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Abstract—Distributed energy resources (DERs) are playing an
increasing role in ancillary services for the bulk grid, particularly
in frequency regulation. In this paper, we propose a framework
for collections of DERs, combined to form microgrids and
controlled by aggregators, to participate in frequency regulation
markets. Our approach covers both the identification of bids for
the market clearing stage and the mechanisms for the real-time
allocation of the regulation signal. The proposed framework is
hierarchical, consisting of a top layer and a bottom layer. The top
layer consists of the aggregators communicating in a distributed
fashion to optimally disaggregate the regulation signal requested
by the system operator. The bottom layer consists of the DERs
inside each microgrid whose power levels are adjusted so that the
tie line power matches the output of the corresponding aggregator
in the top layer. The coordination at the top layer requires the
knowledge of cost functions, ramp rates and capacity bounds of
the aggregators. We develop meaningful abstractions for these
quantities respecting the power flow constraints and taking into
account the load uncertainties, and propose a provably correct
distributed algorithm for optimal disaggregation of regulation
signal amongst the microgrids.

Index Terms—Distributed energy resources; frequency regula-
tion market; microgrid abstractions; network optimization.

I. INTRODUCTION

LECTRIC power systems require the generation and load

to be equal at all times. Any discrepancy between the two
leads to the deviation of the frequency from its nominal value.
This deviation of the frequency leads to many undesirable
scenarios. Based on measurements of the frequency deviation,
the system operator computes the automatic generation control
(AGC) signal as the feedback frequency control to the power
system, which appears as the total active power adjustment.
Traditionally, frequency regulation services have been pro-
vided by individual energy resources, such as coal generation
plants or gas turbines. Recently, there has been a trend towards
the integration of more DERSs into the system to provide these
services while reducing thermal and CO; emissions. Such
integration leads to higher uncertainty in the bulk grid. At the
same time, as most DERs are inertialess, they can be effective
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Fig. 1: Power system framework. Dashed lines represent communication links.
Microgrids are connected to the bulk grid through their respective tie lines.
The Regional Transmission Organization (RTO) monitors the bulk grid and
coordinates with the aggregators, which communicate with each other, and
control the resources inside their respective microgrids.

for frequency regulation due to their high ramp rates. DERs are
limited in size and might not meet the minimum size criteria
specified by system operators to participate in the frequency
regulation market. To address these challenges, the vision is to
integrate groups of DERs through distributed energy resource
providers (DERPs), or aggregators, which would act as virtual
power plants (VPPs) and would be communicating with the
system operator. These aggregators do not necessarily own the
DERs, they just coordinate their responses. This architecture,
illustrated in Figure 1, has been proposed by the California
ISO (CAISO) to offer aggregators of DERs the opportunity to
sell into its marketplace [2]. The recent Order No. 2222 [3]
by the U.S. Federal Energy Regulatory Commission (FERC)
also enables aggregators to participate in the energy markets
and requires all Regional Transmission Organizations (RTOs)
to revise their tariffs to establish DERs as a category of market
participant. Using aggregators not only solves the problem
of limited capabilities of DERs but also enables the system
operator to interact with much fewer entities. This paper is
motivated by the need to address the challenges to carry out
the vision described above.

Literature Review: Order No. 755 [4] issued by the FERC
requires RTOs to compensate energy resources based on the
actual frequency regulation provided. The payment to re-
sources comprises of two parts, the capacity and performance
payments. The capacity payment compensates resources for
their provision of regulation capacity. The performance pay-
ment reflects the accuracy of the tracking of the allocated
regulation signal. The work [5] describes how different RTOs
across the United States have implemented FERC Order 755
for participation of resources in frequency regulation market.
In the literature on power networks and smart grid, some



works have considered the possibility of obtaining frequency
regulation services from collections of homogeneous loads
such as electric vehicles (EVs) and thermostatically controlled
loads (TCLs), cf. [6]-[8]. The work [9] presents a method
to model flexible loads as a virtual battery for providing
frequency regulation. [10] proposes the use of aggregators to
integrate heterogeneous loads such as heat pumps, supermarket
refrigerators and batteries present in industrial buildings to
provide frequency regulation. The works [11], [12] describe
the challenges that need to be overcome for providing fre-
quency regulation by DERs for some European countries. The
work [13] provides a framework to emulate virtual power
plants (VPPs) via aggregations of DERs and provide regulation
services taking into account the power flow constraints. [14]
provides a dispatch strategy for an aggregate of ON/OFF
devices to provide frequency regulation. In [15]-[17], work has
been done in the context of microgrids to design mechanisms
for optimally allocating a given signal among the DERs
within the microgrid. [18] proposes a distributed algorithm
to minimize the aggregated cost while satisfying the local
constraints and collective demand constraint at the aggregator.
However, the aforementioned works assume that the allocated
signal from the RTO is available to the aggregator. [19] applies
machine learning to forecast the power capacity of VPPs.
The work [20] provides a framework for optimal bidding and
dispatch of multiple VPPs. [21] proposes the use of renewable
energy aggregators to utilize small-scale distributed generators
for frequency regulation services via forecasting the available
power from individual resources. The work [22] also uses
forecasting to estimate the aggregate production from a wind
and solar power-based VPP, and then uses the estimation to de-
termine the optimal volume of reserves that can be provided to
the system operator. A distributed algorithm for coordinating
multiple aggregators to provide frequency regulation, without
any consideration of cost, is proposed in [23]. Here, we
focus on (i) participation of microgrids in frequency regulation
markets operated by the RTO through the identification of
appropriate bids and (ii) the coordination among RTO and
aggregators to efficiently dis-aggregate the regulation signal
amongst the aggregators. The actual tracking performance
within the microgrid would depend on the physical condition
of the resources. We have provided some results for this in [24]
on experiments carried out on the University of California,
San Diego (UCSD) microgrid. Our ensuing discussion pertains
specifically to microgrid participation in frequency regulation
markets. We assume that, if the microgrids also exchange
energy with the bulk grid at slower time scales, e.g., for
the day-ahead market, cf. [25], [26], those commitments are
known to the aggregators and taken into account in their
baseline generation profiles at the time of participation in the
frequency regulation market.

Statement of Contributions: We propose a hierarchical
framework for the participation of microgrids in the frequency
regulation market. We start by briefly reviewing the current
practice of frequency regulation from individual resources,
consisting of three stages: (i) market clearance, (ii) disaggre-
gation of the regulation signal and (iii) real-time tracking of
the regulation signal. Our first contribution is the identifica-

tion of the limitations of current practice and the challenges
that need to be overcome for integration of microgrids. Our
second contribution is the identification of abstractions for the
capacity, cost of generation, and ramp rates of a microgrid
as a combination of the individual energy resources that
compose it, along with a formal description of its convexity
and monotonicity properties. Building on our preliminary
work [1], here we extend our abstractions to the case when
the loads inside the microgrid do not remain constant for
the regulation period and, as a consequence, the available
capacity of the microgrid may change over time. Equipped
with these abstractions, an aggregator can submit bids to
participate in the market clearance stage. Our third contri-
bution is the reformulation of the RTO-DERP coordination
problem to optimally disaggregate regulation signal amongst
the microgrids and accompanying design of an algorithmic
solution. Our proposed reformulation ensures feasibility. The
proposed algorithm is distributed over directed graphs with
only one aggregator needing to know the required regulation,
and is guaranteed to asymptotically converge to the desired
optimizers. We conclude with simulation results based on the
proposed abstractions of capacities, cost, and ramp rate and the
RTO-DERP coordination algorithm on a reduced-order model
of the University of California, San Diego (UCSD) microgrid.

