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Abstract—This paper deals with linear algebraic equations
where the global coefficient matrix and constant vector are
given respectively, by the summation of the coefficient matrices
and constant vectors of the individual agents. Our approach is
based on reformulating the original problem as an unconstrained
optimization. Based on this exact reformulation, we first provide a
gradient-based, centralized algorithm which serves as a reference
for the ensuing design of distributed algorithms. We propose
two sets of exponentially stable continuous-time distributed
algorithms that do not require the individual agent matrices to be
invertible, and are based on estimating non-distributed terms in
the centralized algorithm using dynamic average consensus. The
first algorithm works for time-varying weight-balanced directed
networks, and the second algorithm works for general directed
networks for which the communication graphs might not be
balanced. Numerical simulations illustrate our results.

I. INTRODUCTION

The importance of solving linear algebraic equations is
paramount. They appear frequently in core mathematics as
well as in applications, in physics and engineering. Non-
linear systems can often be well understood by their linear
approximation. Due to the recent development of large-scale
networks coupled with parallel processing power and fast
communication capabilities, there is a growing effort aimed
at developing distributed algorithms to solve systems of linear
equations. Distributed algorithms preserve the privacy of the
agents, are robust against single point of failures, and scale
well with the network size. Keeping these considerations in
mind, this paper is a contribution to the growing body of
distributed algorithms to solve linear algebraic equations.

Literature Review: Justifying the ubiquity of linear equa-
tions, there is a vast and expanding literature to solve them
efficiently, cf. [1]–[3] and references therein. However, most of
the works consider the information structure where each agent
knows some rows of the coefficient matrix and the constant
vector. In those cases, the collective problem has a solution if
and only if the individual equations are solvable. Instead, the
problem structure considered here is different, and assumes
that each agent has a full coefficient matrix and constant
vector of its own. This setting appears frequently in distributed
sensor fusion, where sensors are spatially distributed and
they seek to build a global state estimate (e.g., about the
location of a source or the position of a target) from local
measurements, cf. [4], [5]. To the best of our knowledge,
all the works in this category rely on the communication
graph being undirected. The work [4] relies on the positive
definiteness of the individual matrices to compute the updates
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and prove stability. [5] uses element-wise average consensus
for the coefficient matrix as well as the constant vector,
which does not scale with either the problem dimension
or the network size, and is not desirable from a privacy
standpoint. The work [6] also exploits the positive definite
property of the individual matrices and requires the agents
to know the state as well as the matrices of the neighbors.
The work [7] proposes a distributed algorithm without any
positive definiteness condition, but the agents are allowed to
converge to different solutions. Our approach here is based on
using dynamic average consensus [8], [9] to estimate certain
non-distributed terms in a gradient-based algorithm for the
reformulated optimization problem. We also draw inspiration
from [10], [11] on distributed optimization to extend our
treatment to deal with unbalanced networks. However, unlike
the aforementioned works where the desired solution is not
an equilibrium of the dynamics, requiring a diminishing time-
varying stepsize-like parameter to ensure convergence, here we
make sure that any solution of the linear equation is indeed
an equilibrium of the proposed dynamics. This enables us to
employ Lyapunov stability analysis to establish algorithm con-
vergence and offers a framework to study robustness against
disturbances and errors. Our work [12] requires bidirectional
2-hop communication. In contrast, the distributed algorithms
here require information exchange only with immediate neigh-
bors and work for arbitrary directed graphs.

Statement of Contributions: We consider linear algebraic
equations where the coefficient matrices and constant vector
for the overall problem are given, respectively, by the summa-
tion of the individual agents’ coefficient matrices and constant
vectors. Our starting point is the exact reformulation of this
problem as a constrained optimization problem. Using the
observation that the optimal value of this optimization is zero,
we reformulate it as optimization of an unconstrained function,
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denote the 2-norm of a vector x and the induced 2-norm of a matrix A, resp.
diag(x) denotes the diagonal matrix obtained after arranging the entries of
the vector x along the principal diagonal. Aij denotes the ijth element of a
matrix A, A> its transpose, A−1 its inverse (if it exists) and null(A) its null
space. A⊗B denotes the Kronecker product between two matrices A and B.
Unless otherwise stated, x ∈ Rmn denotes the concatenated vector obtained
after stacking the vectors {xi}ni=1 ∈ Rm. A � 0 and A � 0 imply that a
matrix A is positive definite and semidefinite, resp. For a symmetric matrix A,
λmax(A) and λmin(A) denote its maximum and minimum eigenvalue, resp.
Regardless of the multiplicity of eigenvalue 0, λ2(A) denotes the minimum
non-zero eigenvalue of a positive semidefinite matrix A. For two vectors
x, y ∈ Rn, [x; y] denotes the concatenated vector containing the entries of x
and y, in that order, and x > y means that the inequality holds elementwise.



