‖).

Define the derivative-based trigger time as

tdk+1 = min
{
t ≥ tk | g(x(t), e(t)) + h(V (x(t))) ≥ 0

}
. (20)

Under the assumption that F , κ, γ, α−1 are locally Lipschitz,
there exists a MIET τd

σ > 0 such that if V (x(tk)) ≤ S(tk;x0),
then tdk+1 − tk ≥ τd

σ . As a consequence, if the sequence
{tk}∞k=0 is defined iteratively via the derivative-based trigger,
then V (x(t)) ≤ S(t;x0) for all time, and the origin is globally
asymptotically stable.

Proof. The trigger design directly enforces g(x(t), e(t)) <
−h(V (x(t)) for t ∈ [tk, t

d
k+1). Therefore,

d

dt
V (x(t)) = LfV (x(t), e(t)) ≤ −h(V (x(t))).

Consequently, if V (x(tk)) ≤ S(t;x0), one can guarantee
V (x(t)) ≤ S(t;x0) for all t ∈ [tk, t

d
k+1] via the Comparison

Lemma [34, Lemma 3.4]. Next, we prove the existence of a
MIET. Because the sublevel set {x ∈ Rn | V (x) ≤ S(0;x0)})
is forward invariant and compact, ‖e‖ = ‖x − xk‖ must be
bounded by some constant E > 0 and hence the error remains
in the compact set {e | ‖e‖ ≤ E}. On these compact sets, let

Lγ and Lα−1 denote the Lipschitz constants for the functions
γ and α−1, respectively. Then,

tdk+1 = min
{
t ≥ tk | g(x, e) + h(V (x)) ≥ 0

}
≥ min

{
t ≥ tk | g(x, e) + (1− σ∗)α(‖x‖) ≥ 0

}
≥ min

{
t ≥ tk | (σ − σ∗)α(‖x‖) + γ(‖e‖) = 0

}
≥ min

{
t ≥ tk |

Lγ
σ∗ − σ

‖e‖ = α(‖x‖)
}

≥ min
{
t ≥ tk |

Lα−1Lγ
σ∗ − σ

‖e‖ = ‖x‖
}

= min
{
t ≥ tk |

‖e‖
‖x‖

= D−1
}
,

where D =
Lα−1Lγ
σ∗−σ . Using Lemma A.1, the time at which the

condition in the last equation is met is lower bounded by tk+
1

LfD+Lf
, where Lf is the Lipschitz constant for f with respect

to (x, e) (which exists because F and κ are locally Lipschitz).
This establishes the existence of a positive MIET bound, ruling
out the possibility of Zeno behavior in the sequence {tk}∞k=0.
Finally, asymptotic stability follows from the fact that S is
strictly decreasing and limt→∞ S(t;x0) = 0, concluding the
proof.

Next, we build on the ideas presented in Sections III and IV
to introduce the performance-barrier-based trigger design (21)
for the nonlinear case. The proposed design is based on enforc-
ing the condition (19) to ensure the performance specification
is met. In doing so, we take advantage of the performance
residual S(t;x0)−V (x(t)) to avoid overconstraining the evo-
lution of the Lyapunov certificate V when V (x(t)) < S(t;x0).

Proposition V.3. (Performance-Barrier-Based Design –
Class-K Derivative): Consider the sample-and-hold nonlinear
system (3) with an ISS Lyapunov function (4). Given a class-K
derivative performance specification S and σ ∈ (0, σ∗), let g
be as in Proposition V.2 and let β be any K∞ function on
[0,∞). Define the performance-barrier-based trigger time as

tpk+1 = min
{
t ≥ tk | g(x(t), e(t)) + h(V (x(t)))

≥ β
(
S(t;x0)− V (x(t))

)}
. (21)

Under the assumption that F , κ, γ, α−1 are locally Lipschitz,
there exists a MIET τp

σ > 0 such that if V (x(tk)) ≤ S(t;x0),
then tpk+1 − tk ≥ τp

σ . As a consequence, if the sequence
{tk}∞k=0 is defined iteratively via the performance-barrier-
based trigger, then V (x(t)) ≤ S(tk;x0) for all time, and the
origin is globally asymptotically stable.

Proof. The trigger design directly enforces

g(x(t), e(t)) + h(V (x(t))) < β
(
S(t;x0)− V (x(t))

)
, (22)

for t ∈ [tk, t
p
k+1). Thus, when S(t;x0) = V (x(t)), we find

g(x(t), e(t)) +h(S(t;x0)) < 0, and hence LfV (x(t), e(t)) <
−h(S(t;x0)) from the properties of g. Since S is a derivative
performance specification, it follows that

d

dt
V (x(t)) <

d

dt
S(t;x0),

implying (19). Consequently, V (x(t)) ≤ S(t;x0) for all t ∈
[tk, t

p
k+1). We can also use this fact to deduce

tpk+1 ≥ min
{
t ≥ tk | g(x(t), e(t)) + h(V (x(t))) = 0

}
,
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implying that the performance-barrier-based trigger time must
occur after the derivative-based trigger one (20). Thus, τd

σ

from Proposition V.2 is a valid MIET for the performance-
barrier-based trigger as well, ruling out the possibility of Zeno
behavior in {tk}∞k=0. Finally, asymptotic stability follows from
the properties of S.

Note that the function β in Proposition V.3 restricts the
speed of evolution of the Lyapunov certificate V when
V (x(t)) < S(t;x0) as a function of the performance residual.