II. PRELIMINARIES

In this section, we present notational conventions and review
some basic concepts.

Notation: Let C, R, R>(, and Z be the set of complex,
real, non-negative real and integer numbers, respectively. For
a set | X|, we let | X| denote its cardinality. 1 and O denote
the vectors of all ones and all zeros of appropriate dimension,
respectively. We use |z| to denote the absolute value of z,
[]T to denote max{z,0} and [z]] to denote [z]* if a > 0
and 0 if @ < 0. If = is a vector, these functions are applied
elementwise. For a matrix A, its ith row and transpose are
denoted by A; and AT, respectively. We denote the gradient
of a differentiable real-valued function f : R™ — R by V f.

Graph Theory: We let G = (V,E,A) denote a directed
graph, with V as the set of vertices (or nodes) and £ C V x V
as the set of edges. (7, ) € & iff there is an edge from node
itoj. Welet |V| =mnand |£| = m. A path is an ordered
sequence of vertices such that any pair of vertices that appear
consecutively is an edge. A loop is a path in which the first
and last vertices are same and none of the other vertices is
repeated. A graph is strongly connected if there is a path
between any two distinct vertices. A tree is a graph whose
underlying undirected graph does not have any loops and is
connected. The adjacency matrix A € R™ ™ of G is defined
such that A;; > 0 if the edge (4,7) € £ and 0, otherwise.
The out-degree and in-degree of a node @ are respectively, the
number of outgoing edges from and incoming edges to i. The
weighted out-degree and the weighted in-degree of a node 7 are
given by d = >""" | A;; and d" = > | Aj;, respectively.
The weighted out-degree matrix D" € R™*™ and the weighted
in-degree matrix D™ € R"*™ are the diagonal matrices with
D' = d% and Dj} = d". A graph is weight-balanced if



D = D™ The Laplacian matrix L € R"*" is defined as
L = D" —A. 0 is a simple eigenvalue of L with eigenvector
1 iff G is strongly connected, and 1T L = 0 iff G is weight-
balanced. The incidence matrix M € R™*™ is defined such
that M;; = 1 if the edge j leaves vertex 7, —1 if it enters vertex
i, and O otherwise. Note that every column of M has only two
non-zero entries and 17 M = 0. The fundamental loop matrix
N € R™*(m=n+1) of 4 graph has N;; as 1 (-1, respectively) if
the ith edge has the same (opposite, respectively) orientation
as the jth loop, and N;; = 0 if edge 4 is not part of loop j.
We use P,os € R(=DX™ (5 denote the path matrix of a tree
with reference vertex ref: the jth entry of the path matrix is
+1/-1 if edge j is in the directed path from ¢ to ref and has
the same/opposite orientation as this path, and is 0 otherwise.

Probability Theory: Given an event F, we let E° denote
its complement and Pr(E) its probability. E(w) denotes the
expected value of a random variable w. Given a normally
distributed random variable ¢ ~ A (p, o) with mean p and
variance o, the probability Pr(¢ < z) of ¢ being less than or
equal to z is denoted by ®(x). For « > 0, the error function
erf denotes the probability of a normal random variable with
mean 0 and variance 1/2 being in the interval [z, z]. For a
normal random variable with mean O and variance 1/2, the
functions ® and erf are related by

1 T

O(x) 2(1+erf(\/§)). (1)

Dynamic Average Consensus: Consider a network of n €
Z~1 agents communicating over a strongly connected weight
balanced directed graph G. Each agent has a state z; € R and
an input signal u; : R — R. Dynamic average consensus aims
at making each agent track the average input = >°7" | u;(t)

asymptotically. Formally, we employ the dynamics given by

i=u—v(z—u)—pLz—v,
v=vBLz,

where L € R™*"™ is the Laplacian of G and v, > 0 are
the design parameters. If the algorithm is initialized with
17 v(0) = 0, then the steady-state error between the state z; of
each agent i € {1,...,n} and the average signal = > | u;
is bounded, and goes to zero if & — 0, cf. [27, Theorem 4.1].

III. FREQUENCY REGULATION WITH MICROGRIDS

We are interested in coordinating power aggregators to
collectively provide frequency regulation. An aggregator is
a virtual entity that aggregates the actions of a group of
distributed energy resources to act as a single whole. In
this paper, we identify an aggregator with a microgrid, but
in general it may correspond to other entities (such as, for
instance, a collection of microgrids). We consider microgrids
with fast responding DERs (e.g., photovoltaics, electric vehi-
cles, batteries and small generators) as they operate on time
scales that match those needed for frequency regulation.

A. Review of Current Practice

The frequency regulation market is operated by an RTO to
regulate the system frequency at its nominal value. To achieve
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Fig. 2: Illustration of the computation of capacity and mileage

this, the RTO coordinates the response of participating energy
resources in a centralized fashion to assign the regulation
signal and restore the power balance of the grid. Different
RTOs follow slightly different procedures for the frequency
regulation markets. The procedure followed by CAISO has
the following stages, see e.g., [5], [28]:

[CP1]: Market clearance. All participating resources sub-
mit their capacity bids, capacity price bids, and mileage price
bids to the RTO. Capacity bids are the maximum amount of
regulation (up or down) that the resource can provide. Capacity
price bids are the unit price of providing these regulations.
Mileage is the sum of the absolute change in AGC set points,
which corresponds to the summation of the vertical lines in
Figure 2. The mileage price bid is the cost for unit change in
regulation. Typically, expected mileages are calculated from
historical data and resources do not submit mileage bids.
Using the bids submitted by the resources, the RTO solves
an optimization problem to minimize the expected cost and
uses its solution to clear the market with uniform prices for
capacity and mileage across the resources. The RTO then sends
each resource its capacity and mileage allocation. This off-line
process happens only once per regulation event.

[CP2]: Allocation of regulation signal to each resource.
The RTO sends the regulation set points to each of the
procured energy resources every 2-4 seconds for the entire reg-
ulation period, which is usually 10-15 minutes. The regulation
set points are computed from the AGC signal in real time in
proportion to the procured mileage of each resource. In case
the assigned capacity of a resource is violated, the overshoot
power is redistributed to the other resources in proportion to
their assigned mileages.

[CP3]: Real-time tracking of regulation signal. Once the
regulation set points have been assigned, the resources need
to track them in real time.

Payment to the resources comprises of two components,
capacity payment and mileage payment. The capacity payment
is done based on the assigned capacity in [CP1] while the
mileage payment is done based on the actual mileage provided
which reflects the performance of the resources while tracking
the assigned signal in [CP3].

1) Limitations of Current Practice: The centralized way of
assigning the set points to the resources in [CP2] relies on
the fixed number of resources with fixed generation capacities
procured in [CP1], which are available for the entire regulation



period. This is problematic in the context of aggregators, as
they are subject to variabilities and uncertainties associated
with the DERs inside them. Even if the DERs inside the
microgrid participating stay during the regulation period, the
users inside the microgrid can change their power consump-
tion, which in turn leads to changes in the effective regulation
capacity. Furthermore, in current practice, there is no direct
consideration of the operational costs of the resources, which
may result in suboptimal power allocation. Instead, we argue
that the assignment of the regulation signal should be done,
at each time step, in a way that optimizes the aggregate cost
functions of the resources and takes into account their (pos-
sibly dynamic) operational limits. We refer to this approach
as the RTO-DERP coordination problem. This idea has also
been pointed out in the past by CAISO for traditional energy
resources, cf. [29]. The lack of robustness and the information
sharing requirements of centralized schemes motivate the
investigation of distributed schemes to solve the RTO-DERP
coordination problem.

