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ABSTRACT Oscillations are a prominent feature of neuronal activity and are associated with a variety
of phenomena in brain tissues, both healthy and unhealthy. Characterizing how oscillations spread
through regions of the brain is of particular interest when studying countermeasures to pathological
brain synchronizations. This paper models neuronal activity using networks of interconnected excitatory-
inhibitory pairs with linear threshold dynamics, together with strategies to design networks with desired
robustness properties. In particular, we develop a dynamical description of the brain through a network
where each node, or state, models the firing rate of a region of neurons and where edges capture
the structural connectivity between the regions. We characterize the presence of oscillations and study
conditions on their spreading. We also discuss strategies to optimally design networks which are robust
to oscillation spreading. We demonstrate our results with numerical simulations.

INDEX TERMS brain networks, piecewise-linear systems, network design, control of oscillations

I. Introduction
Oscillations in the brain have been associated with numerous
cognitive processes [1], such as attention [2], memory [3],
and the elaboration of sensory information [4], as well as
undesirable phenomena, such as tremors [5] and seizures [6]
that are linked to several neurological disorders (Parkin-
son’s Disease, schizophrenia and epilepsy). As an example,
epilepsy is characterized by seizures, which are a temporary
change in the neuronal activity of the brain, marked by
excessive or synchronous neuronal activity. This pathological
brain activity leads to physical symptoms such as loss of
awareness and convulsions [7], which can prove harmful to
the patient experiencing them. A recent study [8] revealed
the existence of pathological activity in brains of clinically
asymptomatic subjects. In other words, epileptic-like oscil-
lations are observed in the brains of both healthy and non-
healthy patients, however only in the latter class do localized
oscillations spread throughout different regions of the brain
into a symptomatic epileptic event. It is hypothesized in [8],
[9] that healthy and non-healthy brains differ with respect
to their structural robustness to the spreading of localized

oscillations. Modification of the network structure to increase
structural robustness is a potential avenue for treatment of
neurological disorders. This modification can be done via
electrical stimulation, as is the case with deep brain stim-
ulation [10], [11], or surgical resection, where connections
between certain brain regions are severed in order to prevent
the spread of harmful oscillations [12]. This motivates the
importance of characterizing the spatiotemporal dynamics
of oscillations onset and propagation in the context of
pathological activity in the brain [8], [13], [14], as well
as developing design principles for modifying the network
structure optimally.

In this paper we introduce a mathematical model of the
brain based on a network with linear threshold dynamics
and use it to characterize how oscillations originating in
one region of the brain might, or might not, spread to
neighboring regions. The type of oscillations we consider
represent seizures and other typically harmful brain activity.
We assume that both healthy and unhealthy brains exhibit
localized oscillations, but symptomatic pathologies arise as
a consequence of the oscillations spreading from one region
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of the network to another. Our goal is to study how the
structure of networks affect their robustness to oscillations
spreading, and to develop strategies for the optimal design of
robust networks. We validate our results through numerical
simulations.

A. Related work
Modeling brain dynamics through networked systems has a
rich history (we refer the interested reader to, e.g., the books
[15], [16]). In particular, mean-field models have proven
especially powerful when modeling oscillatory trajectories
and synchronization in brain activity [17]. Several models
have been proposed, e.g., the Jansen–Rit model [18], the
Kuramoto model [19], and the Wilson-Cowan model [20].
Although all of the mentioned models have been the subject
of numerous studies, we here focus on those involving the
Wilson-Cowan model, e.g., see [21]–[24]. We model the
dynamics of the networks after a modified Wilson-Cowan
model, where the original sigmoidal activation function is
replaced by its piecewise-linear approximation. This model,
termed Linear Threshold Network (LTN), has received con-
siderable attention [25]–[27]. An unbounded version of
LTNs, termed rectified linear units (ReLU), is widely studied
in the context of machine learning [28], [29]. In the context
of neuroscience, it has been used to model diverse brain
states, including goal-driven selective attention [30], [31] and
epilepsy [32]. In particular, recent works [30], [31], [33] have
studied structural conditions for oscillations in networks of
EI pairs by directly linking the lack of stable equilibria to the
presence of oscillations. Here, we take a different approach
by studying how the dynamical properties of each EI pair
in the network changes as a consequence of its coupling to
neighboring EI pairs. This allows us to precisely characterize
the nodes in the network which take part in the oscillation.

