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Abstract—This paper proposes decentralized resource-aware
coordination schemes for solving network optimization problems
defined by objective functions that combine locally evaluable
costs with network-wide coupling components. These methods
are well suited for a group of supervised agents trying to solve
an optimization problem under mild coordination requirements.
Each agent has information on its local cost and coordinates
with the network supervisor for information about the coupling
term of the cost. The proposed approach is feedback-based
and asynchronous by design, guarantees anytime feasibility, and
ensures the asymptotic convergence of the network state to the
desired optimizer. Numerical simulations on a power system
example illustrate our results.

Index Terms—Event-triggered control; Optimization; Decen-
tralized algorithms.

I. INTRODUCTION

RECENT advancements in digital systems, communica-
tion, and sensing technologies have enabled the de-

ployment of large-scale cyber-physical systems in multiple
domains. Owing to the intrinsic modular structure of these
systems, their applications can often be modeled as opti-
mization problems over networks. In many scenarios, the
associated objective functions result from the combination
of locally separable costs with global coupling terms whose
evaluation requires members of a network layer to interact
with an entity at a higher layer. From this arises the need for
algorithmic implementations that help individual agents effi-
ciently decide when to resort to such interactions. Motivated
by these observations, this paper synthesizes resource-aware
agent-supervisor coordination schemes that achieve asymptotic
convergence to the desired network optimizer.

Literature Review: The present paper relies on two areas
with significant recent activity: distributed optimization and
event-triggered control. Because of the impossibility of sur-
veying their vast literature, we provide the introductory refer-
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ences [1]–[3] for the first and [4]–[6] for the second. A major-
ity of work in network optimization builds on consensus-based
approaches to solve problems where the overall objective is
the summation of individual agents’ private cost functions. In
such scenarios, each agent maintains and updates an estimate
of the complete solution vector, using local computation and
peer-to-peer information exchange. An alternative architecture
has agents send and receive information from a central entity
or a network supervisor. Such architecture is well suited for
scenarios where the objective function of the optimization
problem is the combination of a component separable among
the agents and another one coupling all the agents’ decision
variables. Notable examples of applications exhibiting this
structure include virtual power plants [7], [8], where a central
entity works as an aggregator enabling the participation of a
cluster of distributed energy resources in the energy market;
HVAC systems in intelligent buildings [9], [10], where a
central processor manages the main air supply and helps coor-
dinate a group of thermal zones equipped with thermostats and
controllers regulating heated or cooled air input; multi-agent
systems with access to the cloud [11], which provides superior
processing and storing capabilities; and sensor-actuator net-
works with a central computation node [12], [13] responsible
for computing the control signal with measurements from
distributed sensors. In these scenarios, there is a need to
structure the interaction between individual agents and the
network supervisor to design solutions that scale up. Event-
triggered control, see, e.g., [4]–[6] and references therein,
offers a framework to prescribe, in a principled way, when to
efficiently use the available resources while still guaranteeing
a desired quality of service in performing the intended task.
Several works [14], [15] have explored the use of event-
triggered approaches for achieving network coordination tasks.
Of particular relevance to our work are [12], [16], [17], which
consider similar network architectures, and [18], which mixes
continuous updates, computed with the locally available infor-
mation, with aperiodic updates, computed with the externally
provided information. An issue in event-triggered control is
the emergence of an infinite number of triggering times in
a finite time interval, a.k.a. Zeno behavior. Zeno behavior
is addressed in [12], [16] by using time regularization, i.e.,
preventing by design any update before a certain dwell time
has elapsed. In general, time regularization requires an offline
computation with global information. A final body of work we
build on is that of continuous projected dynamical systems for
optimization, cf. [19]–[21].

