
Data-Driven Reconstruction of Firing Rate Dynamics in Brain Networks

Xuan Wang Jorge Cortés

Abstract— This paper studies the reconstruction from data
of firing rate dynamics in linear-threshold network models of
brain activity. Instead of identifying the system paramaters
directly, which would lead to a large number of variables
and a highly non-convex objective function, the novelty of our
approach stems from reformulating the identification problem
as a scalar variable optimization of a discontinuous, nonconvex
objective function. We formally show that the reformulated
optimization problem has a unique solution and establish that
it leads to the identification of all the desired system parameters.
These results form the basis for the introduction of an algorithm
to find the optimizer that identifies the different regions in
the domain of definition of the objective function. The results
not only validate the system identifiability but also provide the
foundation for further research on data-driven control of firing
rate dynamics. We demonstrate the algorithm effectiveness in
simulation.

I. INTRODUCTION

A key goal of neuroscience is to understand brain function
from its dynamical behavior. Among all the measures for
brain neuronal activity, firing rate (e.g., number of spikes
per second) is a widely adopted tool due to its trial-to-trial
reproducibility [1]. Brain neurons are highly interactive [2]
amd so are their firing behaviors. A common way to describe
such interaction is by means of network models [3], [4],
composed of a set of nodes with internal dynamics rep-
resenting populations of neurons and the associated edges
with weights characterizing the nodal interactions. However,
measuring and quantifying the strength of such interactions
is challenging. Motivated by this, our research focuses on
using sampled data to reconstruct the firing rate dynamics
of brain neural networks, with the ultimate goal of enabling
prediction and control of such models.

Literature review: In control theory, two techniques
closely related to our research goals are system identification
and data-driven control. The former aims to learn the system
parameters from data; the latter aims to skip the identification
process and design data-based controller directly. With abun-
dant literature in these fields [5], if the systems are linear,
well studied frameworks have been proposed for both system
identification [6] and data-driven control [7]. However, for
nonlinear systems, since they are inherently complex and
vary in model structures, developing unified approaches
for general systems can be challenging. In fact, nonlinear
identification usually requires a model selection process [8]

X. Wang is with the Department of Electrical and Computer Engineering,
George Mason University, Fairfax, xwang64@gmu.edu. This work started
when he was a postdoc researcher at University of California, San Diego. J.
Cortés is with the Department of Mechanical and Aerospace Engineering,
University of California, San Diego, cortes@ucsd.edu

before parameterizing the system; and for nonlinear data-
driven control, the controller structures are usually assumed
to be known a priori, for example, in iterative feedback
tuning [9], unfalsified control [10], and simultaneous pertur-
bation stochastic approximation [11]. Apart from these, there
also exist methods like model-free adaptive control [12] that
provide general data-driven approaches for a wider range of
nonlinear systems at the cost of ignoring known information
about the model structure, potentially leading to performance
losses on control accuracy or training efficiency.

In the context of network reconstruction of firing rate
dynamics, [13], [14] present results for the linear case by
assuming the system can be linearized around its fixed point.
Here, following [15], [16], we employ a linear-threshold
network model to describe the dynamical behavior, and
then introduce a novel identification method to determine
its parameters. Such identification process looks similar to
the training of neural networks with the rectified linear unit
(RELU) activation function [17] in the deep learning liter-
ature. However, the research goal for the two problems are
fundamentally different. Namely, here we seek to reconstruct
the dynamical behavior of a real system, whose nodes’ states
evolve with time, corresponding to their current states and the
system input. In deep learning, the static network model [18],
[19] seeks to establish a virtual mapping between input and
output data sets, and the model does not involve dynamical
behavior. Because of this difference, results in both fields are
not directly transferable.