B. Paper contribution
The main contribution of this paper is to characterize con-
ditions for the spreading of oscillations in brain networks
and to formulate and solve optimization problems for the
design of networks that are robust to oscillation spreading. In
particular, we model the excitatory and inhibitory activity of
a small brain tissue (micro-domain) through a Wilson-Cowan
model [20] characterized by a piece-wise activation function.
We refer to this atomical unit as an Excitatory-Inhibitory
(EI) pair, the structural properties of which have been well
characterized, see e.g., [30]–[32]. We build networks of EI
pairs in order to model the complex interactions among
domains of the human brain. Our goal is to exploit the
known properties of the single EI pairs to infer global
properties of the brain network. Once formal conditions
on the spreading of oscillations are derived, we develop
and solve a series of optimization problems through which
we can efficiently compute conditions to isolate localized
oscillations from the rest of the network. We show how
these optimization problems are computationally efficient
and practically effective. We conclude the discussion with
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FIGURE 1: This plot shows a characterization of EI pairs and their
oscillations. Panel (a) shows the graph associated to an EI pair as defined in
(2). According to Lemma II.2, the EI pair admits a limit cycle if and only if
conditions (3) are verified. Panel (b) shows an EI pair satisfying conditions
(3a-3c). Panel (c) show the set U , cf. Lemma II.3, of limit cycle-admitting
inputs for the system in (a) with parameters as in (b). We notice that the set
is compact and convex. Panel (d) shows two limit cycles associated with
two distinct values of the input (u� = [3, 1]>, u4 = [2, − 2]>), for
the system defined in (b).

extensive numerical simulations on synthetically generated
networks. Motivated by our previous work [32], in this paper
we tie the discussion of oscillations in the brain to the the
study of epilepsy; however our results can be also applied
to other oscillation-related problems in network control.

II. Preliminaries
This section presents our notation and discusses basic con-
cepts on linear-threshold network models.

A. Notation
Let R, R≥0, and R≤0 denote the set of real, nonnegative real,
and nonpositive real numbers, respectively. Given a vector
x ∈ Rn, we use xi to refer to its ith component. Given a
matrix A ∈ Rn×n, we use Aij to to refer to its ijth compo-
nent. For x ∈ R and m ∈ R≥0, [x]m0 = min{max{x, 0},m},
which is the projection of x onto [0,m]. Similarly, when
x ∈ Rn and m ∈ Rn

≥0, [x]m0 = [[x1]m1
0 . . . [xn]mn

0 ]T .

B. Planar Linear-Threshold Networks
Consider a neural network consisting of N dynamically
coupled neuronal populations. The dynamics of the network
evolve according to the linear-threshold model

ẋ = −x + [Wx + u]m0 , (1)
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where x ∈ [0,m1] × · · · × [0,mN ] is a vector whose ith
component is the average firing rate of the ith population,
W ∈ RN×N is the weighted adjacency matrix of the
network, m is the saturation vector, and u ∈ RN is the
vector whose ith component is the average background input
to the ith population.

We assume that the network satisfies Dale’s Law [34],
which states that every node in the network is either excita-
tory (E) or inhibitory (I). If the ith node is excitatory, then
the activity of the ith node enhances the firing rate of its
neighbors, and the ith column of W is non-negative. On the
other hand, if the ith node is inhibitory, then the activity of
the ith node suppresses the firing rates of its neighbors, and
the ith column of W is non-positive.

To study epileptic events, we are primarily interested
in understanding oscillatory trajectories of linear-threshold
networks. Because trajectories of (1) remain in the bounded
region [0,m1] × · · · × [0,mN ], we say that a solution x(t)
to (1) is oscillatory if x(t) does not converge to a fixed
point as t → ∞. This notion of oscillation includes both
periodic and chaotic oscillations, which is a common practice
in computational neuroscience [33], [35].

While previous work [33] identifies structural conditions
for the existence of oscillations in general LTN models,
we focus here on oscillations that arise in LTN networks
composed of coupled excitatory-inhibitory (EI) pairs, as
motivated by [30], [32]. For a EI pair, the linear threshold
model has the form[

ẋE

ẋI

]
= −

[
xE

xI

]
+

[[
a −b
c −d

] [
xE

xI

]
+

[
uE

uI

]]m
0

, (2)

where a, b, c, d > 0. Following Dale’s Law, xE (resp. xI ) is
the excitatory (resp. inhibitory) node. The fixed points and
attractors of the EI pair have been fully characterized [30],
[32], [33] for all possible parameter values. Here we pay
attention to the following dynamical features of EI pairs: the
origin as a stable fixed point (corresponding to healthy neuro-
logical behavior) and stable limit cycles (corresponding to a
pathological oscillation characteristic of an epileptic seizure).
The following results give conditions on the parameter values
which correspond to both of these behaviors.

Lemma II.1 (Stable equilibria in EI pairs). Consider the EI
pair (2). If the input satisfies u(t) = (uE(t), uI(t)) ≤ 0 for
all t ≥ 0, then every trajectory converges to the origin.

