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k-Dimensional Agreement in
Multiagent Systems

Gianluca Bianchin, Miguel Vaquero, Jorge Cortés, and Emiliano Dall’Anese

Abstract— We study the problem of k-dimensional lin-
ear agreement, whereby a group of agents is interested
in computing k independent weighted means of a global
vector whose entries are known only by individual agents.
This problem is motivated by applications in distributed
computing and sensing, where agents seek to evaluate mul-
tiple independent functions at a common vector point by
running a single distributed algorithm. We propose the use
of linear network protocols for this task, and we show that
linear dynamics can agree on quantities that are oblique
projections of the global vector onto certain subspaces.
Moreover, we provide algebraic necessary and sufficient
conditions that characterize all agreement protocols that
are consistent with a certain graph, we propose a design
procedure for constructing such protocols, and we study
what classes of graphs can achieve agreement on arbitrary
weights. Overall, our results suggest that k-dimensional
agreement requires the use of communication graphs with
higher connectivity compared to standard consensus algo-
rithms; more precisely, we relate the existence of Hamilto-
nian decompositions in a graph with the capability of that
graph to sustain an agreement protocol. The applicability
of the framework is illustrated via simulations for two prob-
lems in robotic formation and in distributed regression.

I. INTRODUCTION

COORDINATION and consensus protocols are central
to many network synchronization problems, including

rendezvous, distributed convex optimization, and distributed
computation and sensing. An extensive literature is available
on consensus-based processes, whereby the states of the net-
work nodes asymptotically compute a common value that is
a weighted average of the initial estimates available locally
at the agents (see, for example, the representative works in
context [1]–[3]). On the other hand, in several applications
it is instead of interest to compute, asymptotically, k > 1
independent weighted averages (here, “independent” means
that the vectors of weights are linearly independent) of the
initial estimates. Relevant examples of this problem include
distributed computation [4], [5], where the weighting accounts
for different desired outcomes, task allocation algorithms [6],
where weights account for heterogeneous computational ca-
pabilities, distributed sensing [7], [8], where the weighting
is proportional to the accuracy of each sensing device, and
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Fig. 1: Communication complexity of running k consensus algorithms in
parallel vs one k-dimensional agreement algorithm (proposed in this paper)
to compute k =

⌊
n
2

⌋
weighted average means of a global quantity. (a) and (c)

Erdős–Rényi network model. (b) and (d) Barabasi-Albert model. Bars denote
the average number of transmissions per iteration per agent. See Example 3.4.

robotic formation [9], where one agent would like to achieve
a certain configuration relative to another agent.

Mathematically, given a vector x0 ∈ Rn of initial states or
estimates – with each entry available locally at a single agent
– and an arbitrary matrix W ∈ Rn×n of rank 1 ≤ k ≤ n− 1
describing the desired weights, we say that the group reaches a
k-dimensional agreement if, asymptotically, the agents’ states
converge to Wx0. We model the communication between
agents using a directed graph; our goal is to identify what
classes of graphs are sufficiently rich to enable k-dimensional
agreement and to determine, when possible, a distributed
agreement protocol compatible with such a graph.

A natural approach to this problem consists in executing k
classical consensus algorithms [2] in parallel, each designed to
converge to one of the independent weighted means. However,
the communication and computational complexities of such
an approach do not scale with the network size; thus, our
objective here is to achieve agreement by running a single
distributed algorithm. A comparison of the communication
load involved by k parallel consensus algorithms and the
proposed k-dimensional agreement method is exemplified in
Fig. 1 (simulation details are provided in Example 3.4).

Related work. The agreement protocol studied in this work
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stems from the problem of distributed consensus. Because
of their centrality, consensus algorithms have been exten-
sively studied in the literature. A list of representative topics
(necessarily incomplete) includes: sufficient and/or necessary
conditions to reach consensus are provided in [2], [10]–[14],
time delays are accounted in [12], consensus with arbitrary
objective maps is studied in [15], the alternating direction
method of multipliers (ADMM) is used in [16], [17] with
linear ADMM-based protocols studied in [18], convergence
rate is considered in [19], [20], and robustness in [21],
[22]. Differently from constrained consensus problems [23],
[24], where the agents’ states must satisfy agent-dependent
constraints during transients and the asymptotic value lies in
the intersection of the constraint sets, in our setting the values
are instead constrained at convergence, and thus state of the
agents may not converge to identical values. In Pareto optimal
distributed optimization [25], the group of agents cooperatively
seeks to determine the minimizer of a cost function that
depends on agent-dependent decision variables. Clustering-
based consensus [26]–[28] is a closely-related problem where
the states of agents in the same cluster of the graph con-
verge to identical values, while inter-cluster states can differ.
Differently from this setting, which is obtained by using
weakly-connected communication graphs to separate the state
of different communities, in this work we focus on cases
where the asymptotic state of each agent depends on every
other agent in the network. To the best of our knowledge,
agreement problems exhibiting this dependence where the
agents’ states do not converge to identical values have not
been studied. A relevant exception is the problem of scaled
consensus considered in [29], where agents agree on subspaces
of dimension k = 1. In this paper, we tackle the more general
problem k ≥ 1; as shown shortly below, the extension to k > 1
is non-trivial since standard assumptions made for consensus
are not sufficient to guarantee agreement (see Example 4.5).

Contributions. The contribution of this work is fourfold.
First, we formulate the problem of k-dimensional agreement
and we propose the use of continuous-time linear network
protocols to achieve this objective. We then show that by using
linear protocols the set of agents can compute, asymptotically,
points that are oblique projections of the vector of initial
estimates. Conversely, we also show that, given any desired
oblique projection of the initial estimates, it is always possible
to design a corresponding agreement protocol provided that
the underlying communication graph is sufficiently connected.
In this case, we provide an algorithm to design agreement
protocols. Second, for sparse communication graphs, we pro-
vide an algebraic characterization of all protocols (consistent
with a certain communication graph) that guarantee agreement.
Further, we show how such conditions can be used to de-
sign efficient numerical algorithms that yield fast agreement.
Third, by using the stated characterization, we provide graph-
theoretic necessary and sufficient conditions to check whether
a graph can sustain agreement dynamics. Our necessary con-
ditions illustrate that widely-adopted graphs, such as the line
and circulant topologies, can admit agreement protocols on
subspaces of dimension at most k = 1. Our sufficient condi-
tions show that graphs that admit independent Hamiltonian

decompositions can always sustain agreement protocols on
arbitrary weights. Fourth, we show that agreement algorithms
can be adapted to account for cases where the local estimates
are time-varying and, in this case, we prove convergence of
these algorithms in the form of an input-to-state stability-type
bound. Finally, we illustrate the applicability of the framework
on regression and robotic coordination problems through a set
of simulations.

Organization. Section II introduces basic concepts and
Section III formalizes the problem. Section IV studies agree-
ment protocols over complete graphs, Section V illustrates our
algebraic characterization of agreement protocols and illus-
trates numerical methods to compute agreement algorithms,
Section VI provides graph-theoretic conditions for agreement.
Section VII extends the approach to tracking problems and
Section VIII illustrates the techniques via numerical simula-
tions. Conclusions and directions are discussed in Section IX.

II. PRELIMINARIES

We first introduce some basic notions used in the paper.
Notation. We denote by N>0 = {1, 2, . . . } the set of

positive natural numbers, by C the set of complex numbers,
and by R the set of real numbers. Given x ∈ C, <(x) and
=(x) denote its real and imaginary parts, respectively. Given
vectors x ∈ Rn and u ∈ Rm, we let (x, u) ∈ Rn+m denote
their concatenation. We denote by 1n ∈ Rn the vector of all
ones, by In ∈ Rn×n the identity matrix, by 0n,m ∈ Rn×m the
matrix of all zeros (subscripts are dropped when dimensions
are clear from the context). Given A ∈ Rn×n, we denote its
spectrum by σ(A) = {λ ∈ C : det(λI − A) = 0}, and by
λmax (A) = max{<(λ) : λ ∈ σ(A)} its spectral abscissa;
also, we use the notation A = [aij ], where aij is the element
in row i and column j of A. Given A ∈ Rn×m, Im(A) and
ker(A) denote its image and null space, respectively. Given a
polynomial with real coefficients p(λ) = λn+p1λ

n−1 + · · ·+
pn, p(λ) is stable if all its roots have negative real part.

Graph-theoretic notions. A directed graph (abbreviated
digraph), denoted by G = (V, E), consists of a set of nodes
V = {1, . . . , n} and a set of directed edges E ⊆ V × V .
An element (i, j) ∈ E denotes a directed edge from node
j to i. We will often use the notion of weighted digraph
G = (V, E , A), where A ∈ Rn×n is the graph’s adjacency
matrix; A = [aij ] satisfies aij 6= 0 only if (i, j) ∈ E and
aij = 0 if (i, j) 6∈ E . More generally, for fixed G and
A ∈ Rn×n, we say that A is consistent with G if A is has
the zero-nonzero pattern of an adjacency matrix for G. The
set of (in)neighbors of i ∈ V is Ni = {j ∈ V \ {i} :
(i, j) ∈ E}. A graph is complete if there exists an edge
connecting every pair of nodes, and is sparse otherwise. A
path in G is a sequence of edges (e1, e2, . . . ), ej ∈ E for
all j = 1, 2, . . . , such that the initial node of each edge is
the final node of the preceding edge. Notice that a path may
contain repeated edges and, also, going along the path one
may reach repeated nodes. The length of a path is the number
of edges contained in the sequence (e1, e2, . . . ). A graph is
strongly connected if, for any i, j ∈ V , there is a directed
path from i to j. A closed path is a path whose initial and
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final vertices coincide. A closed path is a cycle if, going
along the path, one reaches no node, other than the initial-
final node, more than once. A cycle of length equal to one is
a self cycle. We say that G1, . . . ,Gm ⊆ G is a decomposition
of G if the Gi-s are pairwise disjoint and the union of the
node sets of the Gi-s is the node set of G. A Hamiltonian
cycle is a cycle that visits every node of G exactly once [30].
A Hamiltonian decomposition is a decomposition of G such
that each subgraph Gi is a Hamiltonian cycle. (Notice that
not all graphs admit a Hamiltonian decomposition; conversely,
certain graphs admit multiple Hamiltonian decompositions.) A
Hamiltonian `-decomposition is a Hamiltonian decomposition
of some subgraph of G with ` nodes, see Fig. 2 for illustration.