Statement of Contributions: We consider network optimiza-
tion problems where the objective function is the sum of



a component given by the summation of local costs and
a coupling component whose evaluation requires knowledge
of all the agents’ decision variables. Individual agents rely
on the network supervisor to obtain information about the
coupling component and to solve the optimization problem.
Our contributions are structured in two blocks, corresponding
to unconstrained and constrained problems. For unconstrained
systems, we build on the gradient descent dynamics; for con-
strained systems with separable constraints, we build on glob-
ally projected dynamical systems. For both cases, we design
novel event-triggered agent-supervisor coordination algorithms
where agents continuously employ their local information
and resort to opportunistic interactions with the supervisor
for information about the coupling cost. The criterion for
triggering employed by each agent depends only on locally
available information, which makes the proposed approach
suitable for applications where, due to privacy concerns, it
is preferable not to share the local cost functions. We show
the monotonic decrease of the objective function and establish
the existence of a minimum inter-event time, thus ruling out
Zeno behavior (without the need for any time regularization)
and ensuring asymptotic convergence to the optimizer. In
the constrained case, we also show that the feasible set is
positively invariant, thus guaranteeing anytime feasibility. We
illustrate the performance of the proposed algorithms with
numerical simulations of a power system application.

II. PRELIMINARIES

Here1 we review the basic concepts on convex analysis,
event-triggered control, and constrained optimization.

Event-Triggered Control: The basics of event-triggered con-
trol following [4], [5] are presented next. Consider

ẋ = f(x, u), (1)

where x ∈ Rn and u ∈ Rp denote the system state and input,
respectively. Assume there exists a control u = k(x), such
that the closed-loop dynamics,

ẋ = f(x, k(x+ e)), (2)

abbreviated ψcl, is input-to-state stable (ISS) with respect to
the error e ∈ Rn. Formally, assume there exists a Lyapunov
function V such that its Lie derivative along (2) satisfies

LψclV ≤ −α(‖x‖) + γ(‖e‖),

where α and γ are class K∞ functions. The implementation of
the closed-loop system (2) requires continuous updates of the
actuator, which is not realizable in practice. Instead, event-
triggered control seeks to prescribe opportunistic updates of
the actuator that ensure the convergence properties of the

1Throughout the paper, we employ the following notation. Let R,R≥0, and
Z represent the set of real, nonnegative real, and integer numbers, respectively.
| · | and ‖ · ‖ denote the absolute value of a scalar and the 2-norm of a vector,
respectively. (·)> denotes the transpose of a vector or a matrix. A vector
or a matrix of appropriate dimensions of all zero entries is denoted by 0.
A � 0 means that the matrix A is positive definite. A continuous function
α : R≥0 → R≥0 is of class K∞ if it is strictly increasing, α(0) = 0, and
α(x) → ∞ as x → ∞. For a convex set Ω, ΠΩ(y) denotes the projection
of a point y ∈ Rn on Ω, i.e., ΠΩ(y) = argminx∈Ω‖x− y‖.

closed-loop system are retained. This leads to a sample-and-
hold implementation of the controller of the form

u(t) = k(x(tk)) t ∈ [tk, tk+1), (3)

where {tk}∞k=0 are the triggering times when the control
input is updated. To ensure the stability of the nonlinear
system under (3) and to prescribe the triggering times, we
look at the evolution of the Lyapunov function V . Define
the error variable as e = x − xk, where we use the short-
hand notation xk = x(tk). With σ ∈ (0, 1), if the error
satisfies γ(‖e‖) ≤ σα(‖x‖), then during the time [tk, tk+1),
LψclV ≤ (σ−1)α(‖x‖). Note that at t = tk, the error satisfies
e = 0; hence, setting t0 = 0, we ensure LψclV < 0 defining
the triggering times as

tk+1 = min{t > tk | γ(‖e‖) = σα(‖x‖)}. (4)

Although (4) guarantees the stability of the closed-loop sys-
tem, Zeno behavior could arise. Hence, for implementation in
practice and to conclude asymptotic stability, it is necessary
to have a uniform lower bound τ > 0 on the inter-event times,
i.e., tk+1−tk ≥ τ for all k. We refer to τ as the minimum inter-
event time (MIET). The existence of a MIET is guaranteed
with the control law (3) and the triggering condition (4) if the
dynamics (1) is linear, and also for certain nonlinear systems
under suitable assumptions, cf. [4].