Remark V.4. (Comparison with Derivative-Based Approach:
Longer Inter-Event Times): As pointed out by Propositions V.2
and V.3, both the derivative- and performance-barrier-based
approaches meet the performance specification defined by S.
However, since the performance residual on the right-hand
side of (21) always remains greater than zero by design, the
performance-barrier-based approach, for a given system state,
has a longer inter-event time than the derivative-based one, and
is therefore less conservative. In general, it is challenging to
provide an explicit bound between the respective MIETs due
to the generality of the system dynamics and the performance
requirement. We show later in Section V-B that in the case
of exponential performance specification this difference in
MIETs can be quantified analytically. •

Remark V.5. (Comparison with Function-Based Approach:
Robustness to Input Disturbances): A purely function-based
design would correspond to (21) with the left-hand side
substituted by zero. Note that the error term does not show
up explicitly in such design, in contrast to the performance-
barrier-based approach. Much like how one can use the ISS
notion to deal with disturbances, the performance-barrier-
based design allows for the analysis and mitigation of input
disturbances. This is the intention of the presence of the
parameter σ in the definition of g, that reserves a part of the
negativity of the Lyapunov function decay. •

Remark V.6. (Connection with Dynamic Trigger Design): We
note that dynamic triggering can be interpreted as a particular
case of the performance-barrier-based trigger design, where
the performance function is specified in an online fashion.
We elaborate on this point here. Formally, and with the same
notation employed in Proposition V.3, the dynamic trigger [12]
would take the form

tdyn
k+1 = min

{
t ≥ tk | θg(x(t), e(t)) ≥ η(t)

}
, (23a)

for θ > 0, where the variable η follows the dynamics

η̇ = −ι(η)− g(x, e) (23b)

with a locally Lipschitz class-K∞ function ι. The basic idea
is to store the decrease of V in the variable η through (23b)
and use it to increase the inter-event times in (23a). The term
ι(η) represents a decay in the stored amount, ensuring that the
system as a whole loses total “energy” over time.

Interestingly, the dynamic design (23) can be interpreted
from the perspective of performance-barrier-based ETC. Se-
lecting the performance specification function S(t;x0) =
η(t) + V (x(t;x0)), one can see that the design (23) ensures

d

dt
V (x(t;x0))− d

dt
S(t;x0) < β(S(t;x0)− V (x(t;x0))

with β(η) = ι(η) + η/θ (note the parallelism with the
performance-barrier-based design (21)), implying (19) is satis-
fied. Note that this performance specification S is not known a
priori and is instead determined in an online fashion, tailored
to the concrete initial condition of the system trajectory. In
particular, this means that the explicit performance guarantee
of the design is difficult to obtain unless additional assump-
tions are made on the dynamics. A final observation is that
errors in the evaluation of the decrease of V might jeopardize
the convergence properties of dynamic triggering, whereas the
evaluation of the performance residual in a feedback fashion
characteristic of the performance-barrier-based ETC approach
makes it naturally robust to errors. •

B. Exponential Performance Specification
Here we discuss the exponential performance specification.

This is a subfamily of the class-K derivative performance
specifications in Section V-A for which an explicit analysis
of the performance residual leads us to an improved MIET
with respect to the derivative-based approach.

In this case, in lieu of the conditions (4) for the ISS
Lyapunov function V : Rn → R, assume the following
stronger set of conditions hold: there exist positive constants
c1, c2, c3, and c4 such that

c1‖x‖2 ≤ V (x) ≤ c2‖x‖2, (24a)
dV

dx
f(x, 0) ≤ −c3‖x‖2, (24b)∥∥∥∥dVdx

∥∥∥∥ ≤ c4‖x‖, (24c)

for all x ∈ Rn. Under the additional assumption that F and κ
are globally Lipschitz, and using Young’s inequality [33], the
following inequality holds for all (x, e),

LfV (x, e) =
dV

dx
f(x, e) ≤ −c3‖x‖2 + c4Lf‖x‖‖e‖

≤ −cα‖x‖2 + cγ‖e‖2, (25)

for some positive constants Lf , cα, and cγ . Notice that the
functions α, α, α, and γ for this ISS Lyapunov function are
defined as quadratic functions with constants c1, c2, cα, cγ ,
respectively. Note that in the absence of error, the value of V
converges exponentially. Hence, we consider the exponential
performance specification S(t;x0) = V (x0) exp(−rt) with
r < cα/c2, which is of class-K since it is the unique solution
to Ṡ = −rS, cf. Definition V.1.

The next result provides an expression for the MIET for the
performance-barrier-based trigger design (21) and shows it is
strictly larger than the MIET τd

σ of the derivative-based trigger
design.

Proposition V.7. (Performance-Barrier-Based Design – Ex-
ponential Performance): Consider the sample-and-hold non-
linear system (3) with a Lyapunov function (24). Given an
exponential performance specification S and σ ∈ (0, 1− rc2

cα
),

let g be as in Proposition V.2, and β(z) = cβz with a positive
cβ . Define

τ exp
σ := min

{
τ ≥ 0 | (ξ(τ) + r) exp

(∫ τ

0

ξ(s)ds

)
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= cβ

(
exp(−rτ)− exp

(∫ τ

0

ξ(s)ds

))}
(26)

where

τd
σ = ξ−1(−r) :=

√
((1− σ)cα − r)/cγ

Lf + Lf
√

((1− σ)cα − r)/cγ
,

ξ(τ) =

{
((σ − 1)cα + cγφ(τ)2)/c2 0 ≤ τ < τ∗

((σ − 1)cα + cγφ(τ)2)/c1 τ∗ ≤ τ
,

φ(τ) =
Lfτ

1− Lfτ
, τ∗ = ξ−1(0) :=

√
(1− σ)cα/cγ

Lf + Lf
√

(1− σ)cα/cγ
.