and propose a centralized algorithm which works for weight-
balanced networks and serves as a reference for the design of
distributed algorithms. Using dynamic average consensus, we
then propose a distributed algorithm that does not require the
agent matrices to be positive definite, works for time-varying
weight-balanced networks and is guaranteed to converge to a
solution of the original problem exponentially fast. Building
on the insights gained in establishing these results, we propose
a distributed algorithm that is not limited to weight-balanced
networks and is also guaranteed to converge to a solution of
the linear equation exponentially fast.

II. PRELIMINARIES

Here we review basic notions from graph theory [10], [13],
[14] and dynamic average consensus [8], [9].

Graph Theory: Let G = (V, E ,A) denote a weighted
directed graph (or digraph), with V as the set of vertices (or
nodes) and E ⊆ V ×V as the set of edges: (vi, vj) ∈ E iff
there is an edge from node vi to node vj . With | V | = n,
the adjacency matrix A ∈ Rn×n of G is such that Aij > 0
if (vi, vj) ∈ E and Aij =0, otherwise. A directed path is an
ordered sequence of vertices such that any pair of consecutive
vertices is an edge. A digraph is strongly connected if there is
a directed path between any two distinct vertices. The out- and
in-degree of a node are, resp., the number of outgoing edges
from and incoming edges to it. The weighted out-degree and
weighted in-degree of a node vi are dout(vi) =

∑n
j=1 Aij and

din(vi) =
∑n
j=1 Aji, resp. The out-degree matrix Dout ∈ Rn×n

and the in-degree matrix Din ∈ Rn×n are the diagonal
matrices defined as Dout

ii = dout(vi) and Din
ii = din(vi), resp.

A graph is weight-balanced if Dout = Din. The Laplacian
matrix L ∈ Rn×n is L = Din−A. All eigenvalues of L
have nonnegative real parts, 0 is a simple eigenvalue with left
eigenvector 1 iff G is strongly connected, and L1 = 0 iff G
is weight-balanced iff L+ L> is positive semidefinite, cf. [13,
Theorem 1.37]. If G is strongly connected, it follows from [14,
Lemma 3] that there exists a positive right eigenvector v̄ ∈ Rn
associated to the eigenvalue 0 of L.

Dynamic Average Consensus: Consider a group of n ∈ Z>1

agents communicating over a weight-balanced digraph G
whose Laplacian is denoted by L. Each agent i ∈ {1, . . . , n}
has a state xi ∈ R and an input zi ∈ R. The dynamic
average consensus algorithm aims at making all the agents
track the average 1

n

∑n
i=1 zi asymptotically. Here we present

the algorithm following [8], where it was introduced for
undirected graphs. The algorithm is given by

ẋ = − Lx +ż,

If
∑n
i=1 xi(0) =

∑n
i=1 zi(0) and the input z is bounded, then

xi(t) → 1
n

∑n
i=1 zi(t) asymptotically for all i ∈ {1, . . . , n},

cf. [8].

III. PROBLEM FORMULATION

Consider a group of n agents interacting over a digraph that
seek to solve in a distributed way the linear algebraic equation(

n∑
i=1

Ai

)
︸ ︷︷ ︸

A

x =

(
n∑
i=1

bi

)
︸ ︷︷ ︸

b

, (1)

where x ∈ Rm is the unknown solution vector, and Ai ∈
Rm×m and bi ∈ Rm are the coefficient matrix and constant
vector corresponding to each agent i ∈ {1, . . . , n}. We
assume that (1) has at least one solution. Interestingly, the
formulation (1) includes, as a particular case, scenarios where
each agent i knows only some rows of the coefficient matrix A
and constant vector b. Our approach consists of first formulat-
ing (1) as a system involving n unknown solution vectors, one
per agent, and then reformulating it as a convex optimization
problem. Based on this reformulation, we propose two sets
of (out-)distributed algorithms (where each agent only needs
information from its out-neighbors) to find the solutions of (1).