Constrained Optimization via Continuous Projected Dy-
namical Systems: Here we review the basic concepts on the
stability of continuous projected dynamical systems and their
application in constrained optimization following [20], [21].
Consider the following optimization problem

min
x∈Ω

h(x), (5)

where h : Rn → R is a continuously differentiable function
and Ω ⊆ Rn is a convex set. Problem (5) can be solved using

ẋ = ΠΩ(x− λ∇h(x))− x, (6)

where λ > 0 is a design parameter. Unlike the commonly
employed projected gradient dynamics, cf. [22], which is
discontinuous at the boundary of Ω, the dynamics (6) is
continuous due to the gradual application of the projection
operator throughout the constraint set. The following result
characterizes its convergence properties.

Theorem II.1. (Forward invariance of the feasible set and
convergence to an optimizer [20], [21]): Assume that ∇h is
locally Lipschitz continuous on an open set containing Ω. Then

(i) The solution of (6) approaches the set Ω exponentially
fast. Moreover, if x(0) ∈ Ω, then x(t) ∈ Ω for all t > 0.

(ii) For all λ > 0, the dynamics (6) is stable, and for any
initial condition x(0) ∈ Ω, the trajectory of (6) converges
to a solution of (5).

III. PROBLEM FORMULATION

Consider a network of n ∈ Z agents and a supervisor,
collectively seeking to solve

min
x∈X

n∑
i=1

fi(xi)︸ ︷︷ ︸
f(x)

+ g(x), (7)



where, for all i ∈ {1, . . . , n}, fi : R → R is the local cost
function of agent i, g : Rn → R is a function coupling all

the agents’ states, X =
n∏
i=1

Xi is the constraint set, and Xi
is agent i’s constraint set. Each agent i ∈ {1, . . . , n} has
knowledge of its local state xi ∈ R, constraint set Xi and cost
fi, and relies on the network supervisor to obtain information
pertaining the coupling cost g. For simplicity of exposition, we
assume that (7) has a unique solution x∗, albeit the results of
the paper can be extended with minor modifications to the case
of multiple optimizers. We make the following assumptions on
the cost functions and the constraints.

Assumption 1. (Convexity and Lipschitz gradients): The
functions {fi}ni=1 and g are convex; the functions {fi}ni=1

are twice continuously differentiable, and g is continuously
differentiable with locally Lipschitz gradient; and the sets
{Xi}ni=1 are compact and convex.

Our goal is to design a decentralized algorithm that allows
the agents to collectively solve (7). We want the algorithm to
be anytime, meaning that if the network state starts feasible,
it remains so during the algorithm’s execution. This anytime
nature is desirable in applications where the optimization
problem is not stand-alone and its solution serves as an input to
another layer in the control design. In such cases, the algorithm
should yield a feasible solution even if terminated in finite
time. Note that, without the presence of the coupling func-
tion g, (7) could be solved easily by having each agent i solve
a local optimization problem with the function fi over the
constraint set Xi. Instead, the presence of g couples the agents’
decisions. Since information about g is not available at all
times, we seek to endow the individual agents with a criterion
that allows them to determine when to query the supervisor
in an opportunistic fashion – this is what corresponds to the
event-triggered component of the algorithmic solution. Based
on the application at hand and the supervisor’s capabilities,
the coordination between the supervisor and the agents could
be feedback-based or computation-based:

(i) Sensing-based: each agent i ∈ {1, . . . , n} can evaluate
∇xig with its local information and the one broadcast from
the supervisor, when an agent asks for an update. This is
because the supervisor has access from its own measurements
to enough knowledge about g. This is common in cyber-
physical scenarios where access to field measurements of the
physical layer provides global information about the network
state (for instance, in power systems, see e.g. [23], local
measurements of the frequency deviation provide information
about the overall network mismatch in meeting the prescribed
load). In this case, the states of the agents remain private (the
virtual power plant in [8] is an example falling in this case).

(ii) Computation-based: the supervisor knows the functional
form of the cost. Whenever an agent asks for an update, the
supervisor gathers the state of all the agents, evaluates ∇g, and
broadcasts it to the agents (scheduling links and channels for
transmission of information in wireless networks is an example
scenario for this case, see, e.g., [13]).

The forthcoming design and the ensuing analysis can be
applied to both scenarios.