Under the assumption that F and κ are globally Lipschitz,
τ exp
σ is a MIET such that if V (x(tk)) ≤ V (x0) exp(−rtk),

then tpk+1 − tk ≥ τ exp
σ > τd

σ . As a consequence, if the trigger
sequence {tk}∞k=0 is defined iteratively with the exponen-
tial performance-barrier-based trigger (21), then V (x(t)) ≤
V (x0) exp(−rt) for all time, and the origin is globally expo-
nentially stable.

Proof. The statements on performance and stability follow
with the same arguments used in the proof of Proposition V.3.
Here, we only establish the MIET expression given for τ exp

σ .
First, we use (24a) and Lemma A.1 to find

g(x(t), e(t)) ≤ ((σ − 1)cα + cγφ(t− tk)2)‖x‖2

≤ ξ(t− tk)V (x),

where we have used that φ(τ∗)2 = (1− σ)cα/cγ . This gives
the bound

tpk+1 ≥ min
{
t ≥ tk | (ξ(t− tk) + r)V (x(t))

≥ cβ(V (x0) exp(−rt)− V (x(t)))
}
.

In addition, we can bound the Lyapunov function along the
trajectory using the differential form of Gronwall’s inequal-
ity [34, Lemma A.1] as

V (x(t)) ≤ V (xk) exp
(∫ t

tk

ξ(s− tk)ds
)
. (27)

This helps us isolate the state component, which in turn allows
us to bound the trigger time with only the time variable as
follows

tpk+1 ≥ min
{
t ≥ tk | (ξ(t− tk) + r) exp

(∫ t

tk

ξ(s)ds

)
≥ cβ

(
exp(−r(t− tk))− exp

(∫ t

tk

ξ(s− tk)ds

))}
.

With the change of variables τ = t− tk, and using continuity,
the condition defining the set is as in (26). Next, because ξ
is strictly increasing and ξ(τd

σ ) = −r, the left-hand side of
the condition is nonpositive for τ ≤ τd

σ . At the same time,
the right-hand side of the condition must always be positive.
Hence, the condition must be met at τ exp

σ > τd
σ , concluding

the proof.

Note that the expression (26) in Proposition V.7 for the
MIET of the performance-barrier-based design with exponen-
tial specification does not depend on the state, and can there-
fore be calculated a priori, before the actual implementation

of the controller. We take advantage of the ability to quantify
the benefits of the performance-barrier-based approach for
exponential specifications when discussing its application to
network systems in our forthcoming discussion.

VI. PERFORMANCE-BARRIER-BASED TRIGGERING FOR
NETWORK SYSTEMS

In this section we discuss the application of the
performance-barrier-based triggering approach to the design
of distributed triggers for network systems. Specifically, we
consider exponential performance specifications and take ad-
vantage of the additional flexibility provided by the perfor-
mance residual to ensure the existence of a MIET.

Consider a network of N agents whose interconnection is
represented by a connected undirected graph G = ([N ], E).
By this, we mean that each agent can only communicate with
its neighbors, and hence has access to limited information
about the system. We make the assumption that the Lyapunov
function satisfying (24) can be expressed as an aggregate

V (x) =

N∑
i=1

Vi(xNi),

with each function Vi depending on the local information
available to agent i. We assume each Vi to be continuously
differentiable with Lipschitz gradient. Our goal is to design
distributed triggers that can be evaluated by individual agents
with the information available to them.

A. Challenges for ETC in Network Systems
Here we describe the challenges in transcribing the

derivative-based trigger approach to network systems. The
direct transcription of (20) to the network setting would result
in a centralized trigger that requires global information to be
evaluated. Making use of the aggregate decomposition of V ,
one can instead define

tk+1 = min
{
t ≥ tk | ∃i ∈ [N ] 3

(σ − 1)cα‖xi(t)‖2 + cγ‖ei(t)‖2 + rVi(xNi(t)) ≥ 0
}
. (28)

Note the slight abuse of notation here, where xi and ei now
refer to the states associated with agent i, rather than the i-th
component of vectors x and e, resp. This trigger corresponds
to partitioning (20) across the network into multiple triggers,
one per agent, that can be individually evaluated with local
information. Note that the design means that when an agent
triggers, a controller update request is sent network-wide.
This relies on the observation that such messages, which do
not require any state information, can be easily propagated
through the network. The design is more conservative than the
centralized one and, as a consequence, results in shorter inter-
event times for an arbitrary network state. In fact, this type
of distributed trigger schemes can suffer from Zeno behavior,
see e.g., [3], [20], [25], [32]. A common practice to address
this is to explicitly incorporate a MIET at the design stage, a
process known as time regularization, see e.g., [19]–[21]. For
instance, with a slight modification to suit our context, [19]
proposes the following

tk+1 = min
{
t ≥ tk + τd

σ | ∃i ∈ [N ] 3 (29)
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(σ − 1)cα‖xi(t)‖2 + cγ‖ei(t)‖2 + rVi(xNi(t)) ≥ bi(tk)
}
,

where b ∈ Rn is a budget variable satisfying 1
>b = 0, which

we discuss below. Time regularization discards the possibility
of Zeno behavior by forcing the inter-event time to be above
the MIET known from the centralized design. The design
builds on the fact that, from the analysis in Section V, we
know controller updates are not necessary for τd

σ seconds after
the last update in order to meet the performance specification.
Consequently, agents can ignore the trigger conditions for this
amount of time and only start enforcing them thereafter.

However, note that time regularization does not change the
fact that the error ‖ei‖ might have already surpassed the
level at which the trigger would occur as soon as the trigger
condition starts getting monitored, see e.g., [32]. The variable
b seeks to address this by re-balancing the budget that each
agent has in its trigger condition, allowing for the possibility
of allocating at the triggering times some budget from a node
where the condition has not been violated to another node
where it has (in order to have the latter not trigger immediately
next time once τd

σ seconds have elapsed). Among the potential
disadvantages of the design (29) from a network perspective,
we point out the following:

(i) the computation of the MIET τd
σ can be challenging and

requires the execution of a dedicated distributed algo-
rithm prior to the controller implementation. Moreover,
the value obtained may turn out to be too conservative,
making the trigger occur more frequently than neces-
sary;

(ii) the proposed scheme requires a central entity, albeit only
at each triggering time, to calculate and assign budgets
to all the agents;

(iii) without further assumptions on the nonlinear system, the
evolution of the trigger condition cannot be predicted,
and consequently there is no guarantee that the selected
budgets b will successfully extend the inter-event time.