Statement of Contributions: We study the reconstruction
from data of firing rate dynamics in linear-threshold net-
work models. We start by noting that the identification of
all system parameters would give rise to a highly non-
convex problem with a large number of variables. Instead,
our approach takes advantage of the specific structure of
the linear-threshold dynamics to formulate a scalar variable
optimization problem with an piecewise smooth objective
function that in general is discontinuous and nonconvex. Our
analysis shows that the minimizer of the objective function is
unique and establishes that the solution of the optimization
problem leads to the identification of all the desired system
parameters. Based on this fact, we propose an algorithm that
exhaustively identifies the different regions in the domain
of definition of the objective function where it is smooth.
We show that the proposed algorithm finds the optimizer
and characterizes its time and computational complexity. We
validate the effectiveness of the proposed algorithm in both
synthetic and experimental data from the activity of rodents’
brain executing a selective listening task. For reasons of
space, the proofs are omitted and will appear elsewhere.

Notation: Let 1r denote the vector in Rr with all entries
equal to 1. Let Ir denote the r × r identity matrix. We
let col {A1, A2, · · · , Ar} =

[
A>1 A>2 · · · A>r

]>
be a

vertical stack of matrices Ai possessing the same number
of columns. Let x[i] ∈ R be the ith entry of vector x;
correspondingly, let M [i, j] ∈ R be the entry of matrix M
on its ith row and jth column. Let M> be the transpose of
a matrix M . For x ∈ R, define the threshold function [x]s0
with s > 0 as

[x]s0 =

s for x > s
x for 0 ≤ x ≤ s
0 for x < 0

For a vector x, [x]s0 denotes the component-wise application
of this definitions. For x ∈ Rr and 1 ≤ i ≤ r, x−i denotes
the vector in Rr−1 obtained by removing the ith entry of x.

II. PROBLEM FORMULATION

In this section, we first introduce a continuous-time firing
rate dynamical model for neuronal networks following [15]
and then convert it to its discrete-time form.

Consider a network, where each node represents a popu-
lation of neurons with similar activation patterns, evolving
according to the linear-threshold dynamics, for t ≥ 0,

τ ẋ(t) = −x(t) + [Wx(t) +Bu(t)]
s
0 , (1)

Here, τ is a time constant capturing the timescale of the
neuronal system [1], x ∈ Rn, x ≥ 0 is the system state,
corresponding to the firing rate of the nodes; and W ∈
Rn×n is the synaptic connectivity matrix, characterizing
the interactions (excitation or inhibition) between different
nodes. For i ∈ {1, . . . , n}, we assume W [i, i] = 0, that is,
the nodes do not have self-loops. u ∈ Rm and B ∈ Rn×m
(m ≤ n) are the external inputs and the associated input
matrix. For each node, the stimulation it receives from its
neighboring nodes and external inputs is non-negative and
bounded by a threshold s, denoted by [·]s0.

The discretization of the system (1) by the forward Euler
method with a constant step-size δ � τ yields

τ

δ

(
x+ − x

)
= −x + [Wx +Bu]

s
0 . (2)

Here, x, u are the current system state and input, and x+

is the system state after the interval δ. For convenience of
presentation, let

α , 1− δ

τ
∈ (0, 1), WD ,

δ

τ
W, BD ,

δ

τ
B, sD ,

δ

τ
s,

and rewrite (2) into an equivalent form as:

x+ = αx + [WDx +BDu]
sD
0 . (3)

We assume the system states xd, x+
d , and the system inputs

ud can be sampled. We denote the data samples by xd(k),
x+
d (k) and ud(k), respectively, for k ∈ {1, . . . , Td}, where

Td is the total number of data sets.
Remark 2.1: (Data collection): Note that the index k in

the notations xd(k), x+
d (k) and ud(k) is simply an indicator

that distinguishes one data sample from another. In fact,

for each sample set, we only require that the time interval
between x+

d (k) and xd(k) satisfies the discretization step-
size δ. Of course, it is possible that all the sampling instances
of the data are chosen consecutively from a system trajectory
with a fixed interval δ, which means that all the data samples
are head-tail connected, i.e., x+

d (k) of the former data can be
used as the xd(k) of the latter one. However, in general, we
allow the data samples to be collected at independent time
instances, and even from various trajectories of the system.
�

Problem 1: Given data samples xd(k), x+
d (k) and ud(k),

k ∈ {1, . . . , Td}, identify the parameters α, WD, BD, and
sD of system (3).