Lemma II.2 (Limit cycles in EI pairs). Consider the EI
pair (2). The dynamics has a unique stable limit cycle if
and only if d + 1 < a− 1 and

uE ≥ 0, (3a)
uE ≤ −(a− 1)mE + bmI , (3b)

(d + 1)uE − buI ≥ 0, (3c)
(d + 1)uE − buI ≤ ∆mE , (3d)

where ∆ = (bc− (a− 1)(d + 1)).

Finally, we give conditions on time-varying inputs to (2)
such that the corresponding solution is oscillatory.

Lemma II.3 (Sufficient conditions on inputs giving rise to
oscillations). Consider the EI pair (2). Let

U = {(uE , uI) ∈ R2 | (3) are satisfied}. (4)

Then,
(i) U is nonempty if and only if

bmI ≥ (a− 1)mE , and (5a)
bc− (a− 1)(d + 1) ≥ 0. (5b)

(ii) If d + 1 < a − 1, U is nonempty, and u(t) ∈ U for
all t ≥ 0, then all solutions of (2), except for those
corresponding to equilibria, are oscillatory.

III. Interconnections of Excitatory-Inhibitory Pairs
We consider complex networks resulting from the intercon-
nection of EI pairs. Consider a network of N nodes, where
each node corresponds to a single EI pair (so the state of the
network is actually 2N -dimensional). For i ∈ {1, . . . , N},
the parameters of the ith EI pair in the network are

Wi =

[
ai −bi
ci −di

]
, mi =

[
mE

i

mI
i

]
, ui =

[
uE
i

uI
i

]
. (6)

We interconnect the individual EI pairs to form a coupled
network, with state space

X = {(xE
1 , x

I
1, . . . , x

E
N , xI

N ) | xE
i ∈ [0,mE

i ], xI
i ∈ [0,mI

i ]}.
The dynamics of the network are given by (1), where

W = diag(W1, . . . ,WM ) (7a)

+ AEE ⊗
[
1 0
0 0

]
+ AEI ⊗

[
0 −1
0 0

]
+ AIE ⊗

[
0 0
1 0

]
+ AII ⊗

[
0 0
0 −1

]
,

m =
[
m>1 . . . mM

]>
, (7b)

u =
[
u>1 . . . uM

]>
. (7c)

Here, AEE ∈ RN×N
≥0 is a weighted adjacency matrix

which characterizes the connections between the excitatory
nodes of each pair in the network, AII ∈ RN×N

≥0 models
connections between the inhibitory nodes of each pair, and
connections from excitatory to inhibitory nodes and from
inhibitory to excitatory nodes are given by AEI ∈ RN

≥0 and
AIE ∈ RN×N

≥0 , respectively. Figure 3 illustrates a network
built by coupling EI pairs in this manner.

We seek to characterize the oscillations in the network
using knowledge of the parameters of the individual pairs,
as well as the interconnections AEE ,AEI ,AIE ,AII . We
say that the ith node in the coupled network is oscillatory
if for all solutions x(t) of the interconnected system, xi(t)
does not converge to a constant as t → ∞. We say that
the ith node is inactive if for all solutions, xi(t) → 0 as
t → ∞. While other behaviors are of course possible, such
as converging to a nonzero constant, our focus on these

VOLUME 00 2021 3



A. Allibhoy ET AL.: Optimal Network Interventions to Control the Spreading of Oscillations

xE
1

xI
1

xE
2

xI
2

0 1
0

1

xE

xI

2 4 6 8 10

1

2

t
(a1)

xE
1

xI
1

xE
2

xI
2

1 2

1

2

xE

xI

2 4 6 8 10

1

2

t
(a2) (a3)

W1 =

!
4 −6
5 −1

"
u1 =

!
2
−2

"

W2 =

!
5 −7
4 −1

"
u2 =

!
2
−2

"

m1 = m2 =

!
2
2

"

AE,E =

!
2 0
0 0

"

AE,I = AI,· =

!
0 0
0 0

"

xE
1

xI
1

xE
2

xI
2

0 1
0

1

xE

xI

2 4 6 8 10
0

1

2

t
(b1)

xE
1

xI
1

xE
2

xI
2

1 2

1

2

xE

xI

2 4 6 8 10
0

1

2

t
(b2) (b3)

W1 =

!
4 −6
5 −1

"
u1 =

!
2
−2

"

W2 =

!
1 −5
4 −2

"
u2 =

!
0
0

"

m1 = m2 =

!
2
2

"

AE,E =

!
2 0
0 0

"

AE,I = AI,· =

!
0 0
0 0

"

FIGURE 2: This plot illustrates how the dynamical properties of isolated EI pairs might significantly change when coupled with other EI pairs, as discussed
in Example III.1. In panel (a), two oscillatory EI pairs, cf. (a1), are interconnected so that, when coupled, cf. (a2), both EI pairs saturate. We do not
consider saturated states (i.e., x(t) ≡ m) in this work as they are not typically associated with neurological phenomena. In panel (b), an oscillatory EI
pair and an inactive EI pair, cf. (b1), are interconnected in such a way that, in the resulting network, cf. (b2), both EI pair exhibit an oscillatory trajectory.

particular ones is driven by their relevance for neurological
applications.