We start by endowing each agent with its own version
xi ∈ Rm of x. Then (1) can be equivalently written as

n∑
i=1

Aixi =

n∑
i=1

bi, (2a)

xi = xj ∀i, j. (2b)

Equation (2b) ensures that xi = x for all the agents. Clearly
the set of equations (2) and the original problem (1) are
equivalent. Next we formulate (2) as a convex optimization
problem. Consider the quadratic function f : Rmn → R

f(x) =
( n∑
i=1

(Aixi − bi)
)>( n∑

i=1

(Aixi − bi)
)
,

which is convex and attains its minimum over the solution
set of (2a). For convenience, we use L = L⊗I and f(x) =
(A x−b)> 11>(A x−b), where 1 = 1⊗I , A ∈ Rmn×mn
denotes the block-diagonal matrix obtained after putting the
matrices {Ai}ni=1 along the principal diagonal, and b =
[b1; . . . ; bn] ∈ Rmn. If G is strongly connected, the solutions
of (2) are the same as the optimizers of

min
x

f(x)

s.t. L> x = 0 .
(3)

Remark 1. (Distributed algorithmic solutions to optimization
problem): The problem (3) can be solved over an undirected
graph by reformulating it using the techniques in [15] and
employing the saddle-point dynamics, cf. [16], [17]. These dy-
namics involve terms of the form L> and, to be implemented
over a digraph, would need information from in- as well as out-
neighbors and hence are not suitable for our setup. It is worth
mentioning that works that deal with distributed optimization
under consensus constraints over digraphs, see e.g. [10], [18]
and references therein, require the objective function to be
separable, and therefore are not applicable here. •

IV. DISTRIBUTED ALGORITHMS OVER
WEIGHT-BALANCED NETWORKS

Here, we present distributed algorithms to solve problem (1)
over weight-balanced networks.

A. Centralized Algorithm
Here, we present a centralized algorithm making use of

the observation that the objective function f vanishes at the
optimizers of (3). Building on this insight, consider

min
x

1

2
αx>(L + L>) x +βf(x), (4)



where α, β > 0. Clearly, (3) and (4) have the same set
of solutions if G is strongly connected and weight-balanced.
Since problem (4) is unconstrained, one can use gradi-
ent descent to find its optimizers. However, the gradient
−α(L + L>) x−βA> 11>(A x−b) of the objective func-
tion in (4) involves terms with L>, whose computation would
require information from in-neighbors. Instead, we consider
the following gradient-based dynamics

ẋ = −αL x−βA> 11>(A x−b). (5)

Whenever convenient, we refer to (5) as ψgrad. Note that
the first term in the dynamics (5) is distributed, meaning
that each agent can implement it with information from its
out-neighbors. The second term, however, requires collective
information from all the agents because of the summation
across the network. Nevertheless, this algorithm serves as the
basis for our distributed algorithm design in the next section.

The next result formally characterizes the equivalence be-
tween the equilibria of (5) and the solutions of (1).

Lemma IV.1. (Equivalence between (5) and (1)): Let G be
a strongly connected and weight-balanced digraph. Then for
all α, β ∈ R>0, x∗ is an equilibrium of (5) if and only if
x∗ = 1⊗x∗, where x∗ ∈ Rm solves (1).

Proof: The implication from right to left is immediate.
To prove the implication in the other direction, let x̄ ∈ Rm be
a solution of (1) and consider x̄ = 1⊗x̄. Since x∗ and x̄ are
equilibria of (5),

αL(x∗−x̄) + βA> 11>A(x∗−x̄) = 0 . (6)

Let Q11 = 1
2α(L + L>) + βA> 11>A. Then (6) implies

(x∗−x̄)>Q11(x∗−x̄) = 0.