To solve this problem, one could seek to fit the model (3)
with the given data samples xd(k), x+

d (k) and ud(k).
However, due to the presence of the (non-linear, non-convex)
threshold function, such approach would involve a non-
convex minimization problem with a large number of vari-
ables. Motivated by this observation, we develop a more
efficient approach by exploiting the specific structure of (3).

III. SCALAR OPTIMIZATION FOR PARAMETER
IDENTIFICATION

Here, we reformulate the parameter identification as a
scalar variable optimization problem. For k ∈ {1, . . . , Td},
bringing system inputs ud(k) and states xd(k), x+

d (k)
into (3), we have

x+
d (k)− αxd(k) = [Hpd(k)]

sD
0 (4)

where pd(k) = col {xd(k),ud(k)}, and

H =
[
WD BD

]
=

h>1
h>2

...

h>n

 ∈ Rn×(n+m). (5)

Note that in (5), since the diagonal entries of WD are
zero, i.e., hi[i] = 0, not all the entries of matrix H
are variables that need to be parameterized for identifi-
cation. To characterize this, for i ∈ {1, . . . , n}, define
h̄i = (hi)−i ∈ Rn+m−1, which removes the ith entry
from hi. Correspondingly, let p̄i(k) = (pd(k))−i. Let
h = col {h̄1, h̄2, . . . , h̄n} ∈ Rn(n+m−1) and Pd(k) =
diag {p̄>1 (k), p̄>2 (k), . . . , p̄>n (k)} ∈ Rn×n(n+m−1). Then,
one can write

Hpd(k) =

h>1 pd(k)

h>2 pd(k)
...

h>n pd(k)

 =

h̄>1 p̄1(k)

h̄>2 p̄2(k)
...

h̄>n p̄n(k)

 =

p̄>1 (k)h̄1

p̄>2 (k)h̄2
...

p̄>n (k)h̄n

= Pd(k)h, (6)

where the second equality holds because hi[i] = 0. All
entries in h are variables to be identified. To proceed, define

compact vectors/matrices:

X =

xd(1)

xd(2)
...

xd(Td)

 , X+ =

x+
d (1)

x+
d (2)

...
x+
d (Td)

 , P =

Pd(1)

Pd(2)
...

Pd(Td)

 (7)

such that X ∈ RnTd ; X+ ∈ RnTd ; P ∈ RnTd×n(n+m−1).
Then, (4) reads

X+ − αX = [Ph]
sD
0 (8)

Now, given variables vi ≥ 0 to be determined, let

f(X+−αX)[i]=

vi if (X+−αX) [i]=max(X+−αX)

−vi if (X+−αX) [i] = 0

0 otherwise
(9)

for i ∈ {1, . . . , nTd}. Note that, with the right choice of vi’s,
one can decompose Ph = [Ph]

sD
0 + f(X+ − αX), i.e., the

role of f(X+ − αX) is to compensate for the parts of Ph
that are truncated by the threshold [·]sD0 . Equation (8) can
then be written as

X+ − αX − Ph + f(X+ − αX) = 0 (10)

To further simply the non-linear mapping f(X+−αX), we
rewrite

f(X+ − αX) = C(α)v, v ≥ 0 (11)

where for any fixed α, C(α) ∈ RnTd×d(α) is a matrix that
can be constructed by the following two-step procedure:

1) Define a diagonal matrix E(α) ∈ RnTd×nTd such that
for all i ∈ {1, . . . , nTd},

E(α)[i, i] =

1 if (X+−αX) [i]=max(X+−αX)

−1 if (X+−αX) [i] = 0

0 otherwise
(12)

2) Construct C(α) by removing all zero columns in E(α).
Note that the number of columns of C(α), denoted d(α), is
dependent on α. This matrix has the following properties

C(α)>C(α)=Id(α) and C(α)C(α)>=E(α)2. (13)

The following result is an immediate consequence of these
definitions.

Lemma 3.1: (Matrices E(α) and C(α) are piecewise
constant): Given vectors X+,X ≥ 0, the matrices E(α)
and C(α) are piecewise constant functions of α.