Determining whether a particular node in the network is
oscillatory or inactive is, in general, nontrivial because of
the complex effect of the interconnection on the dynamics
of individual nodes. In particular, note that, if the parameters
of the ith node satisfy the conditions of Lemma II.2, this does
not necessarily mean that the ith node is necessarily oscilla-
tory in the coupled network. Likewise, if the parameters of
the ith node satisfy the conditions in Lemma II.1, then the
ith node is not necessarily inactive in the coupled network.
We illustrate these observations in the following example.

Example III.1 (Properties of EI pairs not preserved after
interconnection). Consider the numerical examples in Fig 2.
In panel (a), we study a simple network made up of two
EI pairs (specific network parameters are reported in (a3)).
When taken separately, each EI pair is oscillatory, cf. (a1).
In panel (a2), the two EI pairs are interconnected through a
simple excitatory-to-excitatory interconnection. As a result
of this reciprocal excitation, the two nodes in the intercon-
nected network become saturated.

In panel (b), we consider a network of two EI pairs
(specific network parameters are reported in (b3)), where the
first node has a globally asymptotically stable limit cycle and
the second node has a globally asymptotically stable fixed
point at the origin, cf. (b1). After interconnecting the two EI
pairs in panel (b2), the second pair becomes oscillatory as a
consequence of the incoming activity from the other EI pair.
�

Given these observations, this paper has two goals. The
first goal is to characterize conditions under which properties
of individual pairs in the network, such as being oscillatory
or inactive, are preserved when the pairs are interconnected
with one another. The second goal is to develop an approach
to modify the network parameters so that given sets of
desired nodes are either inactive or oscillatory. We formalize
both of these problems next.

Problem 1. What are the conditions on the node parameters
Wi, ui, and mi, i ∈ {1, . . . , N}, and the interconnection
parameters AEE , AEI , AIE , and AII that determine when
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FIGURE 3: Illustration of the graph associated to a network of coupled EI
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the dynamical properties of the ith node are preserved after
interconnection?

Problem 2. Consider a network whose interconnection
is described by ÂEE , ÂEI , ÂIE , and ÂII and let
Ioscillatory, Iinactive ⊂ {1, . . . , N} be disjoint sets of nodes.
How should the interconnection structure be modified so that
in the resulting network every node in Ioscillatory is oscillatory
and every node in Iinactive is inactive?

Both problem formulations touch upon the spatio-temporal
spreading (or lack of thereof) of oscillations in networks and
are of general interest. Here, we are particularly motivated
by the spreading of microseizures (localized pathological ac-
tivity in the brain) to clinical seizures (diffused pathological
activity in the brain). In this framework, one can interpret
Problem 1 as studying whether a given brain network is
prone to the insurgence of a clinical seizure as a consequence
of a microseizure. Consequently, Problem 2 can be viewed
as the study on how interventions on the brain might target
specific areas of interest.

IV. Sufficient Conditions for Preservation of Dynamical
Properties of Subsystems
In this section we give a solution to Problem 1 by deriving
sufficient conditions which characterize when dynamical
properties of subsystems in (7) are preserved after intercon-
nection, i.e., whether the subsystem in question is inactive or
oscillatory. The fundamental idea is, for each given node in
the network, to (i) view the combined inputs and neighboring
signals as a disturbance, and (ii) derive conditions on the
interconnection structure to ensure that each node is robust
to disturbances.

We begin by introducing notation that will be useful for
the proofs of the main technical results. The dynamics of the
ith node in the coupled network are

ẋE
i (t) = −xE

i (t) +
[
aix

E
i (t)− bix

I
i (t) + ũE

i (t)
]mE

i

0
, (8a)

ẋI
i (t) = −xI

i (t) +
[
cix

E
i (t)− dix

I
i (t) + ũI

i (t)
]mI

i

0
, (8b)

where (ũE
i (t), ũI

i (t)) incorporates the combined input to the
ith node from its neighbors:

ũE
i (x) = uE

i +

N∑
j=1

AEE
ij xE

j −
N∑
j=1

AEI
ij xI

j (9a)

ũI
i (x) = uI

i +

N∑
j=1

AIE
ij xE

j −
N∑
j=1

AII
ij x

I
j (9b)

We first present sufficient conditions for the ith node in
the network to be inactive. As a consequence of Lemma II.1,
the ith node taken individually is inactive when (uE

i , u
I
i ) ≤

0. The following result gives conditions which ensure that
(ũE

i (x), ũI
i (x)) ≤ 0 for all x ∈ X , so the inactivity of the

ith node is robust with respect to all inputs the node receives
from neighboring nodes.