Remark 1. (Synchronicity of the updates): The coordination
between the agents and the supervisor described above requires
the broadcast of information to all the agents whenever any
agent asks for an update. As a result, {∇xi

g(x)}ni=1 are
updated synchronously. From a practical viewpoint, this is
reasonable in the sensing-based scenario because once the
supervisor has the required information available, it can broad-
cast it to all the agents. Instead, in the computation-based
scenario, the supervisor might not have up to date information
about all the agents. In this case, we assume that the gathering
of information by the supervisor can be done simultaneously
from all the agents whenever there is an update request. •

IV. EVENT-TRIGGERED COORDINATION FOR
UNCONSTRAINED PROBLEMS

Here, an event-triggered decentralized algorithm to solve (7)
when X = Rn is provided. Consider the standard gradient-
descent dynamics

ẋ = −λ(∇f(x) +∇g(x)),

where λ > 0 is a design parameter. For agent i ∈ {1, . . . , n},
this takes the form

ẋi = −λ(∇xifi(xi) +∇xig(x)). (8)

From an implementation viewpoint, the first term in (8) can
be evaluated locally by each agent, the second term, however,
entails continuous communication with the supervisor. We
avoid this by designing an event-triggered scheme that has
the supervisor broadcast the information needed to compute
∇g(x) in an opportunistic fashion. With the shorthand notation
xk = x(tk), consider the dynamics

ẋ = −λ(∇f(x) +∇g(xk)) tk ≤ t < tk+1. (9)

To implement (9), the network supervisor needs to broadcast
the information required to compute ∇g(x) only at some
specified times {tk}∞k=0. Here, ∇g(xk) is the equivalent of
the input in the standard event-triggered control, cf. Section II.
When convenient, we refer to the dynamics (9) as ψev. The
next result identifies a decentralized condition on the triggering
times {tk}∞k=0 that ensures that the dynamics (9) is stable. By
decentralized, we mean that each agent i ∈ {1, . . . , n} can
identify the triggering criterion locally without knowing the
states of the other agents or the coupling function.

Proposition IV.1. (Decentralized trigger): Let xk 6= x∗ be
the state when the trigger was last implemented, σ ∈ (0, 1),
and define Fk = {x ∈ Rn | f(x) + g(x) ≤ f(xk) + g(xk)}.
Then for all λ > 0, the dynamics (9) is stable and the value of
the objective function f + g is nonincreasing if the triggering
times are updated according to

tk+1 = min
i∈{1,...,n}

min{t > tk |

Lg|xi − xki | = σ|∇xi
fi(xi) +∇xi

g(xk)| 6= 0}, (10)

where Lg is the Lipschitz constant of ∇g over F0.

Proof: Consider the Lyapunov function V : Rn → R

V (x) =f(x) + g(x)− f(x∗)− g(x∗), (11)



whose Lie derivative is

LψevV (x) = −λ(z + e)>z ≤ −λ‖z‖2
(

1− ‖e‖
‖z‖

)
,

where z = [z1 . . . zn]>, zi = ∇xi
fi(xi) + ∇xi

g(xk), and
e = ∇g(x)−∇g(xk). At t = tk, we have e = 0; then the error
starts increasing as xk becomes obsolete. However, LψevV ≤
0 if we ensure that ‖e‖ ≤ σ‖z‖. The direct evaluation of
the latter condition requires complete information about the
network state. However, note that ‖e‖ ≤ Lkg‖x − xk‖, where
Lkg is the Lipschitz constant of ∇g over Fk. Hence, we can
guarantee the stability of (9) if

Lkg‖x− xk‖ ≤ σ‖z‖. (12)

The triggering rule (10) ensures that (12) is satisfied noting
that the set Fk is forward invariant, Fk+1 ⊆ Fk, and hence
Lg ≥ Lkg for all k.

From Proposition IV.1, it is clear that if the agents have
knowledge of (an upper bound on) Lg , they can check (10)
locally and request the supervisor for an update accordingly.
Although (10) guarantees that the dynamics (9) is stable, we
still need to establish the convergence to x∗ and whether the
proposed event-triggered scheme is Zeno-free. We prove both
facts in the next result.

Proposition IV.2. (Non-Zeno behavior and convergence to
the optimizer): With the notation of Proposition IV.1, if the
triggering times are updated as (10), then for all λ > 0, the
MIET is lower bounded by τ = 1

λH log(σλH/Lg + 1) > 0,
where H = max

i∈{1,...,n}
max
x∈F0

∇2
xi
fi(xi). Moreover, any trajec-

tory of (9) converges asymptotically to x∗.