Our proposed method addresses these problems by designing
a trigger that intrinsically exhibits a MIET and relying on
distributed computation and communication among the agents
to calculate their budgets.

B. Intrisically Zeno-Free Distributed ETC Design

We use two different elements to propose a distributed
trigger scheme: dynamic average consensus algorithm and
the performance-barrier-based trigger design. We approach the
Zeno problem by attacking directly its root cause in distributed
settings: partial information of the system states is insufficient
to inform agents of system’s overall performance. For this
reason, our distributed trigger design makes use of dynamic
average consensus algorithm to estimate, with some tracking
errors, the global terms in the centralized version of the trigger.
Doing so transforms the problem into ascertaining how well
the trigger design can tolerate errors. This is where we leverage
the additional flexibility provided by the performance-barrier-
based approach over the derivative-based one regarding han-
dling of the tracking errors. Particularly, as we will show later
in the analysis of our design, the performance residual term

offered by performance-barrier-based ETC plays a key role in
ruling out Zeno behavior.

We begin by defining some notation functions for compact-
ness of presentation. Let

Wx(x) = (σ − 1)cα‖x‖2 + (r + cβ)V (x),

Wxe(x, e) =Wx(x) + cγ‖e‖2.

These functions can be decomposed as sums of the following
functions, respectively,

Wx
i (xNi) = (σ − 1)cα‖xi‖2 + (r + cβ)Vi(xNi),

Wxe
i (xNi , ei) =Wx

i (xNi) + cγ‖ei‖2.

For convenience, we let W x and W xe be vector-valued
functions with components W x

i = Wx
i and W xe

i = Wxe
i ,

respectively. We omit the dependency on xNi and ei when
it is clear from the context. Notice that 1>W x = Wx and
1
>W xe = Wxe. The centralized performance-barrier-based

trigger design (21) can be rewritten compactly as

texp
k+1 = min

{
t ≥ tk | Wxe(t) = cβV (x0) exp(−rt)

}
. (30)

This trigger has a MIET, cf. Proposition V.7, but the direct
computation of Wxe requires global information. However,
given the aggregate decomposition 1

>W xe = Wxe and the
fact that agent i knows Wxe

i , a dynamic average consensus
algorithm enables the agents to estimate the average Wxe/N .
This leads to the following trigger design,

tk+1 = min
{
t ≥ tk | ∃i ∈ [N ] 3

ai(t) = cβV (x0) exp(−rt)/N
}
, (31a)

ȧ = Ẇ xe − ρaLa, (31b)

where ρa > 0 and L ∈ RN×N is the graph’s Laplacian. With
this formulation, we denote the tracking error by εa := a −
11
>W xe/N . In order for the dynamic average consensus to

track the right variable, it is crucial to initialize a so that
1
>εa = 0. As such, we assume that a(0) is so that εa(0) = 0

at the initial time t = 0. Since the tracking error’s mean 1>εa
is conserved along the dynamics (31b), this ensures 1>εa =
0 until the next triggering time. However, the value of Wxe

jumps to Wx at each trigger time tk due to e being reset to
zero, and therefore the average estimate a must be reinitialized
at each trigger time tk to keep the tracking error’s mean zero.
To do this, we use another dynamic average consensus to keep
track of Wx as

ż = Ẇ x − ρzLz (31c)

where ρz > 0, with the initial condition z(0) = 1Wx(x0)/N .
Similarly, we denote the tracking error by εz := z −
11
>W x/N . Note that the variable z does not depend on e,

so it does not need to reinitialize at each tk. With the new
tracking variable, we reinitialize a to z at each trigger time
with a jump map,

a+ = z, t ∈ {tk}∞k=0. (31d)

Remark VI.1. (Distributed Implementation): The design (31)
does not require a central entity to estimate the evolution
of the trigger condition, relying instead on dynamic average
consensus. To implement (31), the i-th agent, with local
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exchange information on ai and zi, can evaluate the dynamic
average consensus dynamics (31b) and (31c) if the time
derivative of the reference signals Ẇ xe

i and Ẇ x
i are available

to it. Each agent i has the information of the states xi and
ei and the dynamics ẋi and ėi. However, due to dependency
on xNi , the calculation of Ẇ xe

i and Ẇ x
i requires knowledge

of xNi and ẋNi . The computation of the latter requires two-
hop communication in the graph (alternatively, only one-
hop communication is required if the decomposition of the
Lyapunov function takes the form V (x) =

∑N
i=1 Vi(xi)). •

Remark VI.2. (Extensions to Discrete-Time Consensus and
Directed Graphs): Instead of the continuous-time algorithms
in (31b) and (31c), the design (31) could employ discrete-time
implementations of the dynamic average consensus algorithm,
see e.g., [30]. Since the effective timescales of (31b) and (31c)
scale linearly with ρa and ρz , respectively, cf. Lemma II.1, the
stepsizes of such discrete-time implementations would scale
linearly with 1/ρa and 1/ρz , respectively. A technical analysis
analogous to the one presented in Section VI-C below could
be developed, albeit we do not pursue it here for simplicity
of exposition. A similar observation can be made about the
interconnection structure of the network, which could easily
be extended from undirected to weight-balanced, strongly
connected directed graphs, cf. [31]. •