Theorem IV.1 (Sufficient conditions for robust inactivity).
Assume that for i ∈ {1, . . . , N},

uE
i +

N∑
j=1

AEE
ij mE

j ≤ 0, (10a)

uI
i +

N∑
j=1

AIE
ij mE

j ≤ 0. (10b)

Then, the ith node in the coupled system (7) is inactive.

Proof:
Let x(t) be a solution to (1). Note that by (10),

ũE
i (x(t)) ≤ uE

i +

N∑
j=1

AEE
ij mE

j ≤ 0,

ũI
i (x(t)) ≤ uI

i +

N∑
j=1

AIE
ij mI

j ≤ 0.

Since the input to the ith EI pair is ũi(t) =
(ũE

i (x(t)), ũI
i (x(t))), the result follows by Lemma II.1.

Note that the condition in (10) holds only if (uE
i , u

I
i ) ≤ 0.

In fact it is not possible for the ith node to be inactive with
respect to the interconnected network, unless the ith node
individually is inactive.

We now move on to discussing sufficient conditions for
the ith node in the network to be oscillatory after inter-
connection. Our technical approach relies on the following
result which formalizes the following observation: the ith
node taken individually is oscillatory when (uE

i , u
I
i ) ∈ Ui,

where Ui is the set (4) for the parameters corresponding to
the ith EI pair, so the oscillation of the ith node persists after
interconnection if (ũE

i (x), ũI
i (x)) ∈ Ui for all x ∈ X .

Lemma IV.2 (Robustness of oscillations in coupled net-
works). For i ∈ {1, . . . , N}, assume[

ũE
i (x)
ũI
i (x)

]
∈ Ui, for all x ∈ X . (11)
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FIGURE 4: Conceptual description of the problem addressed in Section V. Panel (a) shows a family of seven EI pairs. Colored nodes depict an active
EI pair, i.e., a pair which exhibits an oscillatory trajectory (as described in Fig. 1). The hollow nodes represent a inactive EI pair, i.e., a pair whose
trajectory is constant and zero. Panel (b) shows the interconnection between the EI pairs according to the adjacency matrix A. As a consequence of this
interconnection, node 7 becomes active (the oscillation, we say, spreads to inactive pair 7). The goal of the problems described in Section V is to compute
optimal perturbations to the matrix A characterizing how oscillations might (or might not) spread from active to inactive pairs.

Then, the ith node in the coupled system (7) is oscillatory.

Proof:
Let x(t) be a solution to (1). Then by (11), ũi(x(t)) ∈ Ui
for all t ≥ 0. Since ũi(x(t)) is the input to the ith node, the
result follows by Lemma II.3.

Note that the condition (11) holds only if (uE
i , u

I
i ) ∈ Ui,

meaning that Lemma IV.2 characterizes only the case where
a pair that is oscillatory when viewed individually remains
oscillatory after being interconnected in a network. However,
as shown in Example III.1, it is possible for nodes (uE

i , u
I
i ) /∈

Ui to become oscillatory after interconnection, though we do
not consider such cases in this paper.

In general, the condition in Lemma IV.2 is not easy to
check computationally. However, as we show next, in the
special case where there are no interconnections from the
inhibitory neurons in each subsystem (i.e., AIE = AII =
0) the condition (11) can be expressed in terms of affine
constraints on the adjacency matrices.

Corollary IV.3 (Affine conditions for robust oscillations
without inhibitory coupling). Consider a network intercon-
nection (7) with AIE = AII = 0. For i ∈ {1, . . . , N},
condition (11) holds if and only if

uE
i −

N∑
j=1

AEImI
j ≥ max

{
0,− biu

I
i

di + 1

}
, (12a)

uE
i +

N∑
j=1

AEEmE
j ≤ (12b)

≤ min

{
bim

I
i − (ai − 1)mE

i ,
∆im

E
i − biu

I
i

di + 1

}
,

where ∆i = bici − (ai − 1)(di + 1). In such case, the ith
node in the coupled system (7) is oscillatory.

Proof:

Note that

sup
x∈X

{
uE
i +

N∑
j=1

AEE
ij xE

j −
N∑
j=1

AEI
ij xI

j

}
=

uE
i +

N∑
j=1

AEE
ij mE

j

inf
x∈X

{
uE
i +

N∑
j=1

AEE
ij xE

j −
N∑
j=1

AEI
ij xI

j

}
=

uE
i −

N∑
j=1

AEI
ij mI

j ,

so, using (3), the condition (11) holds if and only if

uE
i −

N∑
j=1

AEI
ij mI

j ≥ 0,

(d + 1)

[
uE
i −

N∑
j=1

AEI
ij mI

j

]
− buI ≥ ∆im

E
i

and

uE
i +

N∑
j=1

AEE
ij mE

j ≤ 0,

(d + 1)

[
uE
i +

N∑
j=1

AEI
ij mE

j

]
− buI ,

≤ −(ai − 1)mE
i + bim

I
i .