Proof: If xk = x∗, then the result is immediate. Assume
then that xk 6= x∗. Let I = {i | zi(tk) 6= 0}. Since for all
i ∈ {1, . . . , n}, żi = −λ∇2

xi
fi(xi)zi, we deduce that zi = 0

for all t ∈ [tk, tk+1) if i /∈ I. For i ∈ I, we examine the
evolution of |xi − xki |/|zi|,

d

dt

|xi − xki |
|zi|

=
(xi − xki )zi√

(xi − xki )2
√
z2
i

− ziżi
√

(xi − xki )2

|zi|3

≤ 1 +
|żi|
|zi|
|xi − xki |
|zi|

≤ 1 + λH
|xi − xki |
|zi|

. (13)

Now consider the differential equation ẏ = 1 + λHy, tk ≤
t < tk+1, with initial condition y(tk) = 0, whose closed-form
solution is given by

y =
1

λH

(
eλH(t−tk) − 1

)
, tk ≤ t < tk+1.

By the Comparison Principle, cf. [24, Lemma 3.4], we have

|xi − xki |
|zi|

≤ 1

λH

(
eλH(t−tk) − 1

)
, tk ≤ t < tk+1.

Equating the right-hand side of the above inequality with
σ/Lg implies that the inter-event time is lower bounded by τ
provided zi 6= 0 for all t ∈ [tk, tk+1) and each i ∈ I.
We reason by contradiction to prove this. Since the ratio
|xi − xki |/|zi| is bounded, zi = 0 only if xi − xki = 0. Let
t̄ = min{t > tk | xi−xki = 0}. Since xi−xki = 0 and zi 6= 0

at t = tk, this means that the sign of zi has to change before
t̄, and from the continuity of the dynamics, there exists t̂ < t̄
such zi(t̂) = 0, which contradicts zi 6= 0 for all t ∈ [tk, t̄).
To prove the attractivity part, note that from Proposition IV.1,
LψevV ≤ 0, and hence, LψevV (x) < 0 for all x 6= x∗ as zi 6= 0
for all i ∈ I and all t ∈ [tk, tk+1).
Remark 2. (Differentiability of the local objective functions):
Note that ruling out Zeno behavior in Proposition IV.2 relies on
the functions {f}ni=1 being twice continuously differentiable,
whereas the dynamics (9) and the triggering condition (10)
involve only first-order derivatives. We believe, although we
do not pursue it here for space reasons, that Proposition IV.2
can be extended for the case when the separable component of
the objective function is just continuously differentiable, using
tools from nonsmooth analysis, e.g., [25], [26]. •
Remark 3. (Self-triggered implementation): In the absence
of errors in the solution of the differential equations by the
individual agents, the criterion (10) can also be implemented
in a self-triggered fashion. In fact, we can write it as

tik+1 = min{t > tk | Lg|xi − xki | =
σ|∇xifi(xi) +∇xig(xk)| 6= 0},

tk+1 = min
i∈{1,...,n}

tik+1.

This means that, with the information provided at time tk,
each agent i ∈ {1, . . . , n} can compute tik+1 by solving its
differential equation, and convey it to the supervisor, which
can then schedule the next triggering event at tk+1. •

V. EVENT-TRIGGERED COORDINATION FOR
CONSTRAINED PROBLEMS

To deal with constrained problems, we build on the contin-
uous projected dynamics (6), which takes the form

ẋ = ΠX (x− λ(∇f(x) +∇g(x)))− x,

where λ > 0. Its event-triggered counterpart is

ẋ = ΠX (x− λ(∇f(x) +∇g(xk)))− x, (14)

for t ∈ [tk, tk+1). When convenient, we refer to the dynam-
ics (14) as ψevco. The following result identifies a decentralized
condition on the triggering times {tk}∞k=0 that ensures the
stability of (14).