Structural analysis and sparse matrix spaces. We rely
on the structural approach to systems theory proposed in [31],
[32]. We are concerned with linear subspaces obtained by forc-
ing certain entries of the matrices in Rn×n to be zero. More
precisely, given a digraph G, we define AG to be the vector
space in Rn×n that contains all matrices that are consistent
with G, and whose nonzero entries are independent parameters.
The vector space AG can be represented by a n× n structure
matrix AG , whose entries are either algebraically independent
parameters in R (denoted by [) or fixed zeros (denoted by
0). We define a vector of parameters a = ({aij}(i,j)∈E) such
that AG(a) defines a numerical realization of the structured
matrix AG , namely, AG(a) ∈ AG . For instance, for the graph
in Fig. 2, we have

AG =


[ 0 [ 0
[ 0 [ 0
0 [ 0 [
0 [ 0 0

 ,AG(a) =


a11 0 a13 0
a21 0 a23 0
0 a32 0 a34

0 a42 0 0

 ,
where a = (a11, a13, a21, a23, a32, a34, a42).

Projections and linear subspaces. We next recall some
basic notions regarding projections in linear algebra (see,
e.g., [33]). Two vectors x, y ∈ Rn are orthogonal if xTy = 0;
the orthogonal complement of M ⊂ Rn is a linear subspace
defined as M⊥ := {x ∈ Rn : xTy = 0, ∀ y ∈ M}. Given
two subspacesM,N ⊆ Rn, the subspaceW ⊆ Rn is a direct
sum of M and N , denoted W =M⊕N , if M∩N = {0},
and M + N = {u + v : u ∈ M, v ∈ N} = W . The
subspaces M,N ⊂ Rn are complementary if M⊕N = Rn.
A matrix Π ∈ Rn×n is called a projection in Rn×n if Π2 = Π.
Given complementary subspacesM,N ⊂ Rn, for any z ∈ Rn
there exists a unique decomposition of the form z = x + y,
where x ∈ M, y ∈ N . The transformation ΠM,N , defined
by ΠM,N z := x, is called projection onto M along N , and
the transformation ΠN ,M defined by ΠN ,Mz := y is called
projection onto N along M. Moreover, the vector x is the
projection of z onto M along N , and the vector y is the
projection of z onto N along M. The projection ΠM,M⊥

onto M along M⊥ is called orthogonal projection onto M.
Because the subspace M uniquely determines M⊥, in what
follows we will denote ΠM,M⊥ in compact form as ΠM.
General projections that are not orthogonal are called oblique
projections. We recall the following instrumental results.

Lemma 2.1: ( [33, Thm. 2.11 and Thm. 2.31]) If Π ∈
Rn×n is a projection with rank (Π) = k, then there exists an
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(c)

Fig. 2: (a) Illustration of a digraph and (b)-(c) associated Hamiltonian `-
decompositions for ` ∈ {1, . . . , 4}. Notice that a graph might admit one,
multiple, or no Hamiltonian `-decompositions.

invertible matrix T ∈ Rn×n such that

Π = T

[
Ik 0
0 0

]
T−1.

Moreover, if Π is an orthogonal projection, then T can be
chosen to be an orthogonal matrix, i.e., TTT = I . �

Lemma 2.2: ( [33, Thm. 2.26]) Let M,N be comple-
mentary subspaces and let the columns of V ∈ Rn×k and
W ∈ Rn×k form a basis for M and N⊥, respectively. Then
ΠM,N = V (WTV )−1WT. �

Recall the following known properties [33, Thm. 1.60]:

Im(MT) = Im(M†) = Im(M†M) = Im(MTM),

ker(M) = Im(MT)⊥ = ker(M†M) = Im(I −M†M).

From these properties, it follows from Lemma 2.2 that if M ∈
Rm×n, then ΠIm(M) = MM† and Πker(M) = I − M†M ,
where M† ∈ Rn×m is the Moore-Penrose inverse of M .

III. PROBLEM FORMULATION

Consider n agents whose communication topology is de-
scribed by a digraph G = (V, E), V = {1, . . . , n}; the state of
the i-th agent, i ∈ V , is xi ∈ R. We are interested in a model
where each agent exchanges its state with its neighbors and
updates it using the following dynamics:

ẋi = aiixi +
∑
j∈Ni

aijxj , ∀ i ∈ V, (1)

where aij ∈ R, (i, j) ∈ E , is a weighting factor. Setting A =
[aij ] with aij = 0 if (i, j) 6∈ E , and x = (x1, . . . , xn), the
dynamics can be written in vector form as:

ẋ = Ax. (2)
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We say that the network dynamics (2) reach a k-dimensional
agreement if, asymptotically, each state variable converges to
an (agent-dependent) weighted sum of the initial conditions
x(0), such that the value at convergence is confined to a
subspace of dimension k. This notion is formalized next.

Definition 3.1: (k-dimensional agreement) Let k ∈ N>0,
k ≤ n − 1, and let W ∈ Rn×n satisfy rank (W ) = k. The
update (2) enables a k-dimensional agreement on W if

lim
t→∞

x(t) = Wx(0), (3)

for any x(0) ∈ Rn. �

In this paper, we are interested in cases where the matrix of
weights W is fixed but arbitrary; in these cases, we will say
that (2) can reach an agreement on arbitrary weights.

Definition (3.1) formalizes a notion of “agreement” where,
asymptotically, the state of all agents form a vector x(t) that
belongs to the k-dimensional space defined by Im(W ). The
notion of agreement generalizes the classical notion of consen-
sus; notice, however, that reaching an agreement does not im-
ply that the values of all state variables coincide asymptotically
(i.e., it is not guaranteed that limt→∞ ‖xi(t) − xj(t)‖ = 0,
i 6= j). We discuss the relationship between k-dimensional
agreement and classical consensus in the following remark.

Remark 3.2: (Relationship with consensus problems) In
the special case where k = 1, the matrix W can be written as
W = vwT for some v, w ∈ Rn. This corresponds to scaled
consensus, studied in [29]. When, in addition, v = 1 and w
is such that wT1 = 1, we recover the well-studied consensus
problem [2]. When, additionally, w = 1

n1, we recover the
average consensus problem [2, Sec. 2]. Notice that, v = 1

guarantees that all the state variables converge to the same
quantity, namely, limt→∞ ‖xi(t)− xj(t)‖ = 0,∀ i, j ∈ V . �

In what follows, we make the following assumption.
Assumption 1: (Strong connectivity) The communication

digraph G is strongly connected. �

This assumption is motivated by the following remark.
Remark 3.3: (Role of strong connectivity) When G is

not strongly connected, then for any A that is consistent
with G at least one of the entries of the matrix exponential
limt→∞ eAt is identically zero (this follows by recalling that
eAt =

∑∞
i=0

Aiti

i! and from [34, Cor 4.5]). Thus, when G is
not strongly connected, an agreement cannot be reached on
arbitrary weights (notice, however, that agreement might be
reached on some weights W , with W sparse). �

We conclude this section by illustrating the applicability of
the framework in applications in distributed computation.

Example 3.4: (Motivating example: distributed computa-
tion of k weighted averages) Consider a scenario where each
agent is interested in computing, using local communication
only, an agent-dependent weighted mean (i.e., with agent-
dependent weights) of a certain quantity x∗ = (x∗1, . . . , x

∗
n),

where x∗i ∈ R is known only by agent i. More formally, let
wi ∈ Rn, with wT

i 1 = 1, denote desired weighting coefficients
for agent i, with k of these vectors being linearly independent;
we are interested in guaranteeing that the internal state of each
agent xi(t), i ∈ {1, . . . , n}, satisfies limt→∞ xi(t) = wT

i x
∗.

This problem emerges commonly in applications in distributed
computing where each agent would like to evaluate an agent-
dependent function at the common point x∗, whose entries are
known only locally. In fact, by denoting by

fi(x) := wT
i x, i ∈ {1, . . . , n},

the objective is to design a distributed protocol of the form (2)
that guarantees that xi(t) → fi(x

∗) as t → ∞). There are
two natural approaches to this problem. The first (and more
standard) consists in executing k linear consensus algorithms
in parallel [35], where the i-th algorithm is designed to
converge asymptotically to wT

i x
∗. A second solution, proposed

in this work, consists in executing a single linear algorithm of
the form (2). We next detail these two approaches and discuss
their communication complexities.

(Approach 1) Consider k duplicates of the agents’ states
x(1), . . . , x(k) ∈ Rn, and let the i-th duplicate implement the
protocol ẋ(i) = A(i)x(i). A simple choice to achieve x(i)(t)→
1wT

i x
∗ is to adopt a Laplacian-based consensus algorithm

described by x(i)(0) = x∗ and A(i) := P (i) − diag(P (i)1),
where P (i) is such that

wT
i (P (i) − diag(P (i)1)) = 0.

As shown in [35, Thm. 1], this choice guarantees
limt→∞ x(i)(t) = 1wT

i x
∗, provided that G is strongly con-

nected. Unfortunately, it is easy to see that the spatial and
communication complexities of this approach do not scale
well with the network size. Indeed, each agent must maintain
k independent scalar state variables and, at every time step,
each agent must transmit these k variables to all its neighbors.
It follows that the per-agent spatial complexity is O(k) (since
each agent maintains k copies of a scalar state variable), and
the per-agent communication complexity is O(k ·deg(G)) (and
thus is O(n · deg(G)) when k is proportional to n). Here,
deg(G) denotes the largest in/out node degree in G.

(Approach 2) To overcome the scalability issue associated
with (Approach 1), we propose the use of a linear agreement
protocol of the form (2) that achieves agreement as in (3).
Here, A is chosen as described shortly in Section V. In this
case, the per-agent spatial complexity is O(1) since agents
maintain a single scalar state variable, and the communication
complexity is O(deg(G)). Fig. 1 provides a comparison of the
communication volumes of (Approach 1) and (Approach 2). �

IV. CHARACTERIZATION OF THE AGREEMENT SPACE AND
AGREEMENT ALGORITHMS

In this section, we provide a characterization of the agree-
ment space for (2); we also illustrate how to construct a matrix
A that defines the agreement protocol. We begin with the
following instrumental result.