2) Challenges for Frequency Regulation from Microgrids:
Here we describe the challenges specific to microgrid partici-
pation in frequency regulation markets. First, note that solving
the RTO-DERP coordination problem with microgrids requires
the identification, or rather the abstraction, of aggregate cost
functions and regulation capacity bounds based on the cost
functions and flexibilities of their DERs. Second, the deter-
mination of capacity bids requires taking into account the
uncertainties associated with the microgrids. There is a need
to calculate bids for each regulation interval, as they might
need to considerably change from one interval to the next.
Even within a regulation interval itself, the power level of
the uncontrollable nodes might vary significantly. Third, the
mileage bids should be determined by taking into account the
dependency of ramp rates on the composition and participation
of the individual DERs. The current method of calculating
expected mileages in [CP1] makes sense for conventional
resources as their ramp rates are fixed and historical data
provides reliable accuracy. In the case of microgrids, indi-
vidual resources keep changing and as a result, ramp rates
do not remain constant over time. Also, the performance of
participating resources for one regulation period to another
might be substantially different.

B. Problem Statement

Consider N microgrids, each controlled by an aggregator.
To enable microgrid participation in the frequency regulation
market, we focus on [CP1] and [CP2]. Based on the proposed
framework in Figure 1 and the discussion in Section III-A,
our goal is to equip the aggregators with abstracted bids to
enable their participation in the market and design a distributed
optimization algorithm to solve the RTO-DERP coordination
problem. We formalize the following problems.

[P1]: Meaningful abstractions for the microgrid. To
enable the submission of bids in [CP1], each aggregator needs
to quantify the maximum up/down regulation capacity that
the microgrid can provide, the unit cost of providing such
regulation, and the ramp rate at which the microgrid can

change its power level. Our first goal is therefore to provide
meaningful abstractions for these elements, capturing the
aggregate behavior of the composing DERs, and specifically
cost functions and ramp rate functions of the microgrids for
[P2] below, a problem we tackle in Section IV.

[P2]: RTO-DERP distributed coordination. The RTO-
DERP coordination problem for computing the set points for
each resource advocated for [CP2] consists of an economic
dispatch problem with ramp rate constraints at every instant
of the regulation interval. Formally, for x, regulation at a given
time instant, we have

N
min - f(2) = fi(e)
i=1

N
S.t. Z Ti = Tp (2)
i=1

T < <7 Vi
a5 — o | < Ri(z) Vi,
where z € RY is the vector of regulation power from the
microgrids, fi(x;) is the cost of z; regulation for microgrid i,
x; and T are the lower and upper bounds of regulation for
microgrid i which are bounded by the solutions of [P1] and
determined by [CP1] for a specific regulation period, x;" is the
regulation that the microgrid i was providing at the previous
instant, and R;(z;) is the ramp rate of the microgrid when
it is providing regulation z;. Because of the ramp constraints
present in (2), this problem might not be always feasible (since
mileage requirements set by the RTO while clearing the market
in [CP1] capture the average mileage required, and not the
extreme cases). In such cases, we want to minimize the error
between the procured regulation and the required one. We
tackle these in Section V.

IV. MICROGRID ABSTRACTIONS

Consider a microgrid with n € Z buses, described by
Gm = (V,&,A). Without loss of generality, we assume that
the first bus is connected to the bulk grid through a tie line. We
partition the remaining set of buses as V, UV, where V, is
the set of the generators and controllable loads, referred to as
controllable nodes in the following, and V; denotes the set of
the fixed loads and devices outside the aggregator’s authority,
referred collectively as the uncontrollable nodes. Let n = |V |,
ng = |Vgl|, i = |V;| and m = |&|. Following [30],
we assume that the lines connecting various buses inside the
microgrid are lossless and inductive. In case the electrical lines
inside the microgrid are lossy with sufficiently uniform resis-
tance to reactance ratios, they could still be represented via a
lossless model obtainable through a linear transformation [31].
Since the voltage dynamics governed by the voltage droop
controllers operate at much faster scale than the secondary
frequency regulation [32], we assume the voltage magnitude
of every bus to be approximately 1 p.u. Further, we assume
that the network and inverter filter dynamics are fast enough
so that we can model them as power injections with no
dynamics [33], [34]. We adopt the convention that the value of
the power injection is negative if the device consumes power




and vice versa. The power level of each controllable node
p € V4 is denoted by g, with gg denoting the baseline gen-
eration/consumption. The power level of each uncontrollable
node ¢ € V; is denoted by [,. We denote the incoming power
through the tie line by P and its baseline value by P°. When
the microgrid provides frequency regulation, the value of the
tie line power P is

P="P+uz,

where x is the allocated AGC signal. Note that since we
model P as the incoming power from bulk grid, x would
be negative when the microgrid is providing up regulation.
Following [35], we assume that G,, is a graph with non-
overlapping loops, meaning that there is no common edge
between any loops. This assumption helps linearize the power
flow equations inside the microgrid, which are given by

P g7 "]  =Mw

lw| < @,

(3a)
(3b)

where g € R™ and [ € R™ are the vectors of controllable
and uncontrollable nodes, resp., M € R™*™ is the incidence
matrix of the graph, w € R™ is the vector of line flows and
w € R™ is the vector of maximum permissible flows. Since
the columns of the fundamental loop matrix form a basis for
the null space of the incidence matrix, cf. [36, Theorem 4-6],
we write (3) as

1T1-17yg

IMT] g

-l

+Ny| <o, 4)

where M7 denotes the Moore-Penrose pseudoinverse of M,
N € Rm*(m=n+1) s the fundamental loop matrix of G,,, and
v € Rm—n+l,

A. Capacity Bounds

The microgrid needs to solve an optimization problem to
find the maximum up (or down) regulation that it can provide.
For up regulation, the power consumption of the microgrid is
less than the baseline power. Since the latter is constant for
the regulation period, computing the capacity is equivalent to
minimizing P while satisfying the power flow constraints. If
the power level of uncontrollable nodes is constant for the
entire regulation period, then the problem reads as

min P

g,w

st. [P gt <17 =Mw ®)
9<9<g |w<w

where g and g are the vectors of minimum and maximum
possible power levels of controllable nodes, respectively. If P
denotes the solution of (5), then the maximum up regulation
is T = P — PY. The maximum down regulation x can be
obtained solving a similar maximization problem.

The formulation (5) assumes the power level of the un-
controllable nodes remains constant, and therefore does not
take into account the varying nature of the loads. In practice,
this makes sense for a specific regulation instant, and would

rarely be the case for the whole regulation period. Instead,
a more robust way of calculating the capacity bounds that
the aggregator can use in bidding for the whole regulation
period is to account for worst-case scenarios, i.e., taking the
expected maximum value for the uncontrollable nodes while
computing the maximum up regulation. Although robust to
variations in the uncontrollable nodes’ powers, this way of
computing capacity bounds might be too conservative and,
in fact, might prohibit the microgrid from participating in
the regulation market at all. As an alternative, we propose
a reformulation of problem (5) based on chance constraints.
Using (4), we rewrite the optimization problem (5) as

min ¢
9,75t
st. t>1"1—-1"¢g
T T
. 1'l—-1'¢g (6)
M g +Nvy| <w
—
g<9g<g.