Looking at the expression (11) and the definition
of f(X+ − αX) in (9), we see that the vector v ∈ Rd(α)
encodes the entries vi’s whereas the sign in front of vi gets
encoded in the corresponding entry of C(α). Note that the
structure of C(α) and the value of v depend nonlinearly on
the choice of α. Substituting (11) into (10),

X+ − αX + C(α)v − Ph = 0, v ≥ 0 (14)

To find α, h, and v that satisfy (14), we can consider them
as the critical points of the following objective function

J (α, v,h) =
1

2
‖X+−αX+C(α)v−Ph‖22 (15)

The minimization of (15) is subject to the constraint v ≥ 0.
The function J is a non-smooth function of α, but smooth
in h and v. Thus, if we temporarily drop the inequality
constraint v ≥ 0, and let

Q(α) =
[
C(α) −P

]
, ξ =

[
v

h

]
, (16)

equation (15) turns into

J (α, ξ) =
1

2
‖X+ − αX +Q(α)ξ‖22, (17)

which is quadratic in ξ. For fixed α, its minimizer is
characterized by

∂J (α, ξ)

∂ξ
= Q(α)>

(
X+ − αX +Q(α)ξ

)
= 0.

If Q(α)>Q(α) is non-singular, the solution takes the form[
v̂

ĥ

]
= ξ̂ = −

(
Q(α)>Q(α)

)−1Q(α)>
(
X+ − αX

)
(18)

Substituting back into the definition of J , the problem
(assuming v̂ ≥ 0) becomes

min
α

J (α) =
1

2
‖M(α)

(
X+ − αX

)
‖22, (19)

where M(α) = I − Q(α)
(
Q(α)>Q(α)

)−1Q(α)>. Note
that the definition of ξ̂ implies that, for any ξ,

‖M(α)
(
X+ − αX

)
‖22 ≤ ‖X+ − αX +Q(α)ξ‖22 (20)

By comparing (17) and (19), the advantage of the latter is
that the dimension of the optimization problem is reduced
from (1 + n(n+m) + d(α)) to 1. This kind of elimination
of variables is referred to as separable nonlinear least squares
problems [20].

Nevertheless, several challenges must be addressed. First,
our derivation above requires Q(α)>Q(α) to be non-
singular, which means thatQ(α) must have full column rank.
Second, to identify the parameter α in (3) using (19), we need
to guarantee that the minimizer of the latter is unique. Third,
our derivation above has neglected the constraint v ≥ 0. To
guarantee that the two objective functions have the same
minimizer, we must show that v̂ in (18) satisfies v̂ ≥ 0. We
tackle each of these challenges next.

IV. IDENTIFICATION OF THE FIRING RATE MODEL

In this section, we address the challenges outlined in
Section III regarding the reformulation of the parameter
identification as the scalar optimization problem (19). This
provides the basis for the design of an algorithm to identify
the parameters of system (3).

A. Establishing the validity of scalar optimization

Here we show that the scalar optimization problem (19)
provides a valid reformulation of the parameter identification
problem. We make the following assumption.

Assumption 1: Let α? be the true parameter of sys-
tem (3). Given the measured system states xd(k) and
system inputs ud(k), k ∈ {1, . . . , Td}, the matrix(
I − E(α?)2

) (
I − E(α)2

) [
X P

]
has full column rank

for all α ∈ (0, 1) 1.
Remark 4.1: (Validity of Assumption 1): Note that in

Assumption 1, all the matrices E(α?), E(α), X and P
are associated with the measurement data. Specifically,
X and P are defined from ud(k) and xd(k) in (7);
E(α?) and E(α) are implicitly determined by xd(k) and
x+
d (k) in (7) and (12). Besides, the row dimension of(
I − E(α?)2

) (
I − E(α)2

) [
X P

]
grows with the number

of data samples Td, in general, one can expect Assumption 1
to hold for sufficiently large Td. A sufficient way of checking
whether Assumption 1 holds without knowing α? is to com-
pute the column rank of