Since G is weight-balanced, (L + L>) � 0. This along with
the fact that A> 11>A � 0 implies L>(x∗−x̄) = 0
and 1>A(x∗−x̄) = 0. Therefore, x∗ = 1⊗x∗, for some
x∗ ∈ Rm which satisfies Ax∗ = Ax̄ = b, as claimed.

The next result characterizes the convergence of (5).

Proposition IV.2. (Exponential stability of (5)): Let G be a
strongly connected and weight-balanced digraph. Then for all
α, β ∈ R>0, any trajectory of (5) converges exponentially to
a point of the form x∗ = 1⊗x∗, where x∗ ∈ Rm solves (1).

Proof: Consider a vector w ∈ Rmn in the null space
of Q11. Using the same line of arguments as in the proof of
Lemma IV.1, this implies that L>w = 0 and 1>A w = 0.
Therefore, along (5),

ẋ>w = −(αx> L>+β(A x−b)> 11>A)w = 0.

This means that the dynamics (5) are orthogonal to the null
space of Q11 and hence the component of x in the null space
of Q11, say xnull, remains constant. Given the initial condition
x(0), consider the particular equilibrium x∗ of (5) satisfying
x∗null = x(0)null. Since different equilibria differ only in their
null space component, x∗ defined this way is unique. Consider
the Lyapunov function candidate V : Rmn → R

V (x) =
1

2
(x−x∗)>(x−x∗).

The Lie derivative of V along the dynamics (5) is given by

Lψgrad V =− (x−x∗)>(αL x +βA> 11>(A x−b))

=− (x−x∗)>Q11(x−x∗) ≤ −2λ2(Q11)V.

The last inequality follows from applying the Courant-Fischer
theorem [19, Theorem 4.2.11] together with the fact that
(x−x∗)>w = 0 as xnull is constant. Using the monotonicity
theorem [19, Corollary 4.3.3], we further have

Lψgrad V ≤ −2 min

{
1

2
αλ2(L+ L>),βλ2(A> 11>A)

}
V.

Hence, the dynamics (5) is exponentially stable with a rate
depending on α, β, L and {Ai}ni=1.

B. Distributed Algorithm

We present a distributed algorithm to find a solution of (1),
which is based on the centralized algorithm (5) and involves
employing dynamic average consensus (cf. Section II) to
estimate the aggregate 1>(A x−b). Formally,

ẋ =− αL x−nβA> y, (7a)

ẏ =− αA L x−nβA A> y − γ L y, (7b)

with design parameter γ > 0. Here, each agent i ∈ {1, . . . , n}
updates yi ∈ Rm which estimates the average mismatch
1
n 1
>(A x−b). The dynamics (7) is distributed as each agent

just needs to know its state and that of its out-neighbors.
Whenever convenient, we refer to it as ψgdac. The following
result characterizes the equilibria of (7) and shows that the
total deviation from the average mismatch is conserved.

Lemma IV.3. (Equilibria of (7) and invariance of total
deviation): Let G be a strongly connected and weight-balanced
digraph. Then, if (x∗,0) is an equilibrium of (7) then x∗ =
1⊗x∗, where x∗ ∈ Rm. Moreover, for all α, β, γ ∈ R>0,
1>(y −A x) remains constant along the evolution of (7).

Proof: Let (x∗,0) be an equilibrium of (7). From (7a),
it follows that L x = 0, and hence x∗ = 1⊗x∗ for some
x∗ ∈ Rm, establishing the first statement. Now, consider the
derivative 1>(ẏ −A ẋ) = −γ 1> L y = 0. Hence, 1>(y −
A x) is conserved along the evolution of (7).

Remark 2. (Distributed initialization of the ψgdac algorithm):
From Lemma IV.3, we observe that in order for a trajectory
of (7) to converge to an equilibrium of the form (x∗,y∗) =
(1⊗x∗,0), where x∗ ∈ Rm solves (1), its initial condition
must satisfy 1> y(0) = 1>(A x(0) − b). This could be
implemented in a distributed way if each agent i ∈ {1, . . . , n}
chooses its initial states satisfying yi(0) = Aixi(0)− bi. One
trivial selection, for example, is x(0) = 0 and y(0) = −b. •

The next result characterizes the convergence of (7).