Assume that a probability distribution describing the power
levels of uncontrollable nodes at any instant of the regulation
period is available. To account for load variability, we instead
consider the following chance-constrained optimization

min ¢
9,7t
st. Pr(t>1T1—-1Tg)>1-¢ (7)
1T1—-1Tg
Pr(IMT| g | +Na| @) z1-c V)
9=9=<g.
where €', ¢ € [0,1]. In this formulation, each flow constraint

can be violated, with a probability no more than e.

Since the regulation period lasts for only a short period
of time (10-15 minutes), the variation in the loads would
not be significant and it is reasonable to assume it could be
approximately characterized by a normal distribution. The next
result, whose proof is in the Appendix, shows that the chance-
constrained optimization (7) can be solved via a deterministic
linear program if the loads are normally distributed.

Lemma IV.1. (Capacity bounds for variable loads via
deterministic optimization): Assume the loads are distributed
normally with mean [ and variance V,. Then, the solution of
the deterministic linear program

min ¢ 3)
9,7t
st 1T1—1Tg—t<V2erf (2 —1)(1"Vj1)1/2

|((M;1T —M3)l+ (My—M;1T)g+Nry| <@
9g<g<g9,
where MT = [M; My Mj] with M; € R™, My € R™*"s
and M5 € R™*" 5l = 5+ K and
K; = ﬁerf71(6 —1)-
(M 17 = M) Vi(My; 17 = M) T)2,



is a solution of problem (7).

Remark 1. (Beyond normally distributed loads): The assump-
tion of loads being normally distributed helps us to convert
the original chance-constrained problem (7) to an equivalent
deterministic problem (8). It is reasonable to argue that this
assumption might be violated in practice. In those cases,
one needs to extend the result in Lemma IV.1 to identify a
computationally efficient way of solving (7). An alternative is
to use the results in [37] to find an approximate solution of (7)
via solving

min ¢
g7t
s.t. ir;%[sE(%(s_l(— 1Tg+171—1))—s] <0
S
171—-1Tg
inf [sE(¢; (s~ (| M7 g +Nq, - @;)))
* —1
— se] <0 Vj
9<9<7,

where {¢;/}]_; : R — R>q are non-decreasing and convex
functions satisfying ¢(u) > ¢(0) = 1 for all u > 0. Note that
this approximation is conservative and yields a sub-optimal
solution of (7). The degree of conservativeness depends on
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Fig. 3: Regulation capacities for different instantiations of the reduced-order
UCSD microgrid. The 12 microgrids are divided into 4 groups, with constant
mean value of loads and baseline generation across each group. Within each
group, for the first scenario, the variance is 0 and for the remaining two
scenarios, the loads are correlated with variance matrices randomly generated
with entries in the range [0,1000]. Values of €, ¢ for the second and third
scenarios are 1071,4.2 x 1075 and 2 x 1071,8.4 x 1072, respectively.

We use Lemma IV.1 to compute in Figure 3 the maximum
up and down regulation for several microgrids modeled after
the reduced-order UCSD microgrid described later in Sec-
tion VI. The microgrids are divided into 4 groups, each with
a different value of baseline generation and mean load for
the UCSD model. Within each group, we consider 3 different
scenarios, one with constant load and the other two with
correlated varying loads (generated using normal distributions
characterized by random variance matrices with entries in

the range [0,1000]) and different confident values (¢/,e =
1071,4.2x107° and 2 x 1071, 8.4 x 10~°, respectively). One
can see in Figure 3 that the capacity bounds increase with €', €,
which is in agreement with the fact that larger values of these
correspond to lower probability of satisfying the constraints.

Note that the probabilistic capacity bounds identified above
and obtained after solving (8) are good only for the bidding
in [CP1]. The actual regulation bounds at a given regulation
instant still depend on the load at that instant.

B. Ramp Rate Function

In the following we discuss how to compute the ramp up
rate for the microgrid (the discussion for ramp down rate is
analogous). If there were no constraints on the power flows,
then the ramp rate of the microgrid would be the summation of
ramp rates of all the controllable nodes. However, the presence
of flow constraints may prevent every controllable node from
ramping at its full capacity and as such, the ramp rate is a
function that depends on the operating point of the controllable
nodes. Let F, = {g € R" | 3w € R™ satisfying (3)} denote
the set of feasible operating points for controllable nodes. If
the power levels of the uncontrollable nodes are constant, then
the ramp up rate, R : F4 — R>g, is formally given by

-

Anax 1 Ag ©)

s.t. [(P—1TAg) (g+Ag)T —ZT]T =M(w + Aw)
Ag<r, |w+Aw| <,

where » € R™s is the vector whose component 7, is the
nominal ramping capacity of the controllable node p, and
w + Aw is the vector of line flows corresponding to the
operating point g + Ag.

If the power levels of the uncontrollable nodes are variable,
we use chance-constraints as in the case of capacity bounds
and the ramp up rate R is given by

max 1TAg (10)

Agy
1771-17(g+ Ag)
ml%OM* g+ Ag +Nﬂj§@)21—ew
—1

Ag <.

The following result, whose proof is similar to that of
Lemma IV.1 and omitted to avoid repetition, converts the
chance-constrained optimization (10) into a deterministic lin-
ear program if the loads are normally distributed.

Lemma IV.2. (Ramp rate for variable loads via deterministic
optimization): Assume the loads are distributed normally with
mean | and variance V1. Then, the solution of the deterministic
linear program

max 1" Ag (1T)

Ag,y

st [(Mi1T —=M3)l+ (My—M;17)(g+ Ag) + Ny <@
Ag <,

where My, Mo, M3 and @t are as defined in Lemma IV.1, is
a solution for problem (10).



The next result states the properties of the ramp rate func-
tion (9) for a tree network. The proof, given in the Appendix, is
based on the description of the feasible region in terms of the
power levels of the controllable nodes stated in Lemma A.1.
For the ramp rate function with normally distributed loads
defined in (10), one can obtain a similar result following
Lemma IV.2 (with @ replaced by @').

Proposition IV.3. (Ramp rate of tree network): Let G, be
a tree and H denote the hyperrectangle describing the region
of operation of the controllable nodes, where opposite faces
correspond to the minimum and maximum possible power level
of a controllable node. Then the ramp rate R is piecewise
affine on H, i.e., for some s > 0, H admits a decomposition

H=V,UVU...UV.,
where {V,}5 _, are polyhedra, and R is affine on each V.

Remark 2. (Ramp rate for networks with non-overlapping
loops): If the network is not a tree, then the flows correspond-
ing to a power injection vector are not unique. Nevertheless,
the ramp rate for networks with non-overlapping loops is a
non-increasing function of g, as the feasible region of (9) can
only shrink with increase in some component(s) of g. °

Given a regulation power x, we note that there may be
more than one feasible operating point for the microgrid
that produces it. As a result, the ramp rate as a function of
regulation power is not uniquely defined. We address this by
defining R : [T, z] — R>o, as

R(x) = max R(g").

where g* denotes a minimizer of the cost of producing the
regulation x while respecting the power flow and capacity
constraints. We take the maximum, since the optimizer g*
might not be unique. If the cost functions for all the con-
trollable nodes are convex, each g* is a decreasing function
with respect to x, which means that at least one component of
g* would decrease as x increases (using the convention that
up regulation is negative). Using this fact, we conclude that R
as a function of x is non-decreasing, with maximum possible
value as 1 7. Figure 4 provides the ramp rate functions of the
four groups of microgrids displayed in Figure 3 in the constant
load case.

In Remark 3, we discuss the conditions under which the
minimum ramp rate of the microgrid is always non-zero.