We obtain (12) by rearranging the above equations.
As the following result shows, in the presence of inhibitory

coupling, it is still possible to derive checkable conditions in
the form of affine constraints on the entries of the adjacency
matrices. The conditions are valid for general interconnection
structures, and in general, are more conservative than (11),
though they reduce to (12) in the case where AIE = AII =
0.
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Theorem IV.4 (Affine conditions for robust oscillations with
inhibitory coupling). Let i ∈ {1, . . . , N}, and suppose that

uE
i −

N∑
j=1

AEI
ij mI

j ≥ 0, (13a)

uE
i +

N∑
j=1

AEE
ij mE

j ≤ bmI
i − (a− 1)mE

i , (13b)

(d + 1)

[
uE
i −

N∑
j=1

AEI
ij mI

j

]
(13c)

− b

[
uI
i +

N∑
j=1

AIE
ij mE

j

]
≥ 0,

(d + 1)

[
uE
i +

N∑
j=1

AEE
ij mE

j

]
(13d)

− b

[
uI
i −

N∑
j=1

AII
ij m

I
j

]
≤ ∆im

I
i ,

where ∆i = bici − (ai − 1)(di + 1). Then, condition (11)
holds and the ith node in the coupled system is oscillatory.

Proof:
Begin by observing that,

inf
x∈X

{
(d + 1)

[
uE
i +

N∑
j=1

AEExE
j −

N∑
j=1

AEI
ij xI

j

]

− b

[
uI
i +

N∑
j=1

AIE
ij xE

j −
N∑
j=1

AIIxI
j

]}

≥ inf
x,y∈X

{
(d + 1)

[
uE
i +

N∑
j=1

AEExE
j −

N∑
j=1

AEI
ij yIj

]

− b

[
uI
i +

N∑
j=1

AIE
ij yEj −

N∑
j=1

AIIxI
j

]}

= (d + 1)

[
uE
i −

N∑
j=1

AEI
ij mI

j

]
− b

[
uI
i +

N∑
j=1

AIE
ij mE

j

]
.

and similarly that,

sup
x∈X

{
(d + 1)

[
uE
i +

N∑
j=1

AEExE
j −

N∑
j=1

AEI
ij xI

j

]

− b

[
uI
i +

N∑
j=1

AIE
ij xE

j −
N∑
j=1

AIIxI
j

]}

≤ sup
x,y∈X

{
(d + 1)

[
uE
i +

N∑
j=1

AEExE
j −

N∑
j=1

AEI
ij yIj

]

− b

[
uI
i +

N∑
j=1

AIE
ij yEj −

N∑
j=1

AIIxI
j

]}

= (d + 1)

[
uE
i +

N∑
j=1

AEE
ij mE

j

]
− b

[
uI
i −

N∑
j=1

AII
ij m

I
j

]
.

It follows immediately that if (13) holds, then (11) holds as
well.

Remark IV.5 (Comparison with the literature). The results
presented here differ from the characterization in [30], [33],
[36] of oscillations in linear threshold networks in two ways:
first, previous results use the lack of stable equilibria as
a proxy for the existence of oscillations, whereas we take
a slightly different approach by showing when conditions
for the existence of oscillations in the ith node are robust
with respect to all inputs from neighboring nodes. Second,
previous results simply ensure the existence of oscillations,
while the results here allow us to identify precisely which
nodes participate in the oscillation, and which nodes remain
inactive. �

V. Network Design Using Sufficient Conditions
In this section we apply the results of Section IV to address
Problem 2, and determine how to modify the structure of
a given network to control the spread of oscillations. The
approach we take is to determine the network interconnection
structure as the solution to an optimization problem, where
the constraints of the optimization problem correspond to
the conditions in Theorems IV.1 and IV.4. We begin by
presenting the proposed optimization problems, and then
complement them with numerical examples.

A. Network Optimization Problems
Let Ioscillatory and Iinactive ⊂ {1, . . . , N} be disjoint sets,
where Ioscillatory denotes the indices of the nodes in the
network we desire to be oscillatory and Iinactive denotes
the indices of the nodes in the network we desire to
be inactive. Assume we are given a nominal network of
coupled EI pairs whose interconnection is determined by
Â = (ÂEE , ÂEI , ÂIE , ÂII). The problem we address here
is to modify the network parameters, so that the modified
network given by A = (AEE , AEI , AIE , AII) has
oscillating and inactive nodes as determined by Ioscillatory and
Iinactive, respectively.