Theorem IV.4. (Exponential stability of (7) over balanced
networks): Let G be a strongly connected and weight-balanced
digraph and assume null(A) ⊆ null(Ai), for all i ∈
{1, . . . , n}. Let α, β ∈ R>0 and define

γ̄ = max

{
2

λ2(L+ L>)
λmax

(
Q>12Q12

λ2(Q11)
− nβA A>

)
, 0

}
,



where Q11= 1
2α(L + L>) + βA> 11>A and Q12 =

1
2 (nβA>+αL>A>+βA> 11>A A>). Then, for all γ ∈
(γ̄,∞), any trajectory of (7) with initial condition satisfy-
ing 1> y(0) = 1>(A x(0) − b) converges exponentially to
(x∗,0), where x∗ = 1⊗x∗ and x∗ ∈ Rm solves (1).

Proof: Define the error variable

e = y − 1

n
11>(A x−b), (8)

measuring the difference between the agents’ estimates and
the actual value of average mismatch. Note that

ė = ẏ − 1

n
11>A ẋ,

= −αΠ A L x−nβΠ A A> y − γ L y,

where Π = I − 1
n 11

>. Rewriting (7) in terms of x and e,

ẋ = −αL x−βA> 11>(A x−b)− nβA> e, (9a)

ė = −αΠ A L x−βΠ A A> 11>(A x−b) (9b)

− nβΠ A A> e− γ L e.

From the proof of Proposition IV.2, we know that if w ∈ Rmn
is in the null space of Q11, then L>w = 0 and 1>A w = 0.
Therefore, w = 1⊗w, where w ∈ Rm belongs to w ∈
null(A). By hypothesis, Aiw = 0 for all i ∈ {1, . . . , n}.
Therefore, from (9a), ẋ>w = 0, and the x component of the
equilibrium (x∗,y∗) of (7) satisfies x∗null = x(0)null and is
unique. With the initialization of the statement, it follows from
Lemma IV.3 that y∗ = 1⊗ 1

n 1
>(A x∗−b). Substituting this

value of y∗ in (7a) and following the proof of Lemma IV.1,
one can establish that the corresponding equilibrium is of the
form (1⊗x∗,0), where x∗ ∈ Rm is a solution of (1). Consider
the Lyapunov function candidate V2 : R2mn → R

V2(x, e) =
1

2
(x−x∗)>(x−x∗) +

1

2
e>e.

The Lie derivative of V2 along (9) is given by

Lψgdac V2 =− (x−x∗)>(αL x +βA> 11>(A x−b))

− nβ(x−x∗)>A>e− e>Π A(αL x +nβA>e)

− e>(βΠ A A> 11>(A x−b) + γ L e)

=−
[
x−x∗

e

]> [
Q11 Q12

Q>12 Q22

] [
x−x∗

e

]
,

where Q22 = 1
2γ(L + L>) +nβA A> and we have used the

fact that due to the mentioned initialization, 1> e = 0 from
Lemma IV.3. Since xnull is constant, (x−x∗)>w = 0 and
from the Courant-Fischer theorem [19, Theorem 4.2.11],

−(x−x∗)>Q11(x−x∗) ≤ −λ2(Q11)(x−x∗)>(x−x∗).

Also, since 1> e = 0 and G is weight-balanced, it again
follows from the Courant-Fischer theorem that

−e>Q22e ≤ −
1

2
γλ2(L+ L>)e>e− nβe>A A> e.

Therefore, we can upper bound the Lie derivative as

Lψgdac V2 ≤ −
[
x−x∗

e

]> [
λ2(Q11)I Q12

Q>12 Q̄22

]
︸ ︷︷ ︸

Q̄

[
x−x∗

e

]
,

where Q̄22 = 1
2γλ2(L+ L>)I +nβA A>. Next, we examine

the positive definiteness of Q̄. Using the Schur comple-
ment [20], Q̄ � 0 iff

1

2
γλ2(L+ L>)I + nβA A>− 1

λ2(Q11)
Q>12Q12 � 0 .

Hence, if γ > γ̄, then Q̄ � 0, and Lψgdac V2 ≤ −2λmin(Q̄)V2,
concluding the proof.