Remark 3. (Non-zero minimum ramp rate): It is natural to
argue that the microgrid could have a zero minimum ramp
rate. Here, we discuss conditions under which the minimum
ramp rate of the microgrid is non-zero. Let &' = {e; €
€ | wj < w;} be the set of all the lines which have not
reached their flow limits when providing the maximum up
regulation. Next, consider the graph G/, = (V,&’) and let
V, = {vi € Vy | Fapath fromito1lin G, }, ie., the set
of controllable nodes which are connected to the tie line. If
V’g # ¢, then the minimum ramp rate is always non-zero. The
intuitive explanation is that, when the microgrid is providing
the maximum up regulation, the condition specifies that there
should be a path from some controllable node to the node
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Fig. 4: Ramp rate functions for different instantiations of the reduced-order
UCSD microgrid with constant loads. The shaded regions represent the range
of regulation power that the corresponding microgrid can provide.

connected to the tie line with every line in that path operating
away from its flow limits. .

C. Cost Function

Each aggregator needs to calculate the cost of providing
a given amount of regulation by capturing the effect of
operating the controllable nodes away from their baseline
operating points. For an operating point g, the total cost for
the aggregator is given by

h(g) = Z hp(gp)a

pEV,

12)

where h, : R — R is the cost of operating node p away
from its baseline level gg. One representative example of
such a function is hy,(g,) = (g, — g9)°. The total regulation
that the aggregator provides is the combination of individual
regulations of controllable nodes. Therefore, for a specified
regulation level x, one would ideally choose the value of g
that minimizes the total cost given by (12) respecting the
power flow constraints in (3) and the minimum and maxi-
mum capacity constraints on each controllable node. Formally,
f (%, z] : R — Rxg, is given by
min

nir h(g)

st. g<g<g
fla) = s (13)

.
(P°+2z) ¢g' —ZT} =Muw
lw| < w@.

However, a cost function defined like this does not take into
account the previous operating point of the microgrid and
assumes that it can transition between the optimal points
corresponding to different regulation powers arbitrarily fast. In
practice, however, since the regulation set points change every
2-4 seconds, ramp rates might limit the change from optimal
point at one time instant to the next. This suggests that the cost
of providing certain amount of regulation at one instant also



depends on the value of the regulation power at the previous
instant. Hence, we define the cost f : [Z,z] x [Z,z] — Rxo,
of providing regulation power z, if providing regulation power
x~ at the previous instant, as

gAmin h(g + Ag)

s.t. g<g+Ag<g, Ag<r (14)
[(P°+2) (9+Ag)7 —1T]'=M(w + Aw)
lw+ Aw| <@
9<9<9, Wwl<w

[(PP+27) ¢' —lT]T = Muw.

Here, (g + Ag,w + Aw) and (g,w) are the vectors of the
power levels of controllable nodes and line flows when the
microgrid provides regulation power x and x~, respectively.
The constraints also enforce the capacity limits for the indi-
vidual controllable nodes and the flow limit constraints for
both values of regulation power, and the ramp constraints in
transitioning from z~ to z. The reason to include the power
flow constraints at = in (14) is to enable the aggregator to
pre-compute the cost function independently of the regulation
power it might be asked to provide. Otherwise, if the cost is
computed at every regulation instant, g and w providing z~
would be known, and the optimization variables would only be
Ag, and Aw. As such, f(z,27) is a lower bound on the actual
cost since (g,w) are also decision variables and are selected
optimally to move to the next operating point.

The following result, whose proof is given in the Appendix,
identifies a condition that simplifies the computation of the
cost function f(x,z~) defined in (14).

Lemma IV.4. (Simplified formulation and convexity of cost
function): Given regulation powers v~ and z, if |xt — x| <
R(x7), then f(x,x™) = f(x). If h is (strictly) convex, then f
is (strictly) convex.

Figure 5 provides the cost functions (13) of the four groups
of microgrids displayed in Figure 3 in the constant load case.

Note that the cost function (13) assumes the load to be
constant, but since the aggregator is not required to submit
its cost functions in [CP1], there is no need to pre-compute
this using probabilistic techniques. Instead, the cost function
at a given regulation instant could be computed online using
the load at that instant. The time taken to compute the cost
function at a given instant would depend upon the type of
solver used, but is usually small (e.g., less than a second with
built in MATLAB solver fmincon). In addition, since the
regulation period lasts for 10-15 minutes, the variation in load
would be limited, thereby requiring the recomputation of the
cost function sparingly.

D. Bids for Participation in Market Clearance

Based on the abstractions in Sections IV-A-IV-C, here
we specify the bid information used by each aggregator to
participate in [CP1]. Without loss of generality, we specify
the bid quantities for up regulation market. Let g'P € R™s
denote the component in g of the solution of (5).
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Fig. 5: Abstracted cost functions for different instantiations of the reduced-
order UCSD microgrid with constant loads. The shaded regions represent the
range of regulation power that the corresponding microgrid can provide.

TABLE I: Bidding quantities for up regulation market

[ Bid Quantity [ Value l
Capacity [z = P* — PY
Mileage kR(g"™)
Capacity price | h(g"P)/|Z|

Table I specifies the proposed values for the bidding quan-
tities. Here k¥ > 0 is a constant depending on the duration
of the regulation period and update frequency of the AGC
setpoints. The suggested bids are conservative, meaning that
the aggregator would be able to provide whatever it promises,
and there is no strategy to maximize profit. It might seem from
Table I that there is no need to compute beforehand the whole
ramp rate function R in Section IV-B. However, a risk taking
aggregator might use a higher value of mileage bid based on
the shape of R. It is also interesting to note that, from the
convexity of cost function in Lemma IV.4 and the capacity
price bid in Table I, the aggregator would never be at loss
regardless of the regulation power being provided.

V. RTO-DERP COORDINATION PROBLEM

Here we describe our algorithmic solution for the RTO-
DERP coordination problem [P2] to disaggregate the regu-
lation signal. Equipped with the microgrids’ capacities and
cost and ramp rate functions identified in Section IV, the
aggregators, communicating over a graph G, seek to solve,
at each instant of the regulation period, the optimization
problem (2). However, as we have noted before, this problem
might not always be feasible due to the presence of ramp
constraints. This means that in principle, at each regulation
instant, one would need to solve (2) if it is feasible or
minimize the difference between the required regulation and
the procured regulation if it is infeasible. Such dichotomy also
raises the issue of the necessary information available to the
aggregators to determine which one of the two cases to address
at each regulation instant and as such, distributed algorithms
designed for solving economic dispatch problem that assume



feasibility, see e.g., [38]-[40] and references therein, are not
directly applicable.

Instead, we propose to reformulate the optimization problem
in a way that lends itself to the identification of solutions that
minimize the error between the procured regulation and the
required regulation whenever (2) is not feasible. Without loss
of generality, throughout this section we assume the required
regulation power to be positive. We start by defining the

problem
@) = fx) + plAz]®
st x < <7 Vi
|wi — x| < Ri(x]) Vi,

min
xT

15)

where 1 > 0 is a penalty parameter and Az = z, — 1" z
The following result, whose proof is given in the Appendix,
characterizes the equivalence between problems (15) and (2).

Lemma V.1. (Equivalence between (2) and (15)): Optimiza-
tion (15) is always feasible and there exists [i1 < oo such that
for all p € [fi,00), (2) and (15) have the same solution set
if (2) is feasible.