Lemma 4.1: (Spectral properties of agreement protocols)
The update (2) reaches a k-dimensional agreement if and only
if there exists a nonsingular T ∈ Rn×n such that A admits
the following decomposition:

A = T

[
0 0

0 B

]
T−1, (4)
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⇧M,N · ⇠

(b)

Fig. 3: (a) Illustration of the orthogonal projection of a vector ξ ∈ R3 onto
M ⊂ R3. (b) Illustration of complementary subspaces M,N ∈ R3 and
oblique projection of ξ. Notice that the projection ray belongs to span(N ).

where B ∈ R(n−k)×(n−k) satisfies λmax (B) < 0. �

Proof: (If) When (4) holds, we have that:

lim
t→∞

x(t) = lim
t→∞

eAtx(0) = T

[
Ik 0

0 0

]
T−1︸ ︷︷ ︸

:=W

x(0) = Wx(0).

(Only if) Since limt→∞ eAt exists, λmax (A) ≤ 0; if λ ∈ σ(A)
and <(λ) = 0, then λ = 0 and its algebraic and geometric
multiplicities coincide (see, e.g., [34, Thm 7.1]). It follows
that A must satisfy (4).

Lemma 4.1 shows that matrices A that define agreement
protocols satisfy two properties: (i) their spectrum is σ(A) =
{0} ∪ {λ1, . . . , λn−k}, where <(λi) < 0, and (ii) the eigen-
value λ = 0 has identical algebraic and geometric multiplici-
ties, which are equal to k.

In the following result, we characterize the class of matrices
W on which an agreement can be achieved.

Proposition 4.2: (Characterization of agreement space)
Let x(t) denote the solution of (2) with initial condition x(0).
If limt→∞ x(t) := x∞ exists, then there exist complementary
subspaces M,N ⊂ Rn such that x∞ = ΠM,Nx(0). �

Proof: When (2) reaches an agreement, matrix A reads
as in (4), from which we obtain

W = lim
t→∞

eAt = T

[
Ik 0

0 0

]
T−1.

To conclude, notice that W is a projection since W 2 = W .

Proposition 4.2 provides a characterization of the class of
weights on which an agreement can be reached: it asserts that
linear protocols of the form (2) can agree on matrix weights
that are oblique projections. Accordingly, the asymptotic value
at agreement can be interpreted geometrically as the corre-
sponding oblique projection of the initial conditions x(0), cf.
Fig. 3 for an illustration.

Remark 4.3: (Geometric interpretation of agreement space
of consensus algorithms) In the case of consensus, the group
of agents is known to converge to 1wTx(0), where w is a
left eigenvector of A (wTA = 0) that satisfies wT1 = 1 (see
Remark 3.2). Proposition 4.2 provides a geometric interpreta-
tion of the consensus value: it shows that 1wTx(0) = ΠM,N ,
namely, the consensus value is the oblique projection of the
initial conditions x(0) onto M = Im(1) along N = Im(w)⊥

(see Lemma 2.2). In the case of average consensus, the value at
convergence is 1

n11
Tx(0), which is the orthogonal projection

of x(0) onto M = Im(1). �

It is now natural to consider the following converse ques-
tion: given any pair of complementary subspaces M,N , is
it possible to construct a matrix A such that limt→∞ x(t) =
ΠM,Nx(0)? The following result provides a positive answer
to this question for the case where the digraph G is complete.

Proposition 4.4: (Existence of agreement algorithms over
complete digraphs) Let M,N ⊂ Rn be complementary
subspaces and G the complete graph with |V| = n. Then, exists
A ∈ Rn×n such that the iterates (2) satisfy limt→∞ x(t) =
ΠM,Nx(0). �

Proof: For any pair of complementary subspacesM,N ,
[33, Thm. 2.26] guarantees the existence of an oblique pro-
jection matrix ΠM,N . Moreover, by Lemma 2.1, there exists
invertible T̄ ∈ Rn×n such that ΠM,N can be decomposed as

ΠM,N = TΠ

[
Ik 0

0 0

]
T−1

Π ,

where k = dim(M). The statement follows by choosing A
as in (4) with T = TΠ and by noting that, with this choice,
limt→∞ eAtx(0) = ΠM,Nx(0).

Proposition 4.4 shows that for any pair of complementary
subspaces M,N , it is always possible to construct agree-
ment protocols A such that (2) converges to the projection
ΠM,Nx(0). The proof of this result provides an explicit way
to construct A given M,N . We formalize a technique to
construct agreement matrices A by using ideas from Proposi-
tion 4.4 in Algorithm 1. We remark that matrices A constructed
from Proposition 4.4 or Algorithm 1 are, in general, non-sparse
or non-consistent with a pre-specified digraph G, and thus in
general they can be interpreted as centralized algorithms.

Algorithm 1 Construction of agreement matrix A

Require: V ∈ Rn×k whose columns form a basis for M
Require: U ∈ Rn×k whose columns form a basis for N⊥

ΠM,N ← V (UTV )−1UT;

Determine T such that ΠM,N = T

[
Ik 0

0 0

]
T−1;

Choose B ∈ R(n−k)×(n−k) such that λmax (B) < 0;

return A = T

[
0k 0

0 B

]
T−1;

It is thus natural to consider the question of whether a k-
dimensional agreement can be achieved by protocols imple-
mented over an arbitrary (non-complete) digraph G (provided
that G satisfies suitable assumptions). The following example
shows that an answer to this question is non-trivial: it shows
that if n = 3 and k = 2, then agreement can be achieved only
if G is the complete graph.

Example 4.5: (Not every digraph can reach k ≥ 2 agree-
ment on arbitrary weights) Assume that a network of n = 3
agents is interested in agreeing on a space with k = 2 by using
a sparse communication graph G. By using Lemma 4.1, (2)
reaches an agreement if and only if A can be diagonalized as:

A =
[
t1 t2 t3

]︸ ︷︷ ︸
=T

0 0 0
0 0 0
0 0 β

 [τ1 τ2 τ3
]T︸ ︷︷ ︸

=T−1

= βt3τ
T
3 , (5)
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for some β, <(β) < 0, and some T ∈ R3×3 invertible. Since
G is sparse by assumption, at least one of the entries of t3
or of τ3 must be equal to zero, which in turn implies that at
least one of the rows of A or at least one of the columns
of A, respectively, must be identically zero. However, this
implies that G is not strongly connected (see Remark 3.3),
and thus at least one of the entries of W = limt→∞ eAt

must be identically zero. The above discussion shows that if
G is sparse, then it is not possible to achieve an agreement on
arbitrary weights W (notice, however, that agreement might
be achieved to some, graph-dependent, weights W ). �

We remark that the above conclusion outlines an emerging
behavior with respect to consensus – where strong connectiv-
ity of the graph is always sufficient to guarantee existence of
a consensus protocol on arbitrary weights – as discussed next.

Remark 4.6: (Graphs that guarantee consensus on arbi-
trary weights) We recall that in the case of consensus or,
more generally, scaled consensus (k = 1), the property of
strong connectivity of the underlying digraph is sufficient to
guarantee that consensus can be achieved on any arbitrary
weighted average (see [35] for consensus or [29] for scaled
consensus). More formally, ∀ W : rank (W ) = 1,∃A :
limt→∞ x(t) = Wx(0). It follows from the discussion in
Example 4.5 that agreement on subspaces of dimension k ≥ 2
mandates the use of digraphs with higher connectivity as
compared to the case of consensus. �

Motivated by Example 4.5, in the subsequent section we in-
vestigate what properties of (sparse) G guarantee the existence
of agreement protocols that are consistent with G.

V. AGREEMENT ALGORITHMS OVER SPARSE DIGRAPHS

Here, we focus on agreement protocols that are consistent
with a given graph G. We adopt the notation AG(a) to denote
matrices for (2) that are consistent with G and whose entries
are parametrized by the vector a ∈ R|E| (see Section II).
Moreover, motivated by Proposition 4.2, we restrict ourselves
to cases where W is a projection matrix.

Assumption 2: (Matrix of weights is a projection) The
matrix of weights W is a projection onto a k-dimensional
space, namely, W 2 = W and rank (W ) = k, with k ∈ N>0,
k ≤ n− 1. �

Building upon Assumption 2, in what follows we make use
of the following decomposition for W (see Lemma 2.1):

W = TW

[
Ik 0

0 0

]
T−1
W . (6)

Moreover, we often use the following notation:

TW =
[
t1 · · · tn

]
, (T−1

W )T =
[
τ1 · · · τn

]
, (7)

where ti ∈ Rn, i ∈ {1, . . . , n}, denotes the i-th column of TW ,
and τi ∈ Rn denote the i-th column of TW and the i-th row
of T−1

W , respectively, i ∈ {1, . . . , n}.

A. Algebraic conditions for agreement
We next provide an algebraic characterization of agreement

protocols over sparse digraphs. Our characterization builds

upon a graph-theoretic interpretation of characteristic polyno-
mials presented in [36], which we recall next1. In what follows,
we denote by C`(G) the set of all Hamiltonian `-decomposition
of the graph G (see Section II).

Lemma 5.1: ( [36, Thm. 1]) Let G be a digraph, let A ∈
AG , and det(λI − A) = λn + p1λ

n−1 + · · · + pn−1λ + pn
denote its characteristic polynomial. Each coefficient p`, ` ∈
{1, . . . , n}, can be written as:

p` =
∑

ξ∈C`(G)

(−1)d(ξ)
∏

(i,j)∈ξ
aij ,

where d(c) denotes the number of Hamiltonian cycles in ξ. �

The lemma provides a graph-theoretic description of the
characteristic polynomial: it shows that the `-th coefficient of
det(λI−A) is a sum of terms such that each summand is the
product of edges in a Hamiltonian `-decomposition of G. We
illustrate the claim through an example.

Example 5.2: Consider the digraph in Fig. 2(a). We have:

A =


a11 0 a13 0
a21 0 a23 0
0 a32 0 a34

0 a42 0 0

 ,
and we refer to Fig. 2(b)-(c) for an illustration of all Hamil-
tonian `-decompositions for this graph. Lemma 5.1 yields:

p1 = −a11, p3 = −a13a21a32 + a11a23a32 − a23a42a34,

p2 = −a23a32 p4 = −a13a21a42a34 + a11a23a34a42.