The null space condition in Theorem IV.4 makes sure that
x∗null remains invariant along the evolution of (7) and all
the agents approach the solution of (1) closest to x(0). This
condition is automatically satisfied if the matrix A is full rank,
or in other words, equation (1) has a unique solution. We
believe (and simulations also suggest) that if this condition
is not satisfied, then the x component of the dynamics still
converges to a solution of (1).
Remark 3. (Lower bound on γ): The lower bound γ̄ in
Theorem IV.4 is conservative in general. In fact, the algorithm
may converge even if this condition is not satisfied, something
that we have observed in simulation. Note also that although
α and β are free parameters, they should still be carefully
chosen as γ̄ depends on them. •

The result above can be extended to time-varying networks.
In case G(t) is time-varying, the algorithm in (7) reads as

ẋ = −αL(t) x−nβA> y, (10a)

ẏ = −αA L(t) x−nβA A> y − γ L(t)y. (10b)

The next result formally characterizes the convergence of (10).
Its proof is similar to that of Theorem IV.4 and hence omitted.

Theorem IV.5. (Exponential stability of (10) over time-
varying balanced networks): Let {G(t)}∞t=0 be a sequence
of strongly connected and weight-balanced digraphs with
uniformly bounded edge weights (i.e., there exists a ∈ (0,∞)
such that Aij(t) < a for all (i, j) and t ≥ 0), and assume
null(A) ⊆ null(Ai), for all i ∈ {1, . . . , n}. Let α, β ∈ R>0

and define γ̄(t) as

max

{
2

λ2(L(t)+L(t)>)
λmax

(
Q12(t)>Q12(t)

λ2(Q11(t))
−nβA A>

)
, 0

}
,

where Q11(t) = 1
2α(L(t) + L(t)>) + βA> 11>A

and Q12(t) = 1
2 (nβA>+αL(t)>A>+βA> 11>A A>).

Then for all γ ∈ (γ̂,∞), where γ̂ = sup
t≥0

γ̄(t), any trajectory

of (10) with initial conditions 1> y(0) = 1>(A x(0) − b)
converges exponentially to (x∗,0), where x∗ = 1⊗x∗ and
x∗ ∈ Rm solves (1).

V. DISTRIBUTED ALGORITHM OVER UNBALANCED
NETWORKS

In this section, we extend our approach to solve problem (1)
over graphs that are not necessarily balanced. In those scenar-
ios, since L1 6= 0, the one-to-one correspondence between the
desired equilibria of (5) or (7) and the solutions of (1) does
not hold anymore. To overcome this, we propose

ẋ = −αL V̄ x−nβA> y, (11a)

ẏ = −αA L V̄ x−nβA A> y − γ L V̄y, (11b)



where V̄ = diag(v̄), and v̄ is a positive right eigenvector with
eigenvalue 0 of L. Note that v̄ = 1⊗v̄, where v̄ is a positive
right eigenvector with eigenvalue 0 of L. Exponential stability
of (11) can be established by interpreting L ·diag(v̄) as the
Laplacian of a weight-balanced graph and then following the
same steps as in the proof of Theorem IV.4, but we omit it here
for reasons of space. Although (11) is distributed, it assumes
that agents have a priori knowledge of the corresponding
entries of v̄ which might be limiting in practice. To deal
with this limitation, we propose an algorithm that does not
require such knowledge by augmenting (11) with an additional
dynamics converging to v̄,

ẋ = −αL V x−nβA> y, (12a)

ẏ = −αA L V x−nβA A> y − γ L Vy, (12b)
v̇ = −L v, (12c)

where V = diag(v). Whenever convenient, we refer to
dynamics (12) as ψdist. Note that, unlike all the dynamics
discussed so far, ψdist is nonlinear.
Remark 4. (Distributed nature of (12)): The dynamics (12)
is out-distributed, but requires each agent i ∈ {1, . . . , n}
to have knowledge of its in-degree because L = Din−A
and the graph is not weight-balanced. If we use instead the
out-Laplacian L = Dout−A, then one could still define an
equivalent algorithm for (11) with L V̄ replaced by V̄ L,
but (12c) would look like v̇ = −L> v, which would require
state information from in-neighbors too. •

The next result characterizes the convergence of (12).