Remark 4.  (Establishing the threshold value [ without
the knowledge of dual optimizers): The threshold value [
in Lemma V.1 depends on the optimal values of the dual
variables, which is not known beforehand. Interestingly, the
explicit knowledge of the Lagrange multipliers to obtain a
lower bound on the value of i can be avoided. In fact,
according to [41, Proposition 5.2], we have

0> 2 -
2 2max |V £(@)] .
Given Lemma V.1, we focus on solving problem (15) in

a distributed way. To handle the local constraints, we again
reformulate (15) using exact penalty function as

+M22

fr2(z)
where b; =x; — min{Z;, ¥; + Ri(z;)},
= Ri(z))} — i,

mzin 1P () —|—,u[Aa:] , (16)

and b; = max{x;,

are the box constraints taking care of the capacity and ramp
rate for aggregator i € {1,...,N} and us > 0 is again a
penalty parameter. Similar to Lemma V.1, there exist finite
values of po for which the reformulation (16) is exact.

Since problem (16) is unconstrained, consider the dynamics

&€ —0f" (), (17)

— RY denotes the generalized gradient of
, N}, [0fP(x)]; is given by

where 0fP : RV
fP. For each agent i € {1,...

Vi) — [ ] - [N2]+ + [/12];:7 A%E»ﬁ # 0,

Vi) = [0,4] = [palt + [paly, Az =0,bi,b #0,
Vi) = 4, mm][m@»A%Q#QE:Q
Vfi(wi) = WK, — luely + [0, p2], - Az, bi 0,5 =0,
Vfilwn) = [0, 1] — [0, 2] + [ oy Az,bi=0,b; # 0,
Vfi(wi) = [0, 4] = [pali-+ [0, 2], Az, b =0, # 0.

The equilibria of the dynamics (17) satisfy 0 € 9fP(x).
Asymptotic convergence of (17) to the optimizers of (16)
could be easily established using tools from non-smooth
analysis, cf. [42, Proposition 14]. However, the implementation
of (17) requires every aggregator to have knowledge of the
total regulation at all times. To handle this, we use dynamic
average consensus, cf. Section II, to estimate the average of
the difference between the required regulation and procured
regulation from all the microgrids. Since %Aw and Ax have
the same signs, we modify (17) and introduce a new algorithm
by enabling each aggregator to estimate the average mismatch
using dynamic average consensus as follows

&€ =0 (x) + [ul, (18a)

i€ —vz—fBLz—v+v(zee—z)+0f2(z) — [u]f,
(18b)

v =vfBLz, (18¢)

where z,v € RY, z; is the ith aggregator’s estimate of ; A,
[1W]7 € RN with its ith element as [u]}, L € RV*N is the
Laplacian matrix of G, and e is the unit vector with only one
entry as one and all others as zero. Note immediately that the
algorithm (18) is distributed over the communication graph,
meaning that each aggregator i € {1,..., N} needs to know
just its state and the state of its neighbors to implement it, and
only one aggregator needs to know the required regulation.
We refer to (18) as “gradient descent + dynamic average
consensus” algorithm, abbreviated as t)gdac. The equilibria for
x are the points satisfying 0 € —9f#2(z) + [0, p 1]. The next
result, whose proof is given in the Appendix, characterizes the
convergence properties of the t)gqqc algorithm.

Theorem V.2. (Asymptotic convergence of the distributed
dynamics to the optimizers): Let G be strongly connected and
weight-balanced, and the initial conditions satisfy 1" v(0)=0
and 17 z(0) — Ax(0) = 0, then there exists i < oo such
that the dynamics g, find the optimizers of (16) for all
p € [f, 00).

Remark 5. (Initialization of the distributed algorithm): For
the dynamics t)gg,c t0 converge to the optimizers, Theorem V.2
specifies requirements on the initial conditions. The require-
ment 1" (0) = 0 could be implemented trivially by selecting
v(0) = 0. For the implementation of 17 2(0) — Az(0) = 0,
the aggregators can simply choose z(0) = 0 and z;(0) = 0
for all i, except for the aggregator having knowledge of the
required regulation for which z;(0) = z,. °

VI. SIMULATIONS

We provide here our simulation results based on the abstrac-
tions of capacities, cost, and ramp rate developed in Section IV
and the RTO-DERP coordination algorithm (18) in Section V.
For the purpose of simulations, we consider a reduced-order
model of the University of California, San Diego (UCSD)
microgrid developed using the distributor feeder reduction
algorithm in [43] and provided by the research group of
Prof. Jan Kleissl. Compared to the full-order model of the
UCSD microgrid [44] which is a radial, balanced network
with 1289 buses (3869 nodes), the reduced-order model is
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Fig. 6: Reduced-order model of the UCSD microgrid. Arrowheads represent the direction of positive flows. Blue node (1) is connected to the tie line. Green
nodes (19, 20, 27, 29, 30, 32, 34 38, 39 and 41) represent the generators, dark yellow (14, 15 and 17) the electric vehicle stations and red (remaining) the

building loads.

a balanced tree network with 48 buses. The buses in the
reduced-order model are obtained by retaining the key buses in
the full order model which are the buses where the building
loads aggregate or which have generators. Since the UCSD
reduced-order model is balanced, we consider only one phase
in our simulations. The model consists of 10 generators (2
gas turbines, 1 steam turbine, and 7 solar PV systems) and 37
loads (34 building loads and 3 electric vehicle stations). We
show the location of the buses on the geographical map of the
campus in Figure 6. For our simulation, we take the UCSD
microgrid as a template, and we instantiate it using different
baseline scenarios to construct 12 different microgrids, divided
into 4 groups. Each group has its own baseline values of
generation and mean load. The 3 different scenarios within
a group consist of (a) constant load, (b) variable load with
failure probabilities ¢ = 107!, ¢ = 4.2x 107> and (c) variable
load with failure probabilities ¢ =2 x 107!, e = 8.4 x 107°.
The abstracted regulation capacities and ramp rate functions
of different microgrid groups are shown in Figures 3 and 4,
resp. For cost functions, we consider quadratics for all the
resources. The abstracted cost functions for different groups

are shown in Figure 5.

We demonstrate the performance of the distributed algo-
rithm (18) in two sets of simulations. To implement the
continuous-time algorithm, we use a first-order Euler dis-
cretization with step size of 0.001 to show its practical
feasibility. The values of u, ue, B and v are taken to be
1000, 1100, 400 and 400, respectively. In the first simu-
lation, cf. Figure 7(a), we consider one regulation instant
and first show the evolution of the proposed algorithm (18)
for required down regulation of 50000 kW, and compare it,
for the same communication topology (undirected ring with
few additional edges), against the (2-hop distributed) saddle-
point dynamics [45] of the augmented Lagrangian for the
equivalent reformulated problem as per [46] and against the
centralized generalized gradient descent dynamics (17). As
can be seen from the plots, the algorithm time required by
the proposed distributed algorithm to reach the 1% band of
the required regulation power is much less compared to the
saddle-point dynamics, and is only slightly greater than the
time taken by the centralized algorithm. The time required
does increase when the communication topology is changed



to a directed ring —which is the worst possible topology for
strongly connected graphs, but still remains less than a second,
implying that the number of iterations is less than 1000.