Notice that each summand in p` is the product of weights in
a Hamiltonian decomposition of the corresponding size. �

We are now ready to state the following necessary and
sufficient conditions for agreement.

Theorem 5.3: (Algebraic characterization of sparse agree-
ment matrices) Let G be a digraph as in Assumption 1, and
let W satisfy Assumption 2. The linear update ẋ = AG(a)x
reaches a k-dimensional agreement on W if and only if the
following conditions hold simultaneously:

(i) AG(a)ti = 0, τTi AG(a) = 0, ∀i ∈ {1, . . . , k};
(ii) The polynomial λn−k−1 + p1λ

n−k−2 + · · · + pn−k−1,
whose coefficients are defined as

p` =
∑

ξ∈C`(G)

(−1)d(ξ)
∏

(i,j)∈ξ
aij , ` ∈ {1, . . . , n− k},

is stable. �

Proof: (If) Let A be any matrix that satisfies (i)-(ii). If
A is diagonalizable, then, by letting T = (t1, · · · , tn) be the
matrix of its right eigenvectors and (T−1)T = (τ1, · · · , τn)
be the matrix of its left eigenvectors, we conclude that A
satisfies (4) and thus the linear update reaches an agreement

1The claim in [36, Thm. 1] is stated in terms of cycles and cycle families
instead than Hamiltonian cycles and Hamiltonian decompositions. In this
work, we used the latter wording, which is more standard and better aligned
with the recent literature [30].
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on W . If A is not diagonalizable, let T be a similarity
transformation such that T−1AT is in Jordan normal form:

T−1AT =


Jλ1

Jλ2

. . .
Jλn

 , Jλi
=

λ1 1
. . . . . .

λ1

 ,
From (i) we conclude that λ = 0 is an eigenvalue with
algebraic multiplicity k, moreover, since the vectors ti are
linearly independent (see (6)), we conclude that its geometric
multiplicity is also equal to k, and thus all Jordan blocks
associated with λ = 0 have dimension 1. Namely, Jλ1 =
· · · = Jλk

= 0. By combining this with (ii), we conclude that
the characteristic polynomial of A is

det(λI −A) = λn + p1λ
n−1 + · · ·+ pn−k−1λ

k−1,

and, since by assumption such polynomial is stable, we
conclude that all remaining eigenvalues {λk+1, . . . , λn} of A
satisfy <(λi) < 0. Since all Jordan blocks associated with
λ = 0 have dimension 1 and all the remaining eigenvalues of
A are stable, we conclude that A admits the representation (4)
and thus the linear update reaches an agreement.

(Only if) We will prove this claim by showing that (4)
implies (i)-(ii). To prove that (i) holds, we rewrite (4) as

T−1AT =

[
0 0

0 B

]
,

and, by taking the first k columns of the above identity we
conclude Ati = 0, i ∈ {1, . . . , k}, thus showing that (i)
holds. To prove that (ii) holds, notice that (4) implies that
the characteristic polynomial of A is a stable polynomial with
k roots at zero. Namely,

det(λI −A) = λk(λ− λ1)(λ− λ2) · · · (λ− λn−k)

= λn + p1λ
n−1 + · · ·+ pn−k−1λ

k−1,

where <(λi) < 0, i ∈ {1, . . . , n− k}, and pj , j ∈ {1, . . . , n−
k − 1}, are nonzero real coefficients. The statement (ii) thus
follows by applying the graph-theoretic interpretation of the
coefficients of the characteristic polynomial in Lemma 5.1.

Theorem 5.3 provides an algebraic characterization of linear
protocols that reach an agreement on arbitrary weights. Given
a graph G and a matrix of weights W , the result can be
used to construct agreement protocols consistent with G as
follows: by interpreting the vector of edge parameters a as
an unknown and p1, . . . pn−k as pre-specified real numbers,
conditions (i)-(ii) define a system of 2nk linear equations and
n − k multilinear polynomial equations with |E| unknowns
described by the vector a and n− k constants p1, . . . pn−k.

We remark that solvability of (i)-(ii) is not guaranteed in
general (except for some special cases, such as when the
digraph is complete, see Proposition 4.4) and that existence
of solutions depends upon: the connectivity of the underlying
graph and on the choice of the constants {p1, . . . pn−k−1}.
In general cases, solvability can be assessed via standard
techniques to solve systems of polynomial equations. We
discuss one of these techniques in the following remark.

Remark 5.4: (Determining solutions to systems of polyno-
mial equations) A powerful and general technique for solving
systems of polynomial equations uses the tool of Gröbner
bases, as applied using Buchberger’s algorithm. The technique
relies on transforming a system of polynomial equations into
a canonical form, expressed in terms of a Gröbner basis, for
which it then easier to determine a solution. We refer to
[37], [38] for a complete discussion. Regarding assessing the
existence of solutions, we remark that Hilbert’s Nullstellensatz
theorem provides a powerful tool for this task. In short, the
theorem guarantees that a system of polynomial equations has
no solution if and only if its Gröbner basis is {1}. In this
sense, the Gröbner basis method provides an easy way to check
solvability of (i)-(ii). We also note that the computational
complexity of solving a system of polynomial equations via
Gröbner bases is exponential [38] in general. �

B. Fast distributed agreement algorithms

The freedom in the choice of the parameters p1, . . . pn−k in
the statement Theorem 5.3 suggests that a certain graph may
admit an infinite number of compatible agreement protocols.
For this reason, in this section, we will leverage such freedom
to determine agreement protocols with maximal convergence
rate. More precisely, we will investigate the following prob-
lem: given a digraph G and a matrix of weights W , determine
an agreement protocol that is compatible with G such that (2)
reaches an agreement on W and such that its rate of conver-
gence is maximal. This question can be posed as the following
optimization problem:

min
A

r(A)

s.t. A ∈ AG , lim
t→∞

eAt = W. (8)

In (8), r : Rn×n → R is a function that measures the rate of
convergence of eAt over time. The problem of determining the
fastest distributed agreement algorithm (8) is closely related to
the problem of fastest average consensus studied in [20]; the
main difference is that while the average consensus problem
is always feasible when G is strongly connected, there is no
simple way to check feasibility of (8) for general graphs. (No-
tice that feasibility might fail when A is not semi-convergent,
and thus limt→∞ eAt = W does not exist). When G is the
complete graph Proposition 4.4 guarantees that (8) is feasible.

When the optimization problem (8) is feasible, it is natural
to consider two possible choices for the cost function r(·),
motivated by the size of ‖eAt‖ as a function of time. The first
limiting case is t→∞. In this case, we consider the following
asymptotic measure of convergence motivated by [39, Ch. 14]:

r∞(A) := lim
t→∞

t−1 log ‖eAt‖ = λmax (A) , (9)

where we recall that λmax (A) denotes the spectral abscissa
of A (i.e., the largest real part of the eigenvalues of A, see
Section II). The second limiting case is t → 0. In this case,
we consider the following measure of the initial growth rate



8 GENERIC COLORIZED JOURNAL

of ‖eAt‖:

r0(A) :=
d

dt
‖eAt‖

∣∣∣∣
t=0

= lim
t↓0

t−1 log ‖eAt‖

= λmax

(
A+AT

2

)
, (10)

where λmax

(
A+AT

2

)
is the numerical abscissa of A [39].

Accordingly, we have the following two results.
Proposition 5.5: (Fast agreement via spectral abscissa

minimization) Assume that the optimization problem (8) is
feasible, and let the performance measure be r(·) = r∞(·).
Any solution to the following optimization problem:

min
a∈R|E|

λmax (AG(a)) (11)

s.t. AG(a)ti = 0, τTi AG(a) = 0, i ∈ {1, . . . , k},
where ti, τi are as in (7), is also a solution of (8). �

Proof: Since the optimization problem (8) is feasible,
condition (i) of Theorem 5.3 guarantees that (11) is also
feasible and that λmax (AG(a)) < 0. Let a∗ denote a solution
of (11), and let A = AG(a∗). By construction, we have
A ∈ AG , while the two constraints in (11), together with
λmax (A) < 0 (which is guaranteed by feasibility), guarantee
that limt→∞ eAt = W , which shows that a∗ is a feasible
point for (8). The claim thus follows by noting that the cost
functions of (8) and that of (11) coincide.

Proposition 5.5 allows us to recast the optimization prob-
lem (8) as a finite-dimensional search over the vector of
parameters a ∈ R|E|. Unfortunately, even though the con-
straints of (11) are linear equalities, finding a solution may
be computationally burdensome because the objective function
(i.e., the spectral abscissa) is not convex (in fact, it is not even
Lipschitz [40]). On the other hand, we have the following.

Proposition 5.6: (Fast agreement via numerical abscissa
minimization) Assume that the optimization problem (8) is
feasible, and let the performance measure be r(·) = r0(·).
Any solution to the following convex optimization problem:

min
a∈R|E|

λmax

(
AG(a) + AG(a)T

2

)
(12)

s.t. AG(a)ti = 0, τTi AG(a) = 0, i ∈ {1, . . . , k},
where ti, τi are as in (7), is also a solution of (8). �

Proof: The proof repeats the same steps as those in the
proof of Proposition 5.5, by replacing the cost with (10).

In contrast with the spectral abscissa formulation (9), the
cost function in (12) is always convex in the parameter a, and
thus a global solution of (12) can be computed efficiently.

VI. GRAPH-THEORETIC CONDITIONS FOR AGREEMENT

Although Theorem 5.3 provides a way to construct agree-
ment protocols that are consistent with a given graph, the
system of algebraic equations in its statement may not admit a
solution in general (see, e.g., Example 4.5). Motivated by this
observation, in this section we provide necessary and sufficient
conditions on the graph G that guarantee solvability of such a
set of equations. We begin with a necessary condition.

Proposition 6.1: (Graph-theoretic necessary conditions)
Let G satisfy Assumption 1. There exists a ∈ R|E| such that the
linear update ẋ = AG(a)x reaches a k-dimensional agreement
on arbitrary weights only if

|E| ≥ kn. (13)

�

Proof: It follows from the algebraic characterization in
Theorem 5.3 that ẋ = AG(a)x reaches an agreement if and
only if the following set of algebraic equations admit a solution
a:

0 = AG(a)ti, i ∈ {1, . . . , k}, (14a)

p` =
∑

ξ∈C`(G)

(−1)d(c)
∏

(i,j)∈ξ
aij , ` ∈ {1, . . . , n− k}. (14b)

The system of equations (14) to be solved consists of nk
linearly independent linear equations and n − k nonlinear
equations with |E| unknowns and n−k arbitrarily chosen real
numbers p1, . . . , pn−k. Due to the invertibility of matrix T ,
the equations (14a) are linearly independent, and thus generic
solvability of (14) requires the following necessary condition
|a| = |E| ≥ nk.