C. Convergence Analysis

In this section we show that the proposed distributed trigger
design (31), with suitable choices of the parameters cβ , ρa,
and ρz , makes the origin asymptotically stable. Our analysis
includes establishing performance satisfaction and a MIET.
Regarding the former, from the definition of the trigger, we
have that

Wxe(t)/N + εa,i(t) = ai(t) < cβV (x0) exp(−rt)/N (32)

along the trajectory for all i ∈ [N ]. Using the fact that
1
>εa = 0 at all time and summing (32), we deduce that
Wxe(t) < cβV (x0) exp(−rt), i.e., the same condition en-
forced by the centralized trigger (30). This shows the satisfac-
tion of performance. Establishing MIET is more complicated.
The inequality (32) suggests that εa,i being nonzero can make
the distributed trigger (31) occur prematurely in comparison
to the centralized trigger (30). However, our analysis below
shows that, by tuning different parameters appropriately, we
can ensure that at least for the time interval [tk, tk + τd

σ ),
the presence of εa,i does not have this effect, and (31) is not
triggered. Before establishing this fact, we show next that the
reference signals W xe and W x have an exponentially bounded
time derivative. Its proof is given in the appendix.

Lemma VI.3. (Exponential Bounds for Reference Signals):
Consider the distributed trigger design (31) for the sample-
and-hold nonlinear system (3) with Lipschitz F and κ. Assume
that each Vi is continuously differentiable with Lipschitz
gradient. Given a desired rate of convergence r < cα/c2 and
σ ∈ (0, 1 − rc2

cα
), there exists Ωxe > 0 such that, for all

k ∈ {0} ∪ N,

‖Ẇ xe(t)‖ ≤ ΩxeV (xk) exp(−r∆tk)

for t ∈ [tk, tk + τd
σ ). Furthermore if cβ > (1−σ)(cα/c1)− r,

there exists Ωx > 0 such that

‖Ẇ x(t)‖ ≤ ΩxV (x0) exp(−rt)

for all time along the trajectory.

Lemma VI.3 ensures that the requirements to apply
Lemma II.1 hold, allowing us to bound εa and εz . We are
now ready to state the main result of this section.

Theorem VI.4. (Distributed ETC with Exponential Perfor-
mance): Consider the sample-and-hold nonlinear system (3)
with a Lyapunov function (24). Given a desired rate of
convergence r < cα/c2 and σ ∈ (0, 1 − rc2

cα
), let tk+1 be

determined iteratively according to the performance-barrier-
based distributed trigger (31) with cβ > (1− σ)(cα/c1)− r.
Under the assumption that F and κ are Lipschitz and that
each Vi is continuously differentiable with Lipschitz gradient,
let the constant τd

σ be defined as in Proposition V.7. Then,
there exist ρa and ρz large enough such that

tk+1 − tk ≥ τd
σ ,

for all k ∈ {0} ∪ N. Consequently, the performance require-
ment V (x(t)) ≤ V (x0) exp(−rt) is enforced for all time and
the origin is rendered globally exponentially stable.

Proof. Our proof strategy is to show that, for each k ∈ {0} ∪
N, maxi∈[N ] ai − cβV (x0) exp(−rt)/N < 0 during the time
period [tk, tk + τd

σ ), which implies that no trigger occurs in
said period. Note the bound

max
i∈[N ]

ai = max
i∈[N ]

εa,i +Wxe/N ≤ ‖εa‖+Wxe/N.

Therefore, it is enough to prove instead that

‖εa‖+
1

N

(
Wxe − cβV (x0) exp(−rt)

)
< 0. (33)

We start bounding the second summand. Using the bounds
‖e‖ ≤ φ(t − tk)‖x‖ from Lemma A.1 and ‖x‖2 ≥ V (x)/c2
from (24a),

Wxe ≤
(
(σ − 1)cα + cγφ(∆tk)2

)
‖x‖2 + (r + cβ)V (x)

≤
(

(σ − 1)cα + cγφ(∆tk)2

c2
+ r + cβ

)
V (x)

= (ξ(∆tk) + r + cβ)V (x)

for t ∈ [tk, tk + τd
σ ]. Notice from the second inequality that

with cβ > (1 − σ)(cα/c1) − r, the coefficient of V (x) is
positive, so we can use the upper bound of V from (27) to get

Wxe−cβV (x0) exp(−rt)
=Wxe − cβV (xk) exp(−r∆tk)

− cβ(V (x0) exp(−rt)− V (xk) exp(−r∆tk))

≤ (ξ(∆tk) + r)V (xk) exp
(∫ ∆tk

0

ξ(s)ds
)

− cβV (xk)
(

exp(−r∆tk)− exp
(∫ ∆tk

0

ξ(s)ds
))

− cβ(V (x0) exp(−rt)− V (xk) exp(−r∆tk)).

Consider the first two terms in this expression. Both terms
are strictly negative in the time interval [tk, tk + τd

σ ), so the
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maximum value of their sum must be negative. Therefore,
there exists Ω∗ > 0 (which can be found explicitly by
examining its derivative and endpoints on the time interval
∆tk ∈ [0, τd

σ ] ) independent of xk such that

Wxe − cβV (x0) exp(−rt) (34)

≤ −Ω∗V (xk)− cβ
(
V (x0) exp(−rt)− V (xk) exp(−r∆tk)

)
= −Ω∗V (xk)− cβ

(
V (x0) exp(−rtk)− V (xk)

)
exp(−r∆tk)

≤ −Ω∗V (xk)− cβ
(
V (x0) exp(−rtk)− V (xk)

)
exp(−rτd

σ ).