We consider two scenarios. In the first, the weights of each
of the interconnection matrices can be varied continuously, as
is the case with deep brain stimulation, where the magnitude
of the change to the network increases with electrical stimu-
lation. In the second scenario, we no longer have fine-grained
control over the weights of each of the interconnection
matrices, and the network structure can only be modified
by removing edges entirely. This scenario corresponds to
surgical resection, where connections between brain regions
are severed to control the spread of oscillations.

1) Continuous Modification of Network Weights
To find the modified network in the first scenario, we
introduce the following optimization problem:
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min
AEE ,AEI

AIE ,AII

∑
k∈{EE,EI,IE,II}

1

2

∥∥∥Ak − Âk
∥∥∥2

subject to
AEE ,AEI ,AIE ,AIIsatisfy (10) ∀i ∈ Iinactive

AEE ,AEI ,AIE ,AIIsatisfy (13) ∀i ∈ Ioscillatory.
(14)

The interpretation of the optimization problem (14) is
that it finds the minimal modification to the parameters of
the nominal network that ensure they satisfy the sufficient
conditions derived in Section IV. Because these conditions
are affine with respect to AEE , AEI , AIE , and AII ,
(14) is a quadratic program and can be solved efficiently
using standard convex optimization solvers. The solution,
A = (AEE , AEI , AIE , AII), gives the network with the
desired properties.

2) Modification of Network by Removing Edges
We now consider the second scenario, where the network can
only be modified by removing edges. To solve this problem,
we introduce the following optimization problem:

min
SEE ,SEI

SIE ,SII ∈ {0, 1}N×N

∑
k∈{EE,EI,IE,II}

∑
1≤i,j≤N

(1− Sk
ij)

subject to
Ak = S� Âk k ∈ {EE,EI, IE, II}
AEE ,AEI ,AIE ,AIIsatisfy (10) ∀i ∈ Iinactive

AEE ,AEI ,AIE ,AIIsatisfy (13) ∀i ∈ Ioscillatory.
(15)

Here, � denotes component-wise multiplication. In the
above problem, Sk ∈ {0, 1}N×N , where k ∈
{EE,EI, IE, II} is a matrix where Sk

ij = 0 if the edge
between i and j is severed, and Sk

ij = 1 if it is preserved.
The interpretation of the problem is that it finds the minimum
number of edges that need to be severed in order for
the modified network to have the desired properties. The
modified network is given by A = (AEE , AEI , AIE , AII),
where Ak

ij = Âk
ijS

k
ij Unlike (14), the problem (15) is not

convex, but rather a mixed-integer program (MIP), which in
general is NP-complete. However, modern MIP solvers [37]
employ a number of heuristic techniques which allows them
to solve relatively large problems efficiently.

3) Feasibility and Optimality of (14) and (15)
We now give conditions for (14) and (15) to be feasible.
Intuitively, both problems are feasible if, in the absence of
any interconnection, every i ∈ Iinactive is inactive, and every
i ∈ Ioscillatory is oscillatory. This intuition is formalized in the
following result.

Proposition V.1 (Feasibility of (14) and (15)). The problems
(14) and (15) are feasible if and only if for all i ∈ Iinactive,
ui satisfies the hypothesis of Lemma II.1, and for all i ∈
Ioscillatory, Wi,ui,mi satisfy the hypotheses of Lemma II.2.

Proof:
We begin with the forward direction. Suppose that Ak = 0
for k ∈ {EE,EI, IE, II}. Then it follows immediately that
these matrices satisfy the constraints in (14). Similarly, if
Sk
ij = 0 for all 1 ≤ i ≤ j, then it follows immediately that

the constraints of (15) are satisfied.
To show the reverse direction, suppose that Ak for k ∈

{EE,EI, IE, II} is feasible for (14). If i ∈ Iinactive, then
(ũE

i (x), ũI
i (x)) solve (10) for all x ∈ X , which implies that

(uE
i , u

I
i ) ≤ 0. Likewise, if i ∈ Ioscillatory, then (ũE

i (x), ũI
i (x))

solve (13) for all x ∈ X , which implies that (uE
i , u

I
i ) ∈ Ui.

The same argument can be applied for the constraints of (15).

Finally, we show that the optimization problem (14)
solve Problem 2. This follows as a direct consequence of
Theorems IV.1 and IV.4.

Theorem V.2 (Network design via optimization). Suppose
that for all i ∈ Iinactive, ui satisfies the hypothesis of
Lemma II.1, and for all i ∈ Ioscillatory, Wi,ui,mi satisfy
the hypotheses of Lemma II.2. Then

(i) Let A = (AEE , AEI , AIE , AII) solve (14). Then
for all i ∈ Ioscillatory, the ith node of coupled network
determined by A will be oscillatory, and for all i ∈
Iinactive, the ith node will be inactive;

(ii) Let A = (AEE , AEI , AIE , AII) solve (15). Then
for all i ∈ Ioscillatory, the ith node of coupled network
determined by A will be oscillatory, and for all i ∈
Iinactive, the ith node will be inactive.