Theorem V.1. (Exponential stability of (12) over unbalanced
networks): Let G be a strongly connected digraph and assume
null(A) ⊆ null(Ai), for all i ∈ {1, . . . , n}. Let α, β ∈ R>0

and define

γ̄=max

{
2

λ2(L V̄ + V̄ L>)
λmax

(
Q>12Q12

λ2(Q11)
− nβA A>

)
, 0

}
,

where Q11 = 1
2 (αL V̄ + V̄ L>) + βA> 11>A, Q12 =

1
2 (nβA>+αV̄ L>A>+βA> 11>A A>), v̄ is the positive
eigenvector with eigenvalue 0 of L satisfying 1> v̄ = 1, and
V̄ = diag(v̄). Then, for all γ ∈ (γ̄,∞), any trajectory of (12)
with initial condition satisfying 1> y(0) = 1>(A x(0) − b)
and v(0) = 1

n 1, converges exponentially to (x∗,0, v̄), where
x∗ = 1⊗x∗ and x∗ ∈ Rm solves (1), and v̄ = 1⊗v̄.

Proof: From [11, Proposition 2.2], we have that v(t) > 0
for all t ≥ 0. Also, since 1> L = 0, 1> v is conserved along
the evolution of (12c). Hence v(t) → v̄ exponentially fast
with a rate determined by the non-zero eigenvalue of L with
the smallest real part. Let us interpret the dynamics (12a)-(12b)
as the dynamics (11) with some disturbance d(t) defined by

d =

[
dx

dy

]
=

[
−αL(V − V̄) x

−αA L(V − V̄) x−γ L(V − V̄)y

]
,

which goes to 0 as t→∞. Consider a vector w ∈ null(Q11).
Then as in the proof of Theorem IV.4, w = 1⊗w, where
w ∈ null(A) and by hypothesis, Aiw = 0 for all i ∈
{1, . . . , n}. Since 1> L = 0, therefore, w>dx = 0 and we
still have w>ẋ = 0, and the x component of the equilibrium

(x∗,y∗, v̄) of (12) satisfies x∗null = x(0)null and is unique.
With the initialization of the statement and following the
same steps as in the proof of Lemma IV.3, one can establish
that y∗ = 1⊗ 1

n 1
>(A x∗−b). Substituting this value of y∗

in (12a) and following the proof of Lemma IV.1, one can
establish that the corresponding equilibrium is of the form
(1⊗x∗,0, v̄), where x∗ ∈ Rm is a solution of (1). Consider
now the Lyapunov function candidate V3 : R3mn → R

V3(x, e,v) = V2(x, e) +
δ

2
(v − v̄)>P(v − v̄),

where δ > 0, P = V̄−1, e is defined as in (8), and V2 is
the same function as in the proof of Theorem IV.4. The Lie
derivative of V3 along (12) is given by

Lψdist V3 =−
[
x−x∗

e

]>[
Q11 Q12

Q>12 Q22

][
x−x∗

e

]
+(x−x∗)>dx

+ e>de − δ(v − v̄)>(L>P + P L)(v − v̄),

where de = −αΠ A L(V − V̄) x−γ L(V − V̄)e, and
Q22 = 1

2γ(L V̄ + V̄ L>) + nβA A>. Interestingly, L V̄
can be interpreted as the Laplacian of a weight-balanced
graph and as a result, L V̄ + V̄ L> � 0 implying that
L>P + P L � 0. Once again, following Lemma IV.3, one can
establish that with the initialization of the statement, 1> e = 0
and therefore using the Courant-Fischer theorem [19, Theorem
4.2.11] together with the fact that (x−x∗)>w = 0 due to
invariance of xnull, we can upper bound the Lie derivative as

Lψdist V3≤−
[
x−x∗

e

]>[
λ2(Q11)I Q12

Q>12 Q̄22

]
︸ ︷︷ ︸

Q̄

[
x−x∗

e

]