(
I − E1)2

) (
I − E2)2

) [
X P

]
for

all E1, E2 ∈ E, where E = {E(α) | α ∈ (0, 1)} is the set
of all possible E(α), which is a finite set. The finiteness
of E arises directly from the fact that E(α) is a diagonal
matrix, and its entries can only be ±1, 0. The cardinality of
E is therefore at least bounded by |E| ≤ 3nTd , which grows
exponentially with the dimension and the number of data
sets. Actually, as we show later in the proof Theorem 4.3b, a
much better bound can be obtained as |E| ≤ 4nTd+2, which
greatly reduces the complexity of validating Assumption 1.
�

The following result establishes that the scalar optimiza-
tion is a valid way of finding the parameters of the sys-
tem (3).

Proposition 4.2: (Validity of scalar optimization): Under
Assumption 1, the following statements hold:

a. [Invertibility] For all α ∈ (0, 1), Q(α) =
[
C(α) −P

]
has full column rank;

b. [Uniqueness of minimizer] The objective function
J (α) in (19) has a unique minimizer α̂ = α?;

c. [Satisfaction of constraints] Given the unique α̂, the
remaining parameters v̂ and ĥ can be computed by
equation (18). In addition, v̂ ≥ 0 holds, and ĥ is
associated with the true parameters of system (3).

B. Algorithm for parameter identification

Given our discussion in Section III and Proposition 4.2, we
know that all the parameters of system (3) can be determined
by solving the minimization (19). The latter is challenging
given the piecewise-constant nature of M(α) as a function of
α, which in general, makes J discontinuous and nonconvex.

We start by observing that the feasible region of (19) can
be refined. From (8), we know X+ − αX = [Ph]

sD
0 ≥ 0.

Thus, given data sets X+ and X , the feasible region of α

1Since the true α? is unknown, the condition is required to hold for all
α ∈ (0, 1).

can be shrunk to (0, αmax], where

αmax = min

(
1,min

i

(
X+[i]

X [i]

))
for all i ∈ {1, . . . , nTd} and X [i] 6= 0. Note that if
αmax = 1, this procedure actually enlarges the feasible
region of α (with respect to (0, 1)) by adding the point α = 1.
However, since the extra point has no impact to the result
of Proposition 4.2b, it does not change the solution to the
optimization problem (19).

The key idea of the algorithm proposed here to solve the
optimization problem (19) is to identify the domains where
M(α) are constant matrices. Within each domain, (19) is
a quadratic optimization problem, so its solution can be
directly obtained. We then compare all the solutions to get
the global optimum. In order to do so, a key challenge is to
determine the boundary points on (0, αmax], so that on each
domain, M(α) is constant. As we show next, the boundary
points is linear in nTd. Algorithm 1 presents the pseudocode.

Theorem 4.3: (Properties of Algorithm 1): The Algorithm
1 has the following properties:

a. [Minimizer] The output value α̂ is the minimizer to
problem (19);

b. [Complexity] Algorithm 1 terminates in at most 2nTd+
1 number of iterations. The computational complexity
of the algorithm is O(nTd)

3.34, where n is the number
of system nodes and Td is the number of sampled data;

c. [Identification] Suppose Assumption 1 holds. Given the
α̂ = α?, the variables v? and h? can be computed as:[
v?

h?

]
= −

(
Q(α?)>Q(α?)

)−1Q(α?)>
(
X+ − α?X

)
(21)

Here, α? is the true parameter of system (3). According
to equations (5)-(6), h? can be decoded as the matrices
WD and BD in system (3). Finally, sD can be deter-
mined by sD = max (X+ − α?X).

Remark 4.4: (Size of the data and computational com-
plexity): We have observed, cf. Remark 4.1, that large Td
is beneficial to make Assumption 1 hold while, at the same
time, according to Theorem 4.3b, increasing the computa-
tional complexity of the algorithm. Since we do not consider
measurement noise, it is sufficient to consider the smallest
data set that satisfies Assumption 1 for the effectiveness of
Theorem 4.3, keeping the computational complexity low.
However, in the presence of measurement noise, large Td
can also be beneficial for obtaining more accurate system
parameters. We plan to explore further the trade-off between
accuracy and algorithm computational complexity. �

V. EXAMPLES

In this section, we present simulation results to validate
the effectiveness of the proposed results.