Note here that both terms in the bound are non-positive.
Regarding the first summand ‖εa‖ in (33), we resort to

Lemma II.1 to bound it. We write (2), with a change of variable
to shift time by tk, for εa,

‖εa(t)‖ ≤ ΩxeV (xk)

ρaλ2 − r
exp(−r∆tk)

+

(
‖εa(tk)‖ − ΩxeV (xk)

ρλ2 − r

)
exp(−ρλ2∆tk).

Over the time interval ∆tk ≥ 0, the bound either achieves the
maximum value at ∆tk = 0 or where its time derivative is zero
on the positive interval ∆tk > 0. In other words, ‖εa(t)‖ ≤
max{‖εa(tk)‖, ΩxeV (xk)

ρaλ2−r }. We consider these two scenarios
separately.

First, consider the case where the ‖εa(tk)‖ ≤ ΩxeV (xk)
ρaλ2−r .

By selecting ρa > (1/λ2)(NΩxe/Ω∗+ r), we can ensure that
ΩxeV (xk)
ρaλ2−r < Ω∗V (xk)/N . This shows that the first term in the

upper bound (34) is enough to dominate ‖εa(t)‖, guaranteeing
that (33) holds.

Next, consider the case where ‖εa(tk)‖ > ΩxeV (xk)
ρaλ2−r . Be-

cause W xe(tk) = W x(tk) holds at the update time tk, we
deduce from the jump map (31d) that εa(tk) = εz(tk). Thus,
the size of ‖εa(tk)‖ directly depends on how well the dynamic
average consensus (31c) performs, so we tune ρz appropriately
so that (33) holds. Particularly, we look at the possibility that

‖εz(tk)‖ ≥ cβ(V (x0) exp(−rtk)− V (xk)) exp(−rτd
σ )/N

(otherwise, the second term of the upper bound (34) already
dominates ‖εa(t)‖). From (2), and given the initialization of
z with εz(0) = 0, we have

‖εz(tk)‖ ≤ ΩxV (x0)

ρzλ2 − r
(

exp(−rtk)− exp(−ρzλ2tk)
)
.

Since exp(−ρzλ2tk) ≥ 0, we obtain the relationship

ΩxV (x0)

ρzλ2 − r
exp(−rtk) ≥ ‖εz(tk)‖

≥ cβ(V (x0) exp(−rtk)− V (xk)) exp(−rτd
σ )/N. (35)

After some algebraic manipulations, this implies

V (x0) exp(−rtk) ≤ cβ exp(−rτd
σ )

cβ exp(−rτd
σ )− NΩx

ρzλ2−r
V (xk),

if the denominator of the right-hand side is positive. For this
to be the case, we have to make sure that our choice of ρz

satisfies ρz > (1/λ2)( NΩx

cβ exp(−rτd
σ )

+r). Substituting the bound
above into the upper bound in (35), we get

‖εz(tk)‖ ≤ Ωxcβ exp(−rτd
σ )

cβ exp(−rτd
σ )(ρzλ2 − r)−NΩx

V (xk).

Now, any selection of ρz such that

ρz >
1

λ2

(
NΩx

Ω∗
+

NΩx

cβ exp(−rτd
σ )

+ r

)
,

ensures that

Ωxcβ exp(−rτd
σ )

cβ exp(−rτd
σ )(ρzλ2 − r)−NΩx

<
Ω∗

N
,

and therefore ‖εz(tk)‖ < Ω∗V (xk)/N , implying that the
first term of the upper bound in (34) dominates ‖εa(t)‖.
Therefore, (33) holds for t ∈ [tk, tk + τd

σ ), and τd
σ is a MIET

for the distributed trigger design (31). With the existence of
the MIET, performance satisfaction and global exponential
stability follow.

Theorem VI.4 shows that, with the appropriate tuning of
the design parameters, (31) is an intrinsically Zeno-free event-
triggered design for network systems with exponential perfor-
mance (without the need to prescribe the MIET in the design
as in (29)). This property relies critically on the performance-
barrier-based design approach, particularly on the robustness
to errors provided by the performance residual.

Remark VI.5. (Conservativeness in Design Parameters): The
required bounds for the design parameters ρa and ρz developed
in the proof of Theorem VI.4 are conservative and, in fact,
we have observed in practice that values that violate these
bounds also result in successful executions. Such bounds must
be computed offline, a requirement that is also shared by
the time-regularization method regarding the computation of
the MIET. However, the key difference, beyond the fact that
the method proposed here overcomes the challenges (i)-(iii)
described in Section VI-A, is that conservativeness in the
MIET computation leads to higher actuation resource usage,
whereas conservativeness in the bounds of Theorem VI.4 im-
poses requirements on the communication and computational
resources of the agents, without affecting the timing of the
triggers. •

VII. SIMULATIONS ON VEHICLE PLATOONING

To illustrate the effectiveness of the performance-barrier-
based trigger design approach, we consider a vehicle pla-
tooning problem with N = 5 vehicles driving in a line
formation along a rectilinear curve. Following [35], we seek
to take advantage of the inter-agent communication resources
to minimize the usage in actuation resources. The goal is to
synchronize the speed vi of each vehicle i ∈ {2, . . . , 5} to
the leader’s desired speed vdes, and the vehicle’s following
distance di to a safe distance ddes,i = d0 + Tvvi. Here, d0 is
the standstill following distance and Tv represents the factor
for the additional distance to keep with respect to the vehicle’s
speed. Vehicle 1 is the leader and measures distance with re-
spect to a virtual reference vehicle. We define δi := di−ddes,i

and ν := vi− vdes to be the mismatch between the actual and
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the desired variables. Each vehicle uses a dynamic feedback
controller to compute its control input ui, which directly
affects the vehicle’s acceleration qi. The closed-loop dynamics
of the leading car, with state xi =