+α‖x−x∗ ‖‖L ‖‖v − v̄‖(‖x−x∗ ‖+ ‖x∗ ‖)
+α‖e‖‖Π A L ‖‖v − v̄‖(‖x−x∗ ‖+ ‖x∗ ‖)
+γ‖e‖‖L ‖‖v − v̄‖‖e‖−δλ2(L>P + P L)‖v − v̄‖2,

where Q̄22 = 1
2γλ2(L V̄ + V̄ L>)I + nβA A>. Define z =

[‖x−x∗ ‖; ‖e‖; ‖v− v̄‖]. If γ > γ̄, then Q̄ � 0 and from the
Courant-Fischer theorem, we have

Lψdist V3 ≤ − z>

λmin(Q̄) 0 Q̂13(z)

0 λmin(Q̄) Q̂23(z)

Q̂13(z) Q̂23(z) δλ2(L>P + P L)


︸ ︷︷ ︸

Q̂(z)

z,

where Q̂23(z) = − 1
2α‖Π A L ‖(z +‖x∗ ‖) − 1

2γ‖L ‖ z and
Q̂13(z) = − 1

2α‖L ‖(z +‖x∗ ‖). Using the Schur comple-
ment, one can verify that for a given value of z, Q̂(z) � 0 iff

δ > δ̄(z) =
1

λmin(Q̄)λ2(L>P + P L)
(Q̂13(z)2 + Q̂23(z)2).

Hence, if δ > δ̄(z(0)), then Lψdist V3 ≤ −λmin(Q̂(z(0))) z> z.
This along with the fact that 1

2 min{1, δλmin(P)}‖ z ‖2 ≤
V3 ≤ 1

2 max{1, δλmax(P)}‖ z ‖2, implies that V3 satisfies the
hypotheses of [21, Theorem 4.10] for exponential stability,
completing the proof.

The exponential convergence of algorithms (5) and (7)
for weight-balanced graphs, and (11) for unbalanced graphs
follows from their linear nature. For algorithm (12), expo-
nential convergence could be attributed to the fact that the



dynamics (12c) converge exponentially and hence, after some
time, (12a)-(12b) and (11) are essentially the same.
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Fig. 1: Communication topologies among the agents. The edge weights are
adjusted to make the graphs either weight-balanced or unbalanced, as needed.
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Fig. 2: Evolution of the error between the actual solution and the average state
using the proposed algorithms from initial condition x(0) = 0, y(0) = −b,
over the graphs shown in Fig. 1. The algorithms are implemented in discrete
time with a stepsize of 2.5× 10−3, and the values of α = 2, β = 0.1 and
γ = 20. Straight lines correspond to exponential convergence.

VI. SIMULATIONS

We consider 10 agents communicating over the digraphs
shown in Fig. 1, seeking to solve problem (1) with {Ai}10

i=1 ∈
R5×5 and {bi}10

i=1 ∈ R5. Since the proposed dynamics are
in continuous time, we use a first-order Euler discretization
with stepsize 2.5 × 10−3 for the MATLAB implementation.
The edge weights for various cases are adjusted to make the
graphs weight-balanced and unbalanced, resp. For the time-
varying case, at every iteration, the communication graph is
switched randomly between G1 and G2. In Fig. 2, we plot the
evolution of the error between the actual solution of (1) and
the average state x̄ = 1

n 1
> x using (7), (10) and (12). The

initial conditions for all the algorithms are chosen according
to Remark 2. Even though G2 (with 4.6 as the minimum of the
real parts of non-zero eigenvalues of L and λ2(L+ L>) = 7.6,
for the weight-balanced case) is more connected than G1 (with
1.9 as the minimum of the real parts of non-zero eigenvalues
of L and λ2(L+ L>) = 3.8, for the weight-balanced case),
convergence is slower. The error in the time-varying case is
lower and upper bounded by the error for G1 and G2, resp.

VII. CONCLUSIONS AND FUTURE WORK

We have presented continuous-time algorithms to solve lin-
ear algebraic equations whose problem data is represented as

the summation of the data of individual agents. The proposed
algorithms are distributed over general directed networks, do
not require the individual agent matrices to be positive definite,
and are guaranteed to converge to a solution of the linear
equation exponentially fast. Future work will involve formally
characterizing the convergence when the null space condition
is not satisfied, and explore the design of distributed algorithms
for finding least-square solutions when exact ones do not exist,
extension to cases where the problem data is time-varying, and
the communication graph is unbalanced and time-varying.
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