Condition (13) can be interpreted as a lower bound on
the minimal graph connectivity that is required to achieve
agreement. The condition shows that the number of edges in
G must grow at least linearly with k or with n. The following
remark discusses the above bound when k = 1.

Remark 6.2: (When k = 1, (13) is always guaranteed
under standard assumptions) By recalling that, when k =
1, strong connectivity is a sufficient condition to reach an
agreement on arbitrary weights (see [29, Lemma 1]), and by
noting that the graph with minimal edge-set cardinality that is
strongly connected is the one-directional circular graph (see
Fig. 4(a)), it follows that (13) is implicitly guaranteed for
standard consensus protocols (i.e. k = 1). �

The necessary condition (13) has some important implica-
tions for agreement on two widely-studied topologies, namely,
line and circulant digraphs; we discuss these cases next.

Remark 6.3: (Agreement over circulant digraphs) Con-
sider the (one-directional) circulant topology in Fig. 4(a). In
this case, |E| = 2n and thus (13) yields the necessary con-
dition k ≤ 2. Similarly, consider the (bi-directional) circulant
topology in Fig. 4(b). Here, |E| = 3n, and thus (13) yields the
necessary condition k ≤ 3. In words, the one-directional and
bi-directional circulant digraphs allow agreement on subspaces
of dimension at most 2 and 3, respectively.

It is thus natural to ask the following question: given an
arbitrary k ∈ N>0 and a circulant-type communication digraph
where each agent communicates with α ∈ N>0 neighbors (see
Fig. 4(c)), what is the smallest α that is required to reach a
k-dimensional agreement? By using (13) with |E| = n(α+1),
an answer to the above question is given by the necessary
condition: α ≥ k−1, which illustrates that the communication
degree α must grow at least linearly with k. �

Remark 6.4: (Agreement over line digraphs) Consider the
directed digraph with (bi-directional) line topology illustrated
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1 in- (or out-) 
neighbor

(a)

2 in- (or out-) 
neighbors

(b)

  in- (or out-) 
neighbors

<latexit sha1_base64="OchCgcFlLLOg2u/EbIlRCDiQuEA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Ae0oUy2m3bpZrPsboQS+iO8eFDEq7/Hm//GpM1BWx8MPN6bYWZeoAQ31nW/ndLG5tb2Tnm3srd/cHhUPT7pmDjRlLVpLGLdC9AwwSVrW24F6ynNMAoE6wbTu9zvPjFteCwf7UwxP8Kx5CGnaDOpO0ChJlgZVmtu3V2ArBOvIDUo0BpWvwajmCYRk5YKNKbvucr6KWrLqWDzyiAxTCGd4pj1MyoxYsZPF+fOyUWmjEgY66ykJQv190SKkTGzKMg6I7QTs+rl4n9eP7HhrZ9yqRLLJF0uChNBbEzy38mIa0atmGUEqebZrYROUCO1WUJ5CN7qy+ukc1X3ruuNh0at2SjiKMMZnMMleHADTbiHFrSBwhSe4RXeHOW8OO/Ox7K15BQzp/AHzucPwLGPJw==</latexit>↵

(c)

2 in- (or out-) neighbors

(d)

<latexit sha1_base64="OchCgcFlLLOg2u/EbIlRCDiQuEA=">AAAB7nicbVBNS8NAEJ3Ur1q/qh69LBbBU0mkqMeCF48V7Ae0oUy2m3bpZrPsboQS+iO8eFDEq7/Hm//GpM1BWx8MPN6bYWZeoAQ31nW/ndLG5tb2Tnm3srd/cHhUPT7pmDjRlLVpLGLdC9AwwSVrW24F6ynNMAoE6wbTu9zvPjFteCwf7UwxP8Kx5CGnaDOpO0ChJlgZVmtu3V2ArBOvIDUo0BpWvwajmCYRk5YKNKbvucr6KWrLqWDzyiAxTCGd4pj1MyoxYsZPF+fOyUWmjEgY66ykJQv190SKkTGzKMg6I7QTs+rl4n9eP7HhrZ9yqRLLJF0uChNBbEzy38mIa0atmGUEqebZrYROUCO1WUJ5CN7qy+ukc1X3ruuNh0at2SjiKMMZnMMleHADTbiHFrSBwhSe4RXeHOW8OO/Ox7K15BQzp/AHzucPwLGPJw==</latexit>↵ in- (or out-) neighbors

(e)

Fig. 4: (a) One-directional circulant topology; (b)–(c) bi-directional circulant
topology; (d)-(e) bi-directional line topology. The graph in (a) is the least-
connected graph that can reach an agreement on k = 1 (see Remark 6.2). (a),
(b), and (d) can reach agreement on subspaces of dimension at most k = 1
(see Remarks 6.3, 6.4). In (c) and (d), to reach agreement on arbitrary k,
α must grow at least linearly with k (see Remarks 6.3, 6.4). In all plots,
all nodes have self-cycles, which are omitted here for illustration purposes.
Dashed lines illustrate the trend of edge increase as a function of α.

in Fig. 4(d). In this case, |E| = n + 2(n − 1), and thus (17)
yields k ≤

⌊
3n−2
n

⌋
, which implies k ≤ 3. Thus, similarly

to the circulant digraphs, bi-directional line topologies allow
agreement on subspaces of dimension at most 3.

Conversely, it is natural to ask: given any arbitrary k ∈
N>0 and a line-type communication digraph where each agent
communicates with α ∈ N>0 neighbors (see Fig. 4(e)), what
is the smallest α that is required to reach a k-dimensional
agreement? By using (13) with |E| = n + αn − α

2 (α2 + 1),
simple computations yield the necessary condition: α ≥ 2k−
1. Not surprisingly, this condition is more stringent than the
circulant topology case (cf. Remark 6.3) since the cardinality
of the edge-set of the line topology is smaller than that of the
circulant topology (due to the lack of symmetry in the head
and tail nodes – see Fig. 4(e)). �

The following result provides a graph-theoretic characteriza-
tion of graphs that can achieve agreement on arbitrary weights.

Proposition 6.5: (Graph-theoretic sufficient conditions)
Let G be a graph that satisfies Assumption 1 and let |E| ≥
nk+n−k. If there exists a partitioning of the edge parameters
a = ({aij}(i,j)∈E) into two disjoint sets av = {a1, . . . an−k}
and ac = {an+1, . . . a|E|} such that:

(i) For all ` ∈ {1, . . . , n − k}, there exists a Hamiltonian
`-decomposition, denoted by C∗` , such that a` ∈ C∗` ;

(ii) Any edge in C∗` other than a` belongs to ac,
(iii) Any Hamiltonian `-decomposition other than C∗` that

contains edges in av also contains at least one edge in
ac that does not appear in C∗` ,

then, for any W as in Assumption 2, there exists a ∈ R|E| such
that the linear update ẋ = AG(a)x reaches a k-dimensional
agreement on W . �

Proof: Recall from Thm. 5.3 that ẋ = AG(a)x reaches
an agreement if and only if there exists a stable polynomial

P (λ) = λn−k−1 + p1λ
n−k−2 + · · ·+ pn−k−1. (15)

with coefficients p = (p1, . . . , pn−k) such that there exists a
solution a∗ to the following set of algebraic equations:

0 = AG(a)ti, i ∈ {1, . . . , k}, (16a)

p` =
∑

ξ∈C`(G)

(−1)d(c)
∏

(i,j)∈ξ
aij , ` ∈ {1, . . . , n− k}. (16b)

Hence, we prove this claim by showing that there exists a
stable P (λ) such that (16) admit a solution. Let P (λ) be
chosen as follows:

P (λ) = (λ− α1) · · · (λ− αn),

where its (either real or complex conjugate pairs) roots αi ∈
C, i ∈ {1, . . . , n}, satisfy <(αi) < 0. Notice that <(αi) < 0
imply that all the coefficients {p1, . . . , pn−k} are non-negative.
Since {α1, . . . αn} are arbitrary and for any such choice each
element of p = (p1, . . . , pn−k) is non-negative, we will seek
solutions of (17) in a neighborhood of p = 0.

Since (t1, . . . tk) are given (and linearly independent), equa-
tion (16a) defines a set of nk linearly independent equations
in the variables a = (ac, av), which we denote compactly as
0 = h(ac, av), where h : R|E| → Rnk. Equation (16b) relates
p and (ac, av) by meas of a nonlinear mapping p = g(ac, av),
where g : R|E| → T is a smooth mapping and T is smooth
manifold in Rn−k. Since g(·) is a multi-linear polynomial, it is
immediate to verify that it admits the following decomposition:

g(ac, av) =
∂g

∂av
· av.

By denoting in compact form

G(ac, av) :=
∂g

∂av
∈ Rn−k×n−k,

H(ac, av) :=
∂h

∂av
∈ Rnk×n−k,

the system of equations (16) can be rewritten as

0 = H(ac, av)av, (17a)
p = G(ac, av)av. (17b)

As discussed above, we will now seek solutions to (17) in a
neighborhood of p = 0. By the inverse function theorem [41,
Thm. 9.24], solvability of (17) in a neighborhood of p = 0
is guaranteed when there exists a particular point (a∗c , a

∗
v)

such that 0 = H(a∗c , a
∗
v)a
∗
v = G(a∗c , a

∗
v)a
∗
v and G(a∗c , a

∗
v)

is invertible. To show this, we first notice that a∗v = 0 is a
solution of (17) for any ac ∈ R|E|−n+k. Thus, we are left
to show that there exists a choice a∗c such that G(a∗c , a

∗
v) is

invertible. Thus, we will next provide an inductive method to
construct a∗c such that G(a∗c , a

∗
v) is diagonally dominant.