A. Simulation with synthetic data

We consider a network with n = 10 nodes. The dimension
of input u is chosen as m = 10. Given the state/input

Algorithm 1: Solving the optimization problem (19).

1 Input X+, X and P;
2 Define S =M = Z = ∅; T ∈ {1, . . . , nTd};
3 Initial values: ψ0 = 0, ` = 0;
4 Initial sets: S =

{
i
∣∣ X+[i] = max (X+) , i ∈ T

}
; Z =

{
i
∣∣ X+[i] = 0, i ∈ T

}
; M =

{
i
∣∣ i 6∈ S⋃Z, i ∈ T };

5 while ψ` < αmax do
6 Find the smallest ψ̂ > ψ`, such that max

j∈M

(
X+ − ψ̂X

)
[j] = max

(
X+ − ψ̂X

)
or min

j∈M

(
X+ − ψ̂X

)
[j] = 0 ;

// When α is on different sides of ψ̂, the C(α)’s take different values.

7 Let ψ`+1 = ψ̂;

8 Obtain CA` = C(α =
ψ` + ψ`+1

2
) ;

9 Compute QA` =
[
CA` −P

]
and MA` = I −QA`

(
Q>A`QA`

)−1Q>A` ; // QA` is unchanged for

α ∈ (ψ`, ψ`+1).

10 Solve α̂A` = arg min
αA`∈(ψ`,ψ`+1)

1

2
‖MA`

(
X+ − αA`X

)
‖22. ; // Solve the optimization problem.

11 Compute J (α̂A`) = 1
2‖MA` (X+ − α̂A`X) ‖22;

12 Obtain CB` = C(α = ψ`+1) ;

13 Compute QB` =
[
CB` −P

]
and MB` = I −QB`

(
Q>B`QB`

)−1Q>B`;
14 Let α̂B` = ψ`+1. Compute J (α̂B`) = 1

2‖MB` (X+ − α̂B`X) ‖22 ;
15 Update S =

{
i
∣∣ (X+ − ψ`+1X) [i] = max (X+ − ψ`+1X) , i ∈ T

}
; Z =

{
i
∣∣ (X+ − ψ`+1X) [i] = 0, i ∈ T

}
;

M =
{
i
∣∣ i 6∈ S⋃Z, i ∈ T } ; // Update sets for α = ψ`+1.

16 ` = `+ 1 ;
17 end
18 Output α̂ = arg min

α∈{α̂A`}
⋃
{α̂B`}

J (α)

dimensions of the system, we first create matrices WD ∈
R10×10 and BD ∈ R10×10. By definition, WD is a matrix
with 0 diagonal entries. For the non-zero entries of WD,
we make sure they are consistent with Dale’s law2, i.e.,
each column of WD is either non-negative or non-positive
depending on the excitatory or inhibitory properties of the
nodes. The values of these entries are randomly chosen
from [0 0.1] or [−0.05 0] with uniform distributions. For
BD ∈ R10×10, all its entries are randomly chosen from
[−0.04 0.06] with uniform distributions. We set α? = 0.9
and sD = 2. Based on WD, BD, α and sD, we now create
data samples, for k ∈ {1, . . . , Td} and Td = 250. In this
simulation, for different k, xd(k) and ud(k) are chosen
independently, i.e., the entries of xd(k) are randomly chosen
from [0 4]; the entries of ud(k) are randomly chosen from
[0 6], with uniform distributions. For each pair of xd(k) and
ud(k), we compute the x+

d (k) based on the discrete-time
system model (4). It is worth pointing out that the obtained
data set satisfies Assumption 1 for all α ∈ (0, 1).

By running Algorithm 1, we obtain αmax = 0.9160, and
the function value of J (α) takes 0.000 at α? = 0.9000. This
validates that Algorithm 1 is capable of finding the minimizer

2Dale’s law: A neuron performs the same chemical action at all of its
synaptic connections to others, regardless of the identity of the target cell.

of the objection function (19), which is also the true param-
eter of the system. Then by equation (21) and definition (5),
one can obtain the matrices WD and BD by computing h?.
Finally, we identify sD = max (X+ − α?X) = 2.00.