[
δi νi qi ui

]>
, can be

written as

ẋ1 =


0 −1 −Tv 0
0 1 0 0
0 0 − 1

Td
1
Td

kp
Tv

− kd
Tv

−kd − 1
Tv

x1 +


0
0
1
Td
0

 e1

= Ādiagx1 + Ēe1,

where e1 = x1,4(tk) − x1,4 encodes the fact that the actual
control input u is sampled at time tk and held constant until
tk+1. We use the system parameters kp = 0.2, kd = 0.7,
Tv = 0.6, and Td = 0.1. Vehicles {2, . . . , 5} have dynamics
that depend on the cars in front of them, as follows

ẋi = Ādiagxi + Āoffxi−1 + Ēei,

where ei = xi,4(tk)− xi,4 is the sample-and-hold error and

Āoff =


0 1 0 0
0 0 0 0
0 0 0 0

0 kd
Tv

0 1
Tv

 .
We next explain how we obtain an ISS Lyapunov function.
First, we find P > 0 such that Ā>diagP + PĀdiag = −I (this
corresponds to ignoring the interconnection of each following
vehicle with the one in front). Next, we define

V (x) =

N∑
i=1

πN−ix>i Pxi,

where π is a weight factor to be chosen. Note that this
definition naturally places more weight to the vehicles towards
the front of the platoon. The Lie derivative of V is given by

LfV (x, e) =

N∑
i=2

πN−i(−‖xi‖2 + 2x>i PĀoffxi−1)

− πN−1‖x1‖2 +

N∑
i=1

πN−i2x>i PĒei.

Using Young’s inequality [33], we can bound the cross terms
as 2x>i PĀoffxi−1 ≤ 5‖PĀoff‖2‖xi−1‖2+(1/5)‖xi‖2. Select-
ing then π = 31.25‖PĀoff‖2, we find, after some algebraic
manipulations, that

LfV (x, e) ≤ −0.145V (x) +

N∑
i=1

πN−i2x>i PĒei.

This implies a rate of convergence of r∗ = 0.145 in the
absence of sample-and-hold error e. In our simulations, we
specify the desired exponential convergence rate r = 0.08 <
0.75r∗ for the triggered implementations.

With all the elements in place, we are ready to provide
a comparison of different event-triggered control approaches.

We implement the centralized performance-barrier-based trig-
ger design, specifically the linear one in (14), and compare it
to the derivative-based design (11). For this, we use

g(x, e) = 0.75

N∑
i=2

πN−i(−‖xi‖2 + 2x>i PĀoffxi−1)

− 0.75πN−1‖x1‖2 +

N∑
i=1

πN−i2x>i PĒei, (36)

and cβ = 1. Each simulation lasts 400 seconds. Figure 2
shows the evolution of the Lyapunov functions in logarithmic
scale for different trigger designs and Table I shows the
empirical MIET (which might be larger than the actual MIET)
and average number of controller updates across 50 differ-
ent trajectories with random initial conditions. As expected,
both designs satisfy the required performance. However, it
is evident from Figure 2 that the derivative-based design
outperforms the requirement, meaning that the number of
updates could be significantly reduced. This is precisely what
the performance-barrier-based design accomplishes by tuning
the timing of the updates to the degree of satisfaction of the
prescribed performance, reducing their number by almost 20-
fold on average.
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Fig. 2. Evolution of the Lyapunov function for different trigger designs.

TABLE I
EMPIRICAL MIET AND AVERAGE NUMBER OF UPDATES FROM 50

DIFFERENT RANDOM INITIAL CONDITIONS

Design MIET (s) Avg. no. of updates
Derivative-Based (11) 0.009 198.28
Performance-Barrier-Based (14) 0.009 9.94
Dynamic (23) 0.013 108.48
Dynamic (23) – small decay 0.013 7.18
Distributed (31) 0.003 96.38

We also compare the proposed designs with the dynamic
trigger approach, cf. Remark V.6. To do so, we choose a
linear decay function ι(η) = cιη, and consider different
values of cι. According to (23), the degree of decay of the
Lyapunov function V grows with the value of cι, but it is
not possible to determine in advance whether a given value
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of cι will guarantee that the evolution meets the desired
performance specification. We first use cι = 1, and observe,
cf. Figure 2, that the evolution of V is, similarly to that of the
derivative-based design, too conservative. Consequently, we
employ cι = 0.05, which leads to a significant decrease in the
number of updates, cf. Table I, at the cost of not meeting the
performance specification any more, cf. Figure 2. One could go
through the exercise of fine-tuning the value of cι to make sure
the trajectories meet the desired performance, but this would
have to be verified a posteriori in an empirical way, rather than
a priori by design, as the performance-barrier-based approach
does.

Lastly, we also report the simulation results of the dis-
tributed trigger design (31) with ρa = 10 and ρz = 20. In
fact, notice that both the Lyapunov function V and g in (36)
can be expressed as the sum of functions, one per agent, whose
value can be computed by each agent with local information,

Vi(xi) = πN−ix>i Pxi, W x
1 (x1) = −0.75πN−1‖x1‖2,

W x
i (xNi) = 0.75πN−i(−‖xi‖2 + 2x>i PĀoffxi−1), ∀i ≥ 2

W xe
i (xNi , ei) = W x

i (xNi) + πN−i2x>i PĒei, ∀i ≥ 1.

The distributed implementation meets the prescribed perfor-
mance, cf. Figure 2 and is free of Zeno behavior, as guaranteed
by Theorem VI.4. This implementation triggers less often than
the centralized derivative-based approach and, as expected,
more often than the centralized performance-barrier-based
design, cf. Table I.