Let a(1)
c ∈ R|E|−n+k be an arbitrary choice for ac such

that all its entries are nonzero. Notice that condition (i) in
the statement guarantees that there exists a nonzero product
in entry (1, 1) of G(a

(1)
c , a∗v), while condition (ii) guarantees

that such product is independent of a∗v . Thus, by letting
G(1)(ac, av) := G(ac, av), the matrix G(1)(a

(1)
c , a∗v) can be

partitioned as:

G(1)(a(1)
c , a∗v) =

 G
(1)
11 (a

(1)
c ) G

(1)
12 (a

(1)
c , a∗v)

G
(1)
21 (a

(1)
c , a∗v) G

(1)
22 (a

(1)
c , a∗v)

 ,
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where G
(1)
11 ∈ R, G(1)

12 ∈ R1×n−k−1, G(1)
21 ∈ Rn−k−1×1,

G
(1)
22 ∈ Rn−k−1×n−k−1. By condition (ii) and since all entries

of a(1)
c are nonzero, we have G(1)

11 (a
(1)
c ) 6= 0. Moreover, either

no element of a∗v appears in any Hamiltonian 1-decomposition,
in which case we have G(1)

12 (a
(1)
c , a∗v) = 0 or, otherwise, by

condition (iii), each entry in G(1)
12 (a

(1)
c , a∗v) is described by a

product that contains at least one scalar variable in a
(1)
c that

does not appear in G(1)
11 (a

(1)
c ). Denote such scalar variable by

ã and notice that, by choosing ã sufficiently small, the first row
of G(1) can be made diagonally dominant. Thus, we update
a

(1)
c as follows: a(2)

c = min{ã, a(i)
c } (where the minimum is

taken entrywise).
For the inductive step i, notice that G(i)(a

(i)
c , a∗v) is di-

agonally dominant if G(i)
22 (a

(i)
c , a∗v) is diagonally dominant.

Thus, by defining G(i+1)(·, ·) = G
(i)
22 (·, ·), i ∈ {1, . . . , n− 1},

by letting a
(i+1)
c = min{ã, a(i)

c } (entrywise minimum), and
by iterating the argument, we conclude that G(a

(n−k)
c , a∗v) is

diagonally dominant. Invertibility of G(a∗c , a
∗
v) thus follows

by letting a∗c = a
(n−k)
c , which concludes the proof.

Proposition 6.5 provides a set of graph-theoretic properties
that are sufficient to guarantee that a certain graph can sustain
agreement protocols on arbitrary weights. The result identifies
Hamiltonian decompositions as the fundamental component
that guarantees the existence of agreement protocols. Indeed,
as shown in the proof, the existence of n − k independent
Hamiltonian decompositions in G guarantees that a can be
chosen so that n − k modes of A(a) are stable. Finally, we
note that determining the Hamiltonian decompositions of a
graph can be done efficiently in polynomial time O(n2) by
using, e.g., Palmer’s Algorithm [42].

The usefulness of Proposition 6.5 depends largely on deter-
mining a partitioning of a into two disjoint sets of variables av
and ac. An algorithm to determine whether such partitioning
exists can be constructed by using ideas similar to [43], where
av and ac are derived from a directed spanning tree of G.

Remark 6.6: (Minimal graphs for agreement) It is worth
noting that if G = (V, E) admits the set of Hamiltonian `-
decompositions C`(G), then any graph G′ = (V ′, E ′) such that
V ′ = V and E ⊂ E ′ has a set of Hamiltonian `-decompositions
C′`(G) that satisfies C`(G) ⊆ C′`(G). In other words, any graph
obtained by adding edges to G admits a set of Hamiltonian
`-decompositions that includes those of G. It follows that
if G admits agreement protocols on arbitrary weights, then
any digraph obtained by adding edges to G will also admit
agreement protocols on arbitrary weights. �

We conclude this section by demonstrating the applicability
of Proposition. 6.5 through an example.

Example 6.7: (Illustration of Hamiltonian decomposition
condition) Consider the communication graph illustrated in
Fig. 5(a). The corresponding agreement protocol is given by:

AG(a) =


a11 a12 a13 0 a15

a21 a22 0 0 0
0 a32 a33 a34 0
0 0 a43 a44 0
a51 0 0 a54 a55

 .

<latexit sha1_base64="M6Cnmdl/c5LIx7D4JM1Eq/xJ4fs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdbmMpA==</latexit>

1

<latexit sha1_base64="aW0F2K6oODiElDNnfKU/hvYbTLY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9gNQT0GvHhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR0US27FXYBsEm9FSrBCY1D86g9jlkYoDRNU657nJsbPqDKcCZwV+qnGhLIJHWHPUkkj1H62OHRGrqwyJGGsbElDFurviYxGWk+jwHZG1Iz1ujcX//N6qQlv/YzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynYELz1lzdJu1rxriu1Zq1UL6/iyMMFXEIZPLiBOtxDA1rAAOEZXuHNeXRenHfnY9mac1Yz5/AHzucPdz2MpQ==</latexit>

2

<latexit sha1_base64="zJ+2d8PJUJpiob/Tws3ms8cQqvc=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHaVqEcSLx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFS46pfLLkVdwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1460+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtC4r3nWl2qiWauUsjjycwTmUwYMbqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AHjBjKY=</latexit>

3
<latexit sha1_base64="5UAm7/8gbPOUB9MYzwl2fsvCzMY=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XoqSRS1GPBi8cK9gPaUDbbSbt2swm7G6GE/gIvHhSv/iZv/hu3bQ7a+mDg8d4MM/PCVHBtPO/bKW1t7+zulffdg8Oj45OKe9rRSaYYtlkiEtULqUbBJbYNNwJ7qUIahwK74fRu4XefUWmeyEczSzGI6VjyiDNqrPTQGFaqXt1bgmwSvyBVKNAaVr4Go4RlMUrDBNW673upCXKqDGcC5+4g05hSNqVj7FsqaYw6yJeHzsmlVUYkSpQtachS/T2R01jrWRzazpiaiV73FuJ/Xj8z0W2Qc5lmBiVbLYoyQUxCFl+TEVfIjJhZQpni9lbCJlRRZmw2rg3BX395k3Su6v51vVFt1oowynAOF1ADH26gCffQgjYwQHiBN3h3npxX52PVWHKKiTP4A+fzBw//i30=</latexit>

4

<latexit sha1_base64="zMX2EoisY66msWQKFSabOl/jJQE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHYNPo4kXjxCIo8ENmR26IWR2dnNzKwJIXyBFw8a49VP8ubfOMAeFKykk0pVd7q7gkRwbVz328ltbG5t7+R3C3v7B4dHxeOTlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7Gd3O//YRK81g+mEmCfkSHkoecUWOlxlW/WHIr7gJknXgZKUGGer/41RvELI1QGiao1l3PTYw/pcpwJnBW6KUaE8rGdIhdSyWNUPvTxaEzcmGVAQljZUsaslB/T0xppPUkCmxnRM1Ir3pz8T+vm5rw1p9ymaQGJVsuClNBTEzmX5MBV8iMmFhCmeL2VsJGVFFmbDYFG4K3+vI6aV1WvOtKtVEt1cpZHHk4g3Mogwc3UIN7qEMTGCA8wyu8OY/Oi/PufCxbc042cwp/4Hz+AHvJjKg=</latexit>

5

(a)

<latexit sha1_base64="M6Cnmdl/c5LIx7D4JM1Eq/xJ4fs=">AAAB6HicbVBNS8NAEJ3Ur1q/qh69LBahp5KIqMeCF48t2A9oQ9lsJ+3azSbsboQS+gu8eFDEqz/Jm//GbZuDtj4YeLw3w8y8IBFcG9f9dgobm1vbO8Xd0t7+weFR+fikreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1Fip6Q3KFbfmLkDWiZeTCuRoDMpf/WHM0gilYYJq3fPcxPgZVYYzgbNSP9WYUDahI+xZKmmE2s8Wh87IhVWGJIyVLWnIQv09kdFI62kU2M6ImrFe9ebif14vNeGtn3GZpAYlWy4KU0FMTOZfkyFXyIyYWkKZ4vZWwsZUUWZsNiUbgrf68jppX9a869pV86pSr+ZxFOEMzqEKHtxAHe6hAS1ggPAMr/DmPDovzrvzsWwtOPnMKfyB8/kDdbmMpA==</latexit>

1

<latexit sha1_base64="aW0F2K6oODiElDNnfKU/hvYbTLY=">AAAB6HicbVDLSgNBEOyNrxhfUY9eBoOQU9gNQT0GvHhMwDwgWcLspDcZMzu7zMwKYckXePGgiFc/yZt/4+Rx0MSChqKqm+6uIBFcG9f9dnJb2zu7e/n9wsHh0fFJ8fSsreNUMWyxWMSqG1CNgktsGW4EdhOFNAoEdoLJ3dzvPKHSPJYPZpqgH9GR5CFn1FipWR0US27FXYBsEm9FSrBCY1D86g9jlkYoDRNU657nJsbPqDKcCZwV+qnGhLIJHWHPUkkj1H62OHRGrqwyJGGsbElDFurviYxGWk+jwHZG1Iz1ujcX//N6qQlv/YzLJDUo2XJRmApiYjL/mgy5QmbE1BLKFLe3EjamijJjsynYELz1lzdJu1rxriu1Zq1UL6/iyMMFXEIZPLiBOtxDA1rAAOEZXuHNeXRenHfnY9mac1Yz5/AHzucPdz2MpQ==</latexit>

2

<latexit sha1_base64="zJ+2d8PJUJpiob/Tws3ms8cQqvc=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHaVqEcSLx4hkUcCGzI79MLI7OxmZtaEEL7AiweN8eonefNvHGAPClbSSaWqO91dQSK4Nq777eQ2Nre2d/K7hb39g8Oj4vFJS8epYthksYhVJ6AaBZfYNNwI7CQKaRQIbAfju7nffkKleSwfzCRBP6JDyUPOqLFS46pfLLkVdwGyTryMlCBDvV/86g1ilkYoDRNU667nJsafUmU4Ezgr9FKNCWVjOsSupZJGqP3p4tAZubDKgISxsiUNWai/J6Y00noSBbYzomakV725+J/XTU1460+5TFKDki0XhakgJibzr8mAK2RGTCyhTHF7K2EjqigzNpuCDcFbfXmdtC4r3nWl2qiWauUsjjycwTmUwYMbqME91KEJDBCe4RXenEfnxXl3PpatOSebOYU/cD5/AHjBjKY=</latexit>