Proposition V.1. (Decentralized trigger for constrained prob-
lems): Let xk 6= x∗ be the state when the trigger was last
implemented, and σ ∈ (0, 1). If x(0) ∈ X , then for all λ > 0,
x(t) ∈ X for all t > 0, the dynamics (14) is stable and the
value of the objective function f + g is non-increasing if the
triggering times are updated as

tk+1 = min
i∈{1,...,n}

min{t > tk | λL̄g|xi − xki | =

σ|ΠXi
(xi − λ(∇xi

fi(xi) +∇xi
g(xk)))− xi| 6= 0}, (15)

where L̄g is the Lipschitz constant of ∇g over X .

Proof: We start by noting that from Theorem II.1, for t ∈
[tk, tk+1), positive invariance of the feasible set X under (14)
can be established by taking h(x) ≡ f(x) + ∇g(xk)>x. To



prove stability, consider again the Lyapunov function candidate
V defined in (11), whose Lie derivative is now given by

LψevcoV (x) =(∇f(x) +∇g(xk) + e)>z̄,

where z̄ = [z̄1 . . . z̄n]>, z̄i = ΠXi(xi − λ(∇xifi(xi) +
∇xig(xk)))−xi, and e = ∇g(x)−∇g(xk). It is well known,
cf. [21], that for a convex set Ω

(u−ΠΩ(u))>(ΠΩ(u)− v) ≥ 0,

for all v ∈ Ω and all u ∈ Rn. With Ω = X , v = x, and
u = x− λ(∇f(x) +∇g(xk)), this implies that

(λ∇f(x) + λ∇g(xk) + z̄)>z̄ ≤ 0.

Using this, we upper bound the Lie derivative as

LψevcoV (x) ≤ − 1

λ
z̄>z̄ + e>z̄ ≤ −‖z̄‖2

(
1

λ
− ‖e‖
‖z̄‖

)
.

This expression is analogous to that of LψevV in the proof of
Proposition IV.1, and a similar argument concludes the proof.

As in the unconstrained case, without excluding Zeno
behavior, Proposition V.1 is not enough to conclude the
asymptotic convergence to x∗.

Proposition V.2. (Non-Zeno behavior and convergence to
the optimizer in the constrained case): With the notation of
Proposition V.1, if the triggering times are updated as (15),
then for all λ < λ̄ = 1/H̄ , the MIET is lower bounded by τ̄ =
log(σ/λL̄g + 1) > 0, where H̄ = max

i∈{1,...,n}
max
xi∈Xi

∇2
xi
fi(xi).

Moreover, any trajectory of (14) with x(0) ∈ X converges
asymptotically to x∗.

Proof: Since {Xi}ni=1 are compact and convex, without
loss of generality let Xi = {xi ∈ R | xi ≤ xi ≤ xi} for
all i. For each agent i ∈ {1, . . . , n}, define ui : Xi → R as
ui(xi) = xi−λ(∇xifi(xi) +∇xig(xk)). The derivative of ui
w.r.t xi is given by

dui
dxi

= 1− λ∇2
xi
fi(xi).

For a given i ∈ {1, . . . , n}, the sign of dui/dxi at any xi ∈ Xi
depends on the value of λ and ∇2

xi
fi(xi). If λ < λ̄, then

dui/dxi > 0 for all xi ∈ Xi. This means that if there is a point
x̂i ∈ Xi such that ΠXi

(ui(x̂i)) = xi, then ΠXi
(ui(xi)) = xi

for all xi > x̂i. Similarly, if there is a point x̃i ∈ Xi such that
ΠXi

(ui(x̃i)) = xi, then ΠXi
(ui(xi)) = xi for all xi < x̃i.

Therefore, ˙̄zi can be represented as a set-valued map, cf. [26],

| ˙̄zi| =


|λ∇2

xi
fi(xi)z̄i| x̃i < xi < x̂i,

[|λ∇2
xi
fi(xi)z̄i|, |z̄i|] xi = x̃i, x̂i,

|z̄i| xi ≤ xi < x̃i, x̂i < xi ≤ xi.

Since λ < λ̄, we have an expression similar to (13) for d
dt |xi−

xki |/|z̄i| for all i with z̄i(tk) 6= 0, with λH replaced by 1. The
remainder of the argument follows analogously to the proof
of Proposition IV.2.

The upper bound on λ in Proposition V.2 is conservative
in general. In fact, the dynamics (14) with the triggering
rule (15) may be Zeno-free even if this condition is not
satisfied, something that we have observed in simulation.