VIII. CONCLUSIONS

We have developed a novel framework for event-triggered
control design that meets a prescribed performance regarding
convergence. The proposed approach allows for greater flex-
ibility in prescribing update times by allowing the certificate
to gradually deviate from strictly decreasing in proportion
to the performance residual. We have shown analytically
how, for exponential performance specifications, the resulting
trigger design exhibits an improved MIET with respect to
the derivative-based approach. We have taken advantage of
the flexibility of the proposed approach to design intrisi-
cally Zeno-free triggers for network systems that rely on
distributed computation and communication and are applicable
for a general class of systems. Future work will seek to
generalize the guarantees on an improved MIET with respect
to the derivative-based approach and the distributed trigger
design for network systems beyond exponential performance
specifications. We also plan to explore the extension of the
performance-barrier-based trigger design framework to deal
with Zeno-free output feedback stabilization, handle actuation
delays, and cope with scenarios where triggers cannot be
evaluated continuously.

APPENDIX

Proof of Lemma II.1. We begin the proof by writing the dy-
namics of the tracking error,

ε̇ = ẏ − 11>Ẇ/N

= Ẇ − ρL(ε− 11>W/N)− 11>Ẇ/n

= −ρLε+ (I− 11>/N)Ẇ

where we have used the fact that L1 = 0. Note also that
1
>ε̇ = 0, so 1

>ε = 0 by construction. Hence, at all time,
there is no component of ε along the eigenvector 1 associated
with the eigenvalue 0 of the Laplacian matrix L. Consequently,
we can bound

d

dt
‖ε‖2 = −ρε>(L + L>)ε+ 2ε>(I− 11>/N)Ẇ

≤ −2ρλ2‖ε‖2 + 2‖ε‖‖I− 11>/N‖‖Ẇ‖
≤ −2ρλ2‖ε‖2 + 2cẆ exp(−rt)‖ε‖

for time t ∈ [tk, tk+1). It can be verified through substitution
that the solution

v =
cẆ

ρλ2 − r
exp(−rt)+

(
v(0)−

cẆ
ρλ2 − r

)
exp(−ρλ2t).

satisfies the Bernoulli differential equation [36]

v
dv

dt
= −ρλ2v

2 + cẆ exp(−rt)v.

Note that when v 6= 0, this reduces to

dv

dt
= −ρλ2v + cẆ exp(−rt),

which is linear, with the right-hand side locally Lipschitz in v.
Then, with v(0) = ‖ε(0)‖ 6= 0, we can deduce ‖ε‖2 ≤ v2 by
applying the Comparison Lemma [34, Lemma 3.4]. Whenever
‖ε‖ = 0, it is possible (depending on Ẇ ) for ε to remain
zero for some time interval. On such interval, the Comparison
Lemma does not apply; however, the case is trivial, and the
bound ‖e‖2 ≤ v2 still holds. Finally, by noting that v ≥ 0
because v(0) ≥ 0, we obtain ‖ε‖ ≤ |v| = v as stated.

Proof of Lemma VI.3. Note that, since F and κ are Lipschitz,
then f is Lipschitz too. Consider the column vector composed
of {Vi}Ni=1 and let JV (x) be its Jacobian. Then, because each
Vi have Lipschitz gradients, there exist constants LdV and Lf
on the compact sublevel set

{
x | V (x) ≤ V (x0)

}
such that

‖Ẇ xe‖ = ‖
(
(σ − 1)cαx

> − cγe> + (r + cβ)JV (x)
)
f(x, e)‖

≤
(
(1− σ)cα‖x‖+ cγ‖e‖+ (r + cβ)LdV ‖x‖

)
× Lf (‖x‖+ ‖e‖). (37)

We next bound the quadratic terms ‖x‖2, ‖e‖2 and ‖x‖‖e‖ in
terms of V (xk) exp(−r∆tk) for the duration of the interval
[tk, tk + τd

σ ). First, knowing that V (x) ≤ V (xk) exp(−r∆tk)
over the interval, we can immediately bound ‖x‖2 ≤
V (xk) exp(−r∆tk)/c1. Next, for ‖e‖2, recall that τd

σ is the
minimum inter-event time for the derivative-based design, and
we can therefore bound

‖e‖2 ≤ (1/cγ)
(
(1− σ)cα‖x‖2 − rV (x)

)
≤ (1/cγ)((1− σ)cα/c1 − r)V (x)

≤ (1/cγ)((1− σ)cα/c1 − r)V (xk) exp(−r∆tk),

for t ∈ [tk, tk + τd
σ ). Finally, it follows that

‖x‖‖e‖ ≤

√
(1− σ)cα/c1 − r

c1cγ
V (xk) exp(−r∆tk),
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for t ∈ [tk, tk + τd
σ ). Substituting the bounds back into (37)

leads to the identification of Ωxe > 0, proving the claim
for ‖Ẇ xe‖.

For the bound of ‖Ẇ x‖, we consider the entire time interval
t ∈ [tk, tk+1). Using the performance satisfaction, we bound

‖x‖2 ≤ V (x)/c1 ≤ V (x0) exp(−rt)/c1.

From the trigger condition and cβ > (1− σ)(cα/c1)− r,

cγ‖e‖2 ≤ cβV (x0) exp(−rt)− (r + cβ + (σ − 1)
cα
c1

)V (x)

≤ cβV (x0) exp(−rt)

The result now follows using the same line of reasoning as in
the proof of the bound for ‖Ẇ xe‖ to conclude the existence
of Ωx > 0 as stated.

For the sake of completeness, we state the following result
on the sample-and-hold error bound.

Lemma A.1. (Sample-and-Hold Error Bound [2, Thm III.1]):
Consider the sample-and-hold nonlinear system (3). If the
functions f is Lipschitz with a constant Lf , then for t ∈
[tk, tk + 1/Lf ), the state deviation is bounded as

‖e‖ ≤ φ(t− tk)‖x‖

where φ(τ) =
Lfτ

1−Lfτ . �
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