3
<latexit sha1_base64="5UAm7/8gbPOUB9MYzwl2fsvCzMY=">AAAB5HicbVBNS8NAEJ3Urxq/qlcvi0XoqSRS1GPBi8cK9gPaUDbbSbt2swm7G6GE/gIvHhSv/iZv/hu3bQ7a+mDg8d4MM/PCVHBtPO/bKW1t7+zulffdg8Oj45OKe9rRSaYYtlkiEtULqUbBJbYNNwJ7qUIahwK74fRu4XefUWmeyEczSzGI6VjyiDNqrPTQGFaqXt1bgmwSvyBVKNAaVr4Go4RlMUrDBNW673upCXKqDGcC5+4g05hSNqVj7FsqaYw6yJeHzsmlVUYkSpQtachS/T2R01jrWRzazpiaiV73FuJ/Xj8z0W2Qc5lmBiVbLYoyQUxCFl+TEVfIjJhZQpni9lbCJlRRZmw2rg3BX395k3Su6v51vVFt1oowynAOF1ADH26gCffQgjYwQHiBN3h3npxX52PVWHKKiTP4A+fzBw//i30=</latexit>

4

<latexit sha1_base64="zMX2EoisY66msWQKFSabOl/jJQE=">AAAB6HicbVDLTgJBEOzFF+IL9ehlIjHhRHYNPo4kXjxCIo8ENmR26IWR2dnNzKwJIXyBFw8a49VP8ubfOMAeFKykk0pVd7q7gkRwbVz328ltbG5t7+R3C3v7B4dHxeOTlo5TxbDJYhGrTkA1Ci6xabgR2EkU0igQ2A7Gd3O//YRK81g+mEmCfkSHkoecUWOlxlW/WHIr7gJknXgZKUGGer/41RvELI1QGiao1l3PTYw/pcpwJnBW6KUaE8rGdIhdSyWNUPvTxaEzcmGVAQljZUsaslB/T0xppPUkCmxnRM1Ir3pz8T+vm5rw1p9ymaQGJVsuClNBTEzmX5MBV8iMmFhCmeL2VsJGVFFmbDYFG4K3+vI6aV1WvOtKtVEt1cpZHHk4g3Mogwc3UIN7qEMTGCA8wyu8OY/Oi/PufCxbc042cwp/4Hz+AHvJjKg=</latexit>

5

(b)

Fig. 5: (a) Example of a graph that can sustain a 2-dimensional agreement.
(b) Graph obtained by adding green edges to (a); this graph can sustain a
3-dimensional agreement. See Example 6.7.

By Proposition 6.1, a necessary condition for agreement is

k ≤
⌊ |E|
n

⌋
=

⌊
14

5

⌋
= 2,

Thus, in what follows we fix k = 2. To illustrate the conditions
of Proposition 6.5, for simplicity, we let a22 = a33 = a44 =
a55 = 0 (according to Remark 6.6, if the graph without self-
cycles has an independent set of Hamiltonian decompositions,
then the graph obtained by adding these self-cycles will retain
the same set of decompositions). With this choice, the set of
all Hamiltonian `-decompositions, ` ∈ {1, . . . , n− k}, is:

C1 = {{a11}},
C2 = {{a12, a21}, {a34, a43}, {a15, a51}},
C3 = {{a11, a34, a43}, {a13, a21, a32}}. (18)

By selecting av and ac as follows

av = {a11, a12, a13},
ac = {a51, a54, a21, a32, a34, a43, a15},

it follows that a set of Hamiltonian `-decompositions that
satisfies the conditions in Proposition 6.5 is:

C∗1 = {a11}, C∗2 = {a12, a21}, C∗3 = {a13, a21, a32}.

Indeed, with this choice, the set of equations (14b) reads as:p1

p2

p3

 =

 −1 0 0
0 −a21 0

a34a43 0 −a21a32

a11

a12

a13

−
0
γ
0

 ,
where γ = a34a43 + a15a51, which is generically solvable for
any (p1, p2, p3) ∈ R3. Indeed, any choice of weights such that
a21 > 0 and |a21a32| > |a34a43| guarantees that the above
matrix is invertible.

To achieve agreements on subspaces of dimension k = 3,
consider the graph in Fig. 5(b) obtained by adding edges to
the graph in Fig. 5(a). The necessary condition (13) yields

k ≤
⌊ |E|
n

⌋
=

⌊
15

5

⌋
= 3,

which is satisfied. The set of relevant Hamiltonian decompo-
sitions (18) modifies to:

C1 = {{a11}},
C2 = {{a12, a21}, {a34, a43}, {a15, a51}, {a23, a32}},
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By selecting av and ac as follows

av = {a11, a12},
ac = {a13, a23, a45, a35, a51, a54, a21, a32, a34, a43, a15},

a set of Hamiltonian `-decompositions that satisfies Proposi-
tion 6.5 is:

C∗1 = {a11}, C∗2 = {a12, a21},
thus showing that the sufficient conditions also hold. �

VII. TRACKING DYNAMICS FOR AGREEMENT

In analogy with classical consensus processes [44], agree-
ment protocols can be modified to track (the oblique projection
of) a time-varying forcing signal u(t). Specifically, given a
graph G, consider the network process

ẋ = AG(a)x+ u̇, x(0) = u(0), (19)

where a is chosen so that AG(a) is an agreement matrix
(as in Theorem 5.3) and u : R≥0 → Rn is a continuously-
differentiable function. In this framework, the i-th entry of u̇
is known only by agent i, and the objective is to guarantee
that x(t) tracks a k-dimensional projection Wu(t) of u(t)
asymptotically. The protocol (19) can be interpreted as a gen-
eralization of the dynamic average consensus algorithm [44],
where the communication matrix is an agreement matrix
instead than a Laplacian. The following result characterizes
the transient behavior of (19).

Proposition 7.1: (Convergence of dynamic agreement pro-
tocol) Consider the update (19) and let AG(a) be an agreement
protocol on W as in Theorem 5.3. Then, for all t ≥ 0:

‖x(t)−Wu(t)‖ ≤ e−λ̂t‖x(0)−Wu(0)‖+
1

λ̂
sup

0≤τ≤t
‖u̇(τ)‖,

(20)

where λ̂ = λmax

(
AG(a)+AG(a)T

2

)
. �

Proof: The proof is inspired from [44, Thm. 2] and
extends the result to non Laplacian-based protocols and non
weight-balanced digraphs. Let W be decomposed as in (6),
and consider the following decompositions for TW and T−1

W :

TW =
[
T1 T2

]
, (T−1

W )T =
[
U1 U2

]
, (21)

where T1, U1 ∈ Rn×k and T2, U2 ∈ Rn×n−k. Let e = x−Wu
denote the tracking error, and consider the change of variables
ē = T−1

W e. In the new variables:

˙̄e = T−1
W (ẋ−Wu̇)

= T−1
W ATW ē+ T−1

W AWu+ T−1
W u̇− T−1

W Wu̇,

= T−1
W ATW ē+ T−1

W u̇− T−1
W Wu̇,

where the last identity follows by using (6), which implies
AW = 0. By substituting (21) and by noting that T−1W =
[U1 0]

T:

˙̄e =

[
UT

1 AT1 UT
1 AT2

UT
2 AT1 UT

2 AT2

]
ē+

[
0
UT

2

]
u̇

=

[
0

UT
2 AT2

]
ē+

[
0
UT

2

]
u̇, (22)

where the last inequality follows by noting that 0 = UT
1 AT1 =

UT
1 = AT1 according to condition (i) in Theorem 5.3.
Next, decompose e = (e1, e2) and ē = (ē1, ē2), where

e1, ē1 ∈ Rk and e2, ē2 ∈ Rn−k, and notice that the following
identities hold:

ē2 = UT
2 e, e = T2ē2. (23)

The first identity follows immediately from (21), while the
second follows from (21) and ē1(t) = 0 at all times. To see that
ē1(t) = 0 ∀t ≥ 0, notice that ē1(0) = UT

1 (x(0) − u(0)) = 0
thanks to the initialization (19), and ˙̄e1 = 0 according to (22).
By using (23), we conclude that ė = Ae+ u̇, from which (20)
follows by noting that

e(t) = exp(At) · e(0) +

∫ t

0

exp(A(t− τ))Bu̇(τ)dτ,

and by using ‖ exp(At)‖ ≤ exp
(
−λmax

(
AG(a)+AG(a)T

2

)
t
)

.

The error bound (20) shows that the dynamics (19) are
input-to-state stable with respect to u̇. The bound (20) guar-
antees that for any forcing signal u(t) with bounded time-
derivative the tracking error ‖x(t)−Wu(t)‖ is bounded at all
times. One important implication follows from the statement
of the proposition as a subcase: if limt→∞ u̇(t) = 0 and thus
limt→∞ u(t) = u∗ ∈ Rn, then limt→∞ x(t) = Wu∗.

VIII. APPLICATIONS AND NUMERICAL VALIDATION

In this section, we expand on the distributed computation
of averages scenario discussed in Example 3.4 by illustrating
our theoretical findings via numerical simulations. We consider
two application scenarios.

Applications to sensor measurement de-noising. We con-
sider a problem in distributed computation characterized by a
regression model of the form y = Hθ, where H ∈ Rn×k, n >
k and θ is an unknown parameter. We assume that each agent
i can sense the i-th entry of vector y, denoted by yi, and is
interested in computing the point ŷi that is the closest to yi
according to the regression model. To this end, we consider
the following regression problem:

θls := arg min
θ
‖Hθ − y‖. (24)

It is well-known that θls can be obtained by setting the gradient
of ‖Hθ − y‖2 equal to zero, which yields 0 = ∇θ‖Hθ −
y‖2 = 2HTHθ − 2HTy and thus, when HTH is invertible,
we have θls = (HTH)−1HTy. Hence, the desired vector to
be computed by the agents (de-noised measurements) is

ŷ = Hθls = H(HTH)−1HTy,

which is the orthogonal projection of y onto Im(H). For
figure illustration purposes, in our simulations, we consider
the case n = 50 (meaning n = 50 agents or sensors in the
network) and k = 2 (meaning the sensor measurements can
be interpolated using a line). In our simulations, we computed
an agreement protocol by using the optimization problem (12)
with agreement weights W = H(HTH)−1HT implemented
on the circulant graph in Fig. 4(c) with α = 4 in/out neigh-
bors. Fig. 6(b) shows the time evolution of the agents states
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and Fig. 6(a) shows the sampling points y and asymptotic
estimates ŷ in comparison with the true regression model. As
expected, the distributed algorithm (1) allows the agents to
denoise the n = 50 sensor measurement, yielding the best
linear approximation of the collected data samples. Fig. 6(b)
shows the trajectories of the agents states. As expected, at
convergence, the states of the agents do not coincide, instead,
the agreement state is a 50-dimensional vector constrained on
a 2-dimensional space.