VI. SIMULATIONS

Here we test our coordination approach in a power distribu-
tion scenario, where n generators managed by a distribution
system operator that acts as the network supervisor seek to
minimize the total power generation cost. The active power
output of generator i = {1, . . . , n} is xi and the power that
flows from the external grid to the distribution grid through
the substation, labeled as node 0, is denoted as x0. Assuming
the power line losses are negligible, x0 can be linearized as

x0(x) ' −
n∑
i=1

xi + c, (16)

where c depends on the grid load, see, e.g., [8]. We choose
polynomial costs for power injection at each node i =
{0, 1, . . . n}. Each function fi is known only by generator
i ∈ {1, . . . , n}, and the network supervisor has access only
to f0. By substituting (16) into f0(x0), the problem of mini-
mizing the total power cost is equivalent to solving (7) with
g(x) = f0(−

∑n
i=1 xi + c). From the chain rule, ∇xi

g(x) =
−∇x0

f0(x0), for all i ∈ {1, . . . , n}. Since the supervisor
can measure x0, whenever there is an update request, it can
evaluate ∇g directly and broadcast it to the generators. This
corresponds to the feedback-based scenario (cf. Section III).

We test the algorithms resulting from the triggering crite-
ria (10) and (15) on a single-phase equivalent of the IEEE 37-
bus test feeder, reported in Figure 1(a). The network has five
generators. The load buses are a mixture of constant-current,
constant-impedance, and constant-power loads [27]. The initial
active and reactive power demands are 2 MW and 1 MVAR,
respectively. At t = 40 seconds, the active power demand
increases by 1 MW. The algorithms are simulated using the
nonlinear exact AC power flow solver MATPOWER [28].

We provide two sets of simulations based on whether
the generation capacities of the generators are constrained
or unconstrained. For the constrained case, for each i ∈
{1, . . . , 5}, Xi = {xi | 0 ≤ xi ≤ xi}, where {xi}5i=1 are
taken as 0.7 MW, 1 MW, 0.8 MW, 0.5 MW and 0.3 MW,
respectively. Figure 1(b)-(c) show the evolution of the injected
active powers of the agents using the proposed event-triggered
dynamics and the continuous dynamics for the unconstrained
and constrained case, respectively. Note that depending on
the operating region, different agents request for the informa-
tion update non-uniformly. For a fixed load, we simulate 10
different initial conditions for 60 seconds (sec) and observe
an average MIET of 3.3 × 10−1 sec for the unconstrained
and 2.0 × 10−1 sec for the constrained case, with respective
standard deviations of 6.7×10−3 sec and 23.1×10−3 sec, and
177 (unconstrained) and 190 (constrained) average updates per
resource-aware execution.

VII. CONCLUSIONS AND FUTURE WORK

We have designed decentralized event-triggered coordina-
tion mechanisms to solve network optimization problems
whose objective function is a combination of a separable
component among the agents and a non-separable coupling
term. The proposed coordination mechanisms prescribe op-
portunistic requests for information from the agents to the
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Fig. 1: Performance of proposed event-triggered coordination algorithms on the power distribution network. (a) shows the IEEE 37-bus test feeder, where node
0 represents the supervisor, red nodes (1-5) represent the generators, and black nodes represent the loads; edges represent the electrical connection between
the nodes. The total load increases by 1MW after 40 seconds. The values of λ and γ are taken as 0.2 and 0.9, respectively and stepsize is taken as 10−2. (b)
and (c) compare the state evolution using the proposed event-triggered mechanisms (solid lines) using the triggering rules (10) and (15) with their respective
continuous update cases. × markers denote the triggering instances for the corresponding agent.

network supervisor, are anytime, and guarantee asymptotic
convergence to the desired optimizer. Future work will focus
on synthesizing novel adaptive triggering criteria ensuring
uniform participation of all the agents and minimizing the
total number of updates, consider more general interaction
topologies, optimization problems with locally-coupled con-
straints, and asynchronous updates in computation-based sce-
narios, where the network supervisor receives only fresh state
information from the agent triggering the update and as a
result evaluates the information about the coupling term with
outdated knowledge of the overall network state.
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