0.84 0.85 0.86 0.87 0.88 0.89 0.9 0.91 0.92

0

5

10

15

20

25

30

35

40

45

50

Fig. 1. Identify the system parameter α on a 10-node network.

Fig. 1 shows how J changes discontinuously with α. The
minimizer of the function, which is nonconvex, appears at an
isolated point, which corresponds to one ψ` in Algorithm 1.
Directly discretizing the feasible region (0, αmax] for α even
with a small stepsize could easily miss the isolated global
minimizer.

B. Reconstructing the firing rate dynamics in rodents’ brain

Here, we also apply our algorithm to a real-world example,
the goal-driven attention of rodents. The data we use is from
a carefully designed experimental paradigm [21], [22] that
involves goal-driven selective listening in rodents. During
the experiment, the rodents are given warble sounds, and the
firing rates of the neuron cells are recorded in different areas
of their brains. By using a classification method introduced
in [23], we classify all the neuron cells into 23 = 8 groups
based on a combination of the following properties: region
(PFC, A1); type (excitatory, inhibitory); and encoding (task
relevant, irrelevant). Then we consider each class of neurons
as a node of the system, and use the average firing rate of
the populated neurons as the state of the node. The sampling
duration in our example is 14 seconds, for t ∈ [−7, 7] with
an interval δt = 0.1s. The stimuli (warble) happens at t = 0.

-7 -5 -3 -1 0 1 3 5 7

6

7

8

9

10

11

12

Model: Task relevant

Data: Task relevant

Model: Task irrelevant

Data: Task irrelevant

Fig. 2. Reconstructing the firing rate dynamics in rodents’ brain [22].

In order to use the above introduced data set to validate our
algorithm, we choose two nodes as the system states (n = 2),
which are corresponding to the A1-inhibitory-relevant, and
the A1-inhibitory-irrelevant groups of neurons. We take the
readings of the other 6 nodes, along with three extra signals
(i.e. system time ut = t, impulse stimuli us = ∆(t), and a
constant background activity ub = 1) as system inputs. Thus,
the dimension of the input is m = 9. After identifying the
system with Algorithm 1, we use the same initial state at
x(t = −7), to compare the experimental data and the firing
rate dynamics reconstructed by our model in Fig. 2. It can
be seen that the identified linear-threshold network model is
able to capture the trends of the real experimental data.

VI. CONCLUSIONS AND FUTURE WORK

We have considered the reconstruction of the firing rate
dynamics in linear-threshold network models of brain activ-
ity. The study of the structure of the parameter identification
problem has led us to introduce a scalar variable optimization
with a piecewise smooth objective function. Our analysis
of the latter has shown that its minimizer is unique and
established that its solution leads to the identification of
all the desired system parameters. Based on this fact, we
have proposed an exhaustive algorithm that identifies the
regions in the domain of definition of the objective function
to find its optimizer. We have illustrated the effectiveness
of the proposed algorithm in simulation. Future work will

extend the present treatment to consider data with measure-
ment noise and investigate the trade-offs between accuracy,
computational complexity, and size of datasets.

REFERENCES

[1] W. Gerstner, A. K. Kreiter, H. Markram, and A. V. Herz, “Neural
codes: firing rates and beyond,” Proceedings of the National Academy
of Sciences, vol. 94, no. 24, pp. 12 740–12 741, 1997.

[2] E. M. Izhikevich, Dynamical Systems in Neuroscience. Cambridge,
MA: MIT Press, 2007.

[3] D. S. Bassett and O. Sporns, “Network neuroscience,” Nature Neuro-
science, vol. 20, no. 3, p. 353, 2017.

[4] M. Rubinov and O. Sporns, “Complex network measures of brain
connectivity: uses and interpretations,” NeuroImage, vol. 52, no. 3,
pp. 1059–1069, 2010.