Applications to robotic formation control. We next il-
lustrate how agreement protocols can be applied to solve
formation control problems [9] in multi-agent robotic net-
works. Consider a team of n = 8 single-integrator
robots initially arranged at equal intervals around a unit
circle (grey lines in Fig. 7(a)-(c)). By using x− and
y−coordinates to describe the robots positions, we use x0 =
(cos(0), sin(0), cos(π4 ), sin(π4 ), . . . , cos( 7π

4 ), sin( 7π
4 )) ∈ R16.

Fig. 7 illustrates the trajectories of the robots obtained by using
the 2D agreement protocol

ẋ = (A⊗ I2)x, x(0) = x0,

using the circulant communication graph illustrated in
Fig. 7(b) with α = 4. For comparison, in Fig. 7(a) and (d) we
illustrate the trajectories obtained by a consensus algorithm
described by weights W = 1

n11
T. As expected, the robots

meet at the point (0, 0), thus achieving rendezvous [9]. In
Fig.7(b) and (e), we illustrate the trajectories resulting from
running an agreement protocol (computed by solving (12))
with weights W = ΠM, where ΠM is the orthogonal
projection onto M = ker(M1) ⊂ R8 with

M1 =

[
1 −1 −1 1 0 0 0 0
0 0 0 0 1 −1 −1 1

]
.

The matrix M1 encodes attraction and repulsion forces be-
tween certain robots at convergence. Indeed, by recalling that
the agreement value is x(∞) = ΠMx(0), it follows that at
steady state the agents positions satisfy M1x(∞) = 0. Hence,
the rows of M1 are interpreted as algebraic constraints on the
asymptotic agreement value. From Fig.7(b), which reports the
corresponding time-evolution of the x− and y−coordinates of
the robots, we observe that the robots asymptotically achieve
a formation that is characterized by a 2-dimensional subspace.
Finally, Fig.s 7(d) and (f) illustrate the trajectories of the
robots generated by an agreement protocol (computed by
solving (11)) where the weights are described by an oblique
projection W = ΠM,N , where M = ker(M1) ⊂ R8 and
N = Im(N1) ⊂ R8 with

NT
1 =

[
−1 5 5 −1 0 0 0 0
0 0 0 0 −1 5 5 −1

]
.

The use of an oblique projection can be interpreted as a non-
homogeneous weighting for the vector that defines the final
configuration. Indeed, as shown by the figure, in this case,
the robots no longer meet “halfway”, instead, robots 2 and 3
[respectively, 6 and 7] travel a longer distance as opposed to
robots 1 and 4 [respectively, 5 and 8]).
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Agreement trajectories

0 50 100 150 200 250 300 350 400
Time t

-30

-20

-10

0

10

20

30

x
(t

)
Fig. 6: Application of agreement protocols to solve regression problems.
Each agent can measure a sample yi (represented by diamond markers) and
cooperatively computes the projection of ŷi onto the range of the regression
matrix H (represented by circle markers), see (24). In (a), continuous lines
illustrate the time evolution of the states of (1). (b) Time evolution of the
trajectories of (1).

IX. CONCLUSIONS

We have studied the problem of k-dimensional agreement
in multi-agent systems, whereby the agents are interested
in agreeing on a quantity that belongs to a certain (k-
dimensional) subspace without necessarily agreeing on com-
mon quantities. We showed that, in general, agreement pro-
tocols require communication graphs that are more connected
than those needed to achieve consensus, which corresponds to
the subcase k = 1. To this end, we provided both algebraic and
graph-theoretic conditions to identify graphs that can sustain
agreement protocols. Our approach provides a graph-theoretic
condition that is sufficient to conclude that a certain graph
can sustain an agreement protocol but we conjecture this
class is much larger in practice. Thus, this work opens the
opportunity for several directions for future research, including
the possibility of using nonlinear dynamics for agreement, the
development of algorithms to compute the agreement weights
in a distributed fashion, as well the synthesis of distributed
and scalable coordination algorithms to solve optimization
problems over networks, where the number of agents and the
number of primal variables are of the same order.

REFERENCES

[1] V. D. Blondel, J. M. Hendrickx, A. Olshevsky, and J. N. Tsitsiklis,
“Convergence in multiagent coordination, consensus, and flocking,” in
IEEE Conf. on Decision and Control, 2005, pp. 2996–3000.

[2] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks
of agents with switching topology and time-delays,” IEEE Transactions
on Automatic Control, vol. 49, no. 9, pp. 1520–1533, 2004.

[3] W. Ren, R. W. Beard, and E. M. Atkins, “A survey of consensus
problems in multi-agent coordination,” in American Control Conference,
Portland, OR, June 2005, pp. 1859–1864.



BIANCHIN et. al.: K−DIMENSIONAL AGREEMENT IN MULTIAGENT SYSTEMS 13

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

y

R1
R2
R3
R4
R5
R6
R7
R8
Start
Finish

(a)

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

y

R1
R2
R3
R4
R5
R6
R7
R8
Start
Finish

(b)

-1 -0.5 0 0.5 1
x

-1

-0.5

0

0.5

1

y

R1
R2
R3
R4
R5
R6
R7
R8
Start
Finish

(c)

0 2 4 6 8 10

-1

-0.5

0

0.5

1

x
(t

)

0 2 4 6 8 10
Time t

-1

-0.5

0

0.5

1

y
(t

)

(d)

0 2 4 6 8 10

-1

-0.5

0

0.5

1

x
(t

)

0 2 4 6 8 10
Time t

-1

-0.5

0

0.5

1

y
(t

)

(e)

0 2 4 6 8 10

-1

-0.5

0

0.5

1

x
(t

)

0 2 4 6 8 10
Time t

-1

-0.5

0

0.5

1

y
(t

)

(f)

Fig. 7: (a)-(c) Time evolution of the positions of the 8 robots and (d)-(f) trajectories of the x− and y−coordinates. (a) and (d) Consensus protocol, which
allows the robots to achieve rendezvous. (b) and (e) Agreement protocol on an orthogonal projection onto ker(M1). (c) and (f) Agreement on an oblique
projection on ker(M1) along Im(N1).

[4] G. Malewicz, M. H. Austern, A. J.-C. Bik, J. C. Dehnert, I. Horn,
N. Leiser, and G. Czajkowski, “Pregel: a system for large-scale graph
processing,” in International Conference on Management of data, 2010,
pp. 135–146.

[5] D. Peleg, Distributed Computing: a Locality-Sensitive Approach.
SIAM, 2000.

[6] H.-L. Choi, L. Brunet, and J. P. How, “Consensus-based decentralized
auctions for robust task allocation,” IEEE Transactions on Robotics,
vol. 25, no. 4, pp. 912–926, 2009.

[7] L. Zhao and A. Abur, “Multi area state estimation using synchronized
phasor measurements,” IEEE Transactions on Power Systems, vol. 20,
no. 2, pp. 611–617, 2005.

[8] F. Pasqualetti, R. Carli, A. Bicchi, and F. Bullo, “Distributed estimation
and detection under local information,” in IFAC Workshop on Distributed
Estimation and Control in Networked Systems, Annecy, France, Sept.
2010, pp. 263–268.

[9] K.-K. Oh, M.-C. Park, and H.-S. Ahn, “A survey of multi-agent
formation control,” Automatica, vol. 53, pp. 424–440, 2015.

[10] J. N. Tsitsiklis, “Problems in decentralized decision
making and computation,” Ph.D. dissertation, Mas-
sachusetts Institute of Technology, Nov. 1984, available at
http://web.mit.edu/jnt/www/Papers/PhD-84-jnt.pdf.

[11] A. Jadbabaie, J. Lin, and A. S. Morse, “Coordination of groups of mobile
autonomous agents using nearest neighbor rules,” IEEE Transactions on
Automatic Control, vol. 48, no. 6, pp. 988–1001, 2003.

[12] M. Cao, A. S. Morse, and B. D. O. Anderson, “Reaching a consensus
in a dynamically changing environment - convergence rates, measure-
ment delays and asynchronous events,” SIAM Journal on Control and
Optimization, vol. 47, no. 2, pp. 601–623, 2008.

[13] W. Ren and R. W. Beard, “Consensus seeking in multiagent systems
under dynamically changing interaction topologies,” IEEE Transactions
on Automatic Control, vol. 50, no. 5, pp. 655–661, 2005.

[14] J. M. Hendrickx and J. N. Tsitsiklis, “Convergence of type-symmetric
and cut-balanced consensus seeking systems,” IEEE Transactions on
Automatic Control, vol. 58, no. 1, pp. 214–218, 2013.

[15] X. Chen, M.-A. Belabbas, and T. Başar, “Consensus with linear objective
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Laplacian matrix for a class of directed signed graphs,” Linear Algebra
and its Applications, vol. 523, pp. 281–306, 2017.

[27] W. Li and H. Dai, “Cluster-based distributed consensus,” IEEE Trans-
actions on Wireless Communications, vol. 8, no. 1, pp. 28–31, 2009.

[28] G. Bianchin, A. Cenedese, M. Luvisotto, and G. Michieletto, “Dis-



14 GENERIC COLORIZED JOURNAL

tributed fault detection in sensor networks via clustering and consensus,”
in IEEE Conf. on Decision and Control, Osaka, Japan, Dec. 2015, pp.
3828–3833.

[29] S. Roy, “Scaled consensus,” Automatica, vol. 51, pp. 259–262, 2015.
[30] R. Diestel, Graph Theory, 2nd ed., ser. Graduate Texts in Mathematics.

Springer, 2000, vol. 173.
[31] C. T. Lin, “Structural controllability,” IEEE Transactions on Automatic

Control, vol. 19, no. 3, pp. 201–208, 1974.
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