For the second simulation, we consider the dynamic regu-
lation test signal (RegD), available on the Pennsylvania-New
Jersey-Maryland Interconnection (PJM) website [47]. Since
the RegD signal on the PJIM website is normalized and could
be scaled as long as the problem remains feasible, we scale it
by a factor of 50000 and then use our abstractions and clear
the market according to [CP1]. Once the market is cleared,
we use our algorithm to track the scaled RegD signal and
compare it using the current algorithm of disaggregating the
regulation signal described in [CP2]. For the sake of clarity,
we show only the first 100 instants of the regulation period,
and instead of contributions from each of the 12 microgrids,
show the total contributions from the 4 groups. As we can
see from Figure 7(b), when it is not possible to provide the
required amount due to limits on ramp rates, both the proposed
algorithm and the current algorithm try to provide as much
regulation power as possible, and the tracking performance
for both the algorithms is similar. But, if we compare the cost,
the proposed algorithm with a cost of $8818 outperforms the
current algorithm with a cost of $9728. This difference in
cost comes from very different power contributions from the
microgrids for the two algorithms. The proposed algorithm
allocates the regulation signal to the microgrids based on
their abstracted cost functions (cf. Figure 5), whereas current
practice does not take them into account. It can be noticed
in Figure 7(b) that, under current practice, if not capped
by the cleared capacities, the power allocations for different
microgrid groups have the same ratios for every regulation
instant. For example, the shape of the regulation power curves
for microgrid groups 1, 3 and 4 are similar and only differ
in terms of scaling (by factors depending on the ratio of their
procured mileages).

VII. CONCLUSIONS

We have considered the problem of providing frequency
regulation services by aggregations of DERs. We have de-
scribed the limitations of current practice and identified the
challenges to overcome them with DER aggregators modeled
as microgrids. We have developed meaningful abstractions for
the capacity, cost of generation, and ramp rates by taking into
account the power flow equations inside the microgrid. This
provides enough information for the microgrids to participate
in the market clearance stage. We have employed these ab-
stractions to design a provably correct distributed algorithm
that solves the RTO-DERP coordination problem to optimally
disaggregate the regulation signal when the problem is feasible
and minimize the difference between the required regulation
and procured regulation when it is infeasible. Future work will
extend our work to microgrids with more general topologies,
propose novel schemes to efficiently combine the presented
framework with microgrid scheduling strategies at slower
time scales, incorporate AC power flow equations, construct
exact reformulations for more general load variation models,
and investigate smooth distributed algorithms to remove any
chattering due to non-smooth dynamics.

APPENDIX

Here we provide proofs of all the results stated in the paper.
Proof of Lemma IV.1: With the notation of the state-
ment, (4) can be written as

IM{(1T1—1Tg) + My g — M3l +N~y| < @.

Without loss of generality, let us for now consider only the
following constraint in (7)

Pr(|¢;| —w; <0)>1—e (19)

where Cj = (Mlj 17— ng)l + (MQj — Mlj lT)ng Nj v. Let
(& ={GeR|(-w; <0}and & ={¢ €R| —(—; <
0}. Then (19) is equivalent to

Pr(¢fng ) >1—¢ (20)
We can further rewrite (20) as
Pr(f;-r Ng ) <e= Pr(fjc Ug ‘) <e 21

We next break (21) down into single chance constraints. Using
the fact that f;fc and &; ¢ are mutually exclusive, Pr(fjc U
§°) = Pr(f;Lc) + Pr(&; ). Therefore, (21) is equivalent to

Pr(f;”:) <€/2, and Pr(§;°) <e/2. (22)
If I ~ N(I,V;), then (; NN(C},U?) where

G =My 1T = Mgj)l + (Mo; —My; 17)g + N, v,
07 = (My; 17T — Mg;)Vi(My; 17 — Mg;) "

Defining w = (¢; — {;)/0, we have w ~ N(0,1).

Pr(¢}) = Pr (w < Wiz CAJ’) — @(wj - iJ) (23)

9j 9j

Using equations (23) and (1), we have from (22) for Pr({f)

1 1w —
erferf(u) >1—¢/2,

2 2 \/§O'j
w,_é

:>erf<7j j) >1—c¢
\/iO'j a

= (< V20 ert e —1) + 1.

A similar inequality could be obtained from (22) for Pr(§; ).
As a result, (22) could be rewritten as

\fj| < \/ﬁaj erfﬁl(e - 1) +wj,

where we have used the fact that erf " is an odd function. The
righthand side of the above constraint is a constant dependant
on ¢ and the left hand side depends on the decision variables
g and 7.

The same technique could be applied to the remaining set
of constraints, including the first one. If we apply this to all
the chance constraints in (7), then problem (7) could be solved
by solving the deterministic linear program (8). |

Lemma A.l. (Simplified power flow constraints for tree
network): Let G, be a tree and Pyos € RO=DX(=1) gepote
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Fig. 7: Performance of proposed RTO-DERP distributed coordination algorithm. Dynamics were implemented in discrete time with a step size of 0.001 and
the values of u, p2, 8 and v as 1000, 1100, 400 and 400, respectively. (a) compares the state evolution against the saddle-point dynamics and the centralized
generalized gradient descent for 50000 kW down regulation from 12 aggregators. The dashed lines for the proposed algorithm represent the algorithm evolution
over a directed ring, and the black dashed lines represent 1% band of the required regulation power. (b) compares the proposed approach with the algorithm
followed currently tested against first 100 updates of the PJM RegD signal. For microgrid groups, the solid lines represent the regulation power using the
proposed algorithm and the dashed lines represent the regulation power using current practice. Although the tracking performance for both the algorithms is
similar, contributions from individual microgrids differ substantially resulting into different costs.

its path matrix with first vertex as reference ref. Then the
constraints

[(P=1TAg) (9+Ag)T —1T]" =M(w + Aw), (24a)

W+ Aw| < @, (24b)
in (9) could be equivalently written as
Pl Ag<@+Py1—P/yg, (25)

where [P]  Py] = |PL;| with Py € R**("=1) and P, €
R™*("=1) and | P | denotes the non-negative matrix whose
elements are given by the absolute values of the corresponding

elements of PrTef.

Proof: Let Mot € RM™=1Dx(n=1) denote the matrix
obtained after removing the row corresponding to vertex ref
from M. According to [48], we have

M} =P,

ref ref *

(26)

With first vertex as ref, equation (3a) could be rewritten as

{g + Ag] = Myet (w0 + Aw), @7

-l
where we have used the fact that rank(M) = rank(M,.f) =
n — 1, cf. [36, Corollary 4-4]. Using (27) and (26), con-
straint (24) is equivalent to

{g Jr_lAg] <a.

Due to the structure of P, cf. Section II, all the non-zero
entries for any row of P;l;f are either 1 or -1. Since we are
characterizing the ramp up rate and are only concerned with
what happens to the feasible region with the increase in some

component(s) of g, the active constraint for the lines for which
the non-zero entries are 1 would be

+A _
P;ref |:g —l g:| Swv

and for the lines for which the non-zero entries are -1 would
be

(28a)

—PL {9 Jr_lAg] <w (28b)
(28) is equivalent to (25), completing the proof. [ ]

Proof of Proposition IV.3: Let us start by denoting the
region where
Plr<w+P,l—Plyg,
by V;. Boundaries of V; are (n — 1) hyperplanes given by
Plr=w+P;1—P/g.

Some of these hyperplanes could even be outside /. But in
general, all these (n — 1) hyperplanes could be the faces of
Vi. It is clear that in V7, none of the flow constraints is active
and R(g) =1"r.

Outside V7, we have

W+ Pyl =P g<Plr (29)
for at least one 5 € {1,...,n — 1}. First we consider the

region where (29) holds for only one such j, denoted as j'.
Then either

wj/+P;j/l*P]—j'/g>Oa Orw;'+P;—j/lipirj'g:0'

In the former case, we are in the polyhedron whose two faces
are given by

@i + Pyl —=Plg =Pl r, and Wy + Py I =P g =0.