[5] Z. Hou and Z. Wang, “From model-based control to data-driven
control: Survey, classification and perspective,” Information Sciences,
vol. 235, pp. 3–35, 2013.

[6] K. J. Åström and P. Eykhoff, “System identification: a survey,”
Automatica, vol. 7, no. 2, pp. 123–162, 1971.

[7] C. D. Persis and P. Tesi, “Formulas for data-driven control: Stabi-
lization, optimality and robustness,” IEEE Transactions on Automatic
Control, vol. 65, no. 3, pp. 909–924, 2019.

[8] X. Hong, R. J. Mitchell, S. Chen, C. J. Harris, K. Li, and G. W. Irwin,
“Model selection approaches for non-linear system identification: a
review,” International journal of systems science, vol. 39, no. 10, pp.
925–946, 2008.

[9] H. Hjalmarsson, S. Gunnarsson, and M. Gevers, “A convergent itera-
tive restricted complexity control design scheme,” in IEEE Conf. on
Decision and Control, vol. 2, 1994, pp. 1735–1740.

[10] M. G. Safonov and T. C. Tsao, “The unfalsified control concept:
A direct path from experiment to controller,” in Feedback Control,
Nonlinear Systems, and Complexity. Springer, 1995, pp. 196–214.

[11] J. C. Spall, “Multivariate stochastic approximation using a simulta-
neous perturbation gradient approximation,” IEEE Transactions on
Automatic Control, vol. 37, no. 3, pp. 332–341, 1992.

[12] Z. Hou and S. Jin, “Data-driven model-free adaptive control for a
class of mimo nonlinear discrete-time systems,” IEEE transactions on
neural networks, vol. 22, no. 12, pp. 2173–2188, 2011.

[13] D. Sritharan and S. V. Sarma, “Fragility in dynamic networks: applica-
tion to neural networks in the epileptic cortex,” Neural Computation,
vol. 26, no. 10, pp. 2294–2327, 2014.

[14] D. Ehrens, D. Sritharan, and S. V. Sarma, “Closed-loop control of a
fragile network: application to seizure-like dynamics of an epilepsy
model,” Frontiers in Neuroscience, vol. 9, p. 58, 2015.

[15] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational
and Mathematical Modeling of Neural Systems, ser. Computational
Neuroscience. Cambridge, MA: MIT Press, 2001.

[16] E. Nozari and J. Cortés, “Hierarchical selective recruitment in linear-
threshold brain networks. Part I: Intra-layer dynamics and selective
inhibition,” IEEE Transactions on Automatic Control, vol. 66, no. 3,
pp. 949–964, 2021.

[17] A. Bakshi, R. Jayaram, and D. P. Woodruff, “Learning two layer
rectified neural networks in polynomial time,” in Conference on
Learning Theory. PMLR, 2019, pp. 195–268.

[18] F. Albertini, E. D. Sontag, and V. Maillot, “Uniqueness of weights for
neural networks,” Artificial Neural Networks for Speech and Vision,
pp. 115–125, 1993.

[19] G. Huang, “Learning capability and storage capacity of two-hidden-
layer feedforward networks,” IEEE transactions on neural networks,
vol. 14, no. 2, pp. 274–281, 2003.

[20] A. Ruhe and P. Å. Wedin, “Algorithms for separable nonlinear least
squares problems,” SIAM Review, vol. 22, no. 3, pp. 318–337, 1980.

[21] C. C. Rodgers and M. R. DeWeese, “Neural correlates of task
switching in prefrontal cortex and primary auditory cortex in a novel
stimulus selection task for rodents,” Neuron, vol. 82, no. 5, pp. 1157–
1170, 2014.

[22] ——, “Spiking responses of neurons in rodent prefrontal cortex and
auditory cortex during a novel stimulus selection task,” CRCNS.org,
2014. [Online]. Available: http://dx.doi.org/10.6080/K0W66HPJ

[23] E. Nozari and J. Cortés, “Hierarchical selective recruitment in linear-
threshold brain networks. Part II: Inter-layer dynamics and top-down
recruitment,” IEEE Transactions on Automatic Control, vol. 66, no. 3,
pp. 965–980, 2021.