B. Simulations
We illustrate here how the solutions to the optimization
problems above produce network designs that accomplish
the desired controlled spread of oscillations.

1) Example with Random Network
In the first example, we consider a network of N = 10 nodes.
For i ∈ {1, . . . , 5}, the ith node satisfies the hypotheses of
Lemma II.1, and for i ∈ {6, . . . , 10}, the ith node satisfies
the hypotheses of Lemma II.2. The interconnections AEE

and AEI are given by random networks, and AIE = AII =
0. We modify the network using the design methodology
outlined in Section A, where Iinactive = {1, 2} and Ioscillatory =
{6, . . . , 10}, and nodes i ∈ {3, 4, 5} can be either oscillatory
or inactive. Figure 5 shows the results.

Note that the nominal network does not satisfy the desired
properties since there are nodes i ∈ Iinactive which oscillate,
and i ∈ Ioscillatory do not oscillate and instead saturate at
the upper limit. We modify the network designs both by
continuously modifying the network weights using (14), and
by severing edges using (15). Note that with both designs, the
nodes in i ∈ Iinactive are inactive, and nodes in i ∈ Ioscillatory
are robustly oscillatory.

2) Example with Spatial Propagation
For our second example, consider a network of N = 1230
nodes. The first 1225 nodes in the network arranged in
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(a) (b) (c)

FIGURE 5: Illustration of the network design procedure. In each of the graphs, the edges given by AEE are solid and edges given by AEI are dashed.
Each box represents a single EI pair, where the pairs in Iinactive are grey, the pairs in Ioscillatory are green, and the pairs that are not in either of these
sets are white. In each plot, the response of the excitatory node of each pair is on top, and the response of the inhibitory nodes are on bottom. The blue
trajectories represent pairs i ∈ Iinactive and orange trajectories represent pairs i ∈ Ioscillatory. Panel (a) displays the nominal network, where ÂEE and
ÂEI are random networks. Panel (b) displays the network designed using (14). The red edges are those modified by the optimization, and the brightness
corresponds to the magnitude of the modification. Finally, panel (c) displays the network designed using (15).

a 35 × 35 grid and satisfy the conditions in Lemma II.1.
The remaining 5 nodes, whose indices we denote by Idriver,
satisfy the conditions in Lemma II.2. The network has only
excitatory-excitatory coupling, where each node in the grid
is coupled to the nodes in the cells above, below, to the left
and to the right, and the driver nodes are randomly coupled
to nodes in in the grid (ÂEE denotes the adjacency matrix
of the network). As shown in Figure 6(a), the oscillations
from the 5 driver nodes spread throughout the network.

We now mark a region in the grid where we do not want
the oscillations to spread. Let Iinactive denote the indices
of these nodes. To determine how to modify the network
interconnection, we use the optimization problem (14) to
determine the interconnection weights AEE of the modified
network. As shown in Figure 6(b), the oscillations in the
modified network spread from the driver nodes to other
regions in the network while avoiding the region determines
by the nodes in Iinactive.

VI. Conclusions
We have studied the spreading of oscillations in com-
plex networks of interconnected EI pairs. Such networks,
modeled here with a piecewise-linear activation function,
are an expressive modeling tool for oscillatory networks,
with meaningful connections to brain dynamics. Motivated
by the link between the spatial spread of oscillations and
seizures in the brain, we have identified formal conditions
on the network interconnection structure that determine
which regions oscillate and which remain inactive. We have
built on this understanding to propose strategies that miti-
gate the spread of oscillations among brain regions. These
strategies formalize network design objectives by means of
optimization programs with attractive numerical properties.
The simulation results show that the proposed approach may
be effective in practice. Future work will expand the results
by characterizing conditions for the nodes in networks of

coupled EI pairs to be oscillatory without assuming that they
admit oscillations individually. Further, we hope to compute
tighter bounds on the sufficiency conditions for robust os-
cillations and to further validate these results through data-
generated models of brain networks from human subjects.
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FIGURE 6: This plot shows the spreading of oscillations in two 35× 35 grids of EI pairs, as discussed in Section B. Panel (a) shows four consecutive
snapshots of the network activity for excitatory (top) and inhibitory (bottom) nodes in each EI pair of a randomly generated grid. We notice how oscillations
originate from a subset of pairs, and spread throughout the nominal network. Panel (b) shows the network modified using (14), so that all pairs i in Iinactive

are inactive. We find that 13 out of the 297 edges to nodes in Iinactive from nodes not in Iinactive have been modified (i.e., changes were made by (14) to
less than 5% of the links between EI pairs).
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