Let us call one of these polyhedron V5. In Va, R(g) = 1T Ag,
where Ag satisfies

—_ T T T
Wj/ + P2j/ l — Plj/ g = Plj/ Ag

For 17 Ag to be maximum, the controllable nodes for which
the corresponding entries are zero in P/, we will have Ag, =
Tp. As some component(s) of g for which the corresponding
entry in Py;; = 1 increases, some components of Ag with
corresponding entry 1, decrease to balance it. Hence, R(g) =
17— PlTj, g. Now considering the latter case when

@, + Py 1 =P, g=0.

On this hyperplane, R(g) becomes constant again as the
controllable nodes for which the corresponding entries are zero
in Py have Ag, = 7, and other entries of Ag have to be zero.
Hence, R(g) = (1 —Py;/) "r. Note that different polyhedrons
similar to V5 might exist with different ;.

Now we consider the regions where (29) holds for multiple
j€{l,...,n—1}. Let us denote by V3 the polyhedron, whose
few faces are given by

wj+P;rjl—P1Tjg= PlTjn
for all j satisfying (29). Inside V3, R(g) = 1T Ag, where Ag

is given by the simultaneous solution of
T — T T
P1jAg <w; + Py —Pyjy,

for all the corresponding j and 1" Ag is maximum. At least,
one of these inequalities would hold with equality. Similar
to V5, we notice that if we increase some component(s) of
g in V3 with corresponding entry in any of P;; as 1, R(g)
decreases linearly. While increasing some component of g, a
point would be reached where

T
1

@; + Py l—P{;g=0, (30)

for some j and that would be another face of V3. On this
hyperplane, Ag,, = 0 for the controllable nodes for which the
corresponding entry of P1; = 1 in (30). Note that R(g) is still
linear as V3 but with a different slope.

In general, depending on the parameters of the microgrid
at hand, there would be several polyhedrons where (29) holds
for different j. But the characterization of ramping capacity
would be similar to V3 in all these. Since the ramp rate is
either affine or constant in all the polyhedra, it is affine. ®

Proof of Lemma IV4: 1If the difference between two
regulation powers, i.e., |z — 27| is greater than the ramp rate
at x—, then the microgrid might not be able to provide the
regulation power at all. On the other hand, if the difference is
less than the ramp rate, then it is clear that the microgrid would
be able to provide the required regulation power optimally. So,
in the latter case, the cost of providing regulation power x or
the solution of (14) is equivalent to the optimization in (13).

Next, we provide a proof for the convexity of f if h is
convex. Let C(z) = Cp N Cy(x), where Cy denotes the
capacity constraints for g and

PO 4z

Ci@)={gl | o

= Muw and |w| 36}.
-l

Then, we have f(z) = min h(g). Let 21,25 € [T, z], where

g€l ()
T and z are respectively, the maximum up and down regulation

identified in Section IV-A. Then f(z1) = min h(g), which
geC(x1)

means that for all 6 > 0, there exists g3 € C(z1) such that
f(x1) + 0 > h(g1). Similarly, there exists go € C(z2) such
that f(l’g) +4 > h(gz). Since g1 € C(l‘l) and g5 € C(.TQ),
therefore Ag; + (1 — N)go € C(Az1 + (1 — N)zo), where
A € [0, 1]. Hence,

min h(g)

Azy 4 (1= A)zg) =
f(Azy +( )2) gEC (A1 +(1—N)z2)

< h(Ag1 + (1= N)g2),
< Ah(g1) + (1 — A)h(g2),
<Af(z1) + (1= A) f(w2) + 6,

where the second inequality would be strict in case of strict
convexity. Since ¢ is arbitrary, f is (strictly) convex. ]

Proof of Lemma V.1: We begin by noting that x; = x;
for each i satisfies both set of constraints in (15), since x~
is the set of regulations provided by the aggregators at the
previous instant. Hence, (15) is always feasible. To prove the
equivalence between the two problems, as our first step, we
rewrite (2) as

min  f(z)
xT
-
s.it. . <1 =z 31)
zi <z <7 Vi

|zi — x| < Ri(z]) Vi.

Note that the equality constraint in (2) is replaced by the
inequality constraint in (31). If feasible, both problems have
the same set of solutions. Problem (31) can still be infeasible.
Let F denote its feasible set. Since F is compact, the solution
set of (31) is also compact. Also, since the constraints in (31)
are affine, the refined Slater condition is satisfied. According
to [49, Proposition 1], if (31) is convex, has a non-empty and
compact solution set and satisfies the refined Slater condition,
then (31) and (15) have exactly the same solution set if

p> [ Moo,

for some Lagrange multiplier A of (31), as claimed. [ ]
Proof of Theorem V.2: For simplicity of exposition, we
ignore the box constraints and write (18) as

&= -V f(x)+ 7, (32a)
i=-vz—fLz—v+v(ze—z)+Vf(z)— (4, (32b)
v =vfhLz, (320)

First, consider the function V5 : R?N — R>g, Va(z,2) =
1" 2 — Axz. The Lie derivative Ly V2 : R2Y = R is then
given by

Ly Vo=1T2+1Td=—-v1(2— (z,e— 1)) = —1h,

where we have used the fact that 1T v = 0 due to the
initial condition 17 v(0) = 0 and dynamics (32c). The above
equation implies that the summation of all the entries of z
converges to the mismatch between the required regulation



and procured regulation exponentially with rate v. Hence
1" z — Az = 0 with the stated initialization.

Next consider the change of coordinates (z,z,v) +—
(x, z,m), with n = v(z — (z,e — x)) + v. The dynamics for z
and 7 are then given by

—BLz—n+Vf(z)-—
n=—un.

z

[,

Consider the Lyapunov function candidate V' : R3V — R>o,

N
) 4-/{2:[%]+

whose generalized gradient 9V : R3N =

1
V(x,z,n) :f'u( "‘5”77”2;

R3N is given by

VI - il ). Ac 0.2 £0,
Vi@l Ar=0.z £,
V2= 19 () 1]k [0. 1 1] A £ 0.2 = 0,
{Vf()-[o u][ ul1ln}, Az =0,2=0

Following [42], set-valued Lie derivative Ly, V : R = R
can then be computed as

(Vf = [p1]3) " (=Vf +[ulf)
H(WH T (=BLz =+ Vf —[u]])

Lo V@, 2,1 = _p1nII2, Az #0,2 #0,
o, otherwise.

We now analyze various cases of Ax # 0,z # O in the
following

Case 1: Az <0 and 2z < 0.
Ly V = —IVI? = vinl.
Case 2: Axz >0 and z > 0.
Ly V =—IIVFI?+3uVfT1-2Np? — un" 1—v|n|>.
Case 3: Az >0 and z % 0.
Ly V== VfIP = 2Nypu* + VT (p1+42[]])
=B Lz =T [uf - vlnl?,

where IV, is the number of positive elements of z.
Case 4: Az <0 and z £ 0.

V=—|[VFI?+ 2V [u]d - B(ud) " Lz
= [ulF = Npp® = vn*.

ﬁwgdac

We do not need to consider the case when Az > 0 and
z < 0since 17 2z — Az = 0 due to the discussion above.
Out of the 4 cases, Ly,,,, V < 0 for Case 1. For the remaining
cases, since f is globally proper and ||V f|| is bounded over
any compact set, Ly, V < 0 if the value of p is taken
large enough for the worst-case scenario (/N, = 1). Since
max ¢ = —o0, max Ly, V < 0 except at the equilibrium.
This along with the fact that V' is locally Lipschitz and regular
implies that V' satisfies the hypothesis of [42, Theorem 1].
Hence, the dynamics 1)44sc converge to the optimal solution
asymptotically. ]
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