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Abstract— This paper considers the problem of voltage reg-
ulation in distribution networks. The primary motivation is to
keep voltages within preassigned operating limits by command-
ing the reactive power output of distributed energy resources
(DERs) deployed in the grid. We develop a framework for
developing local Volt/Var control that comprises two main steps.
In the first, by exploiting historical data and for each DER, we
learn a function representing the desirable equilibrium points
for the power network. These points approximate solutions of
an Optimal Power Flow (OPF) problem. In the second, we
propose a control scheme for steering the network towards these
favorable configurations. Theoretical conditions are derived
to formally guarantee the stability of the developed control
scheme, and numerical simulations illustrate the effectiveness
of the proposed approach.

I. INTRODUCTION

The deployment of a massive number of DERs in distri-
bution networks (DNs) is dramatically changing the electric
power grid. Primarily driven by sustainability and economic
incentives, DERs present additional opportunities, including
voltage profile improvements and line-loss reduction. At the
same time, the DERs’ uncoordinated power injections or
sudden generation changes could pose challenges to system
stability and power quality. To facilitate their integration in
to power grids, DERs are being provided with sensing and
computational capabilities and hence are becoming smart
agents. Further, they can exploit the flexibility of their
power electronic interfaces to control the reactive power
injection/withdrawal. Motivated by these observations, this
paper aims to develop reactive power controllers to regulate
voltages, also known as Volt/Var controller, for DNs.

Literature Review: Most control methods developed for
DNs in recent years fit in the categories of distributed or
local control strategies. In the first, DERs are allowed to
communicate and share information in a communication
network; in the second, generators use only locally available
information. Distributed algorithms steer the network toward
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solutions of OPF problems, in which the power generation
cost, the line losses, or the deviations from the nominal
voltage are optimized [1], [2]. Nevertheless, distributed
strategies usually have precise and strict requirements on
the communication network. For instance, in many works,
each generator is required to share information with all its
neighbors in the power system. In local schemes, power
injections are adjusted based on measurements taken at the
point of connection of the power inverter to the grid [3],
[4], [5]. The goal is typically to keep the voltages within
safe limits. Though simpler than distributed strategies, local
schemes have intrinsic performance limitations, e.g., they
might fail to regulate voltages even if the overall generation
resources are enough [2].

To enhance the performance of local schemes and to
reduce the gap with distributed and/or optimal controllers, re-
cent efforts have devised customized control rules using data-
driven and machine learning methods. A data set for learning
control functions can be created by solving OPF problems
using historical consumption and generation data, e.g., smart
meter data. Indeed, learning techniques have also been used
to obtain fast (approximate) solutions to OPF problems. Deep
neural networks (DNNs) have been employed to predict OPF
solutions that are converted to a physically implementable
schedule upon projection using a power flow solver [6].
A graph neural network leveraging the connectivity of the
power system is trained to infer AC-OPF solutions in [7].
In [8], [9] a DNN is trained to fit not only OPF minimizers,
but also their sensitivities with respect to the problem inputs.
Piecewise linear control functions are designed in [10] given
the number of break points. The Authors in [11] consider an
OPF problem whose objective function penalizes the voltage
deviations from the nominal one and the control effort. They
derive stable local controllers that steer the system toward
an approximated solution. Continuous time local reactive
power control schemes are designed in [12] to solve an OPF
problem with voltage constraints. However, reactive power
capacity limits, which are critical when dealing with small-
size generators, are not imposed.

Statement of Contributions: In this work, we devise a
framework for designing local Volt/Var scheme whose goal is
to not only regulate voltages but also act as local surrogates
of OPF solvers. We advocate for a two-stage strategy. First,
for each agent, a function, referred to as an equilibrium
function, providing OPF solution surrogates is learned from
historical data. Precisely, such a function receives as input the
local voltage and gives as an output an approximation of the
optimal reactive power set point. Second, we devise a control
algorithm whose equilibrium points (i) are asymptotically



stable and (ii) are exactly the OPF approximated solutions
provided by the equilibrium function. The paper is structured
as follows. In Section II, we model a power distribution
network and define the OPF problem of interest. Section III
describes the aforesaid two-stage approach and Sections IV
and V detail the corresponding technical results for each
stage. Finally, numerical tests are reported in Section VI,
and conclusions are drawn in Section VII. Due to lack of
space, the proofs of all the Propositions and Lemmas are
here omitted. They can be found in the paper extended
version [13].

Notation: Lower- (upper-) case boldface letters denote
column vectors (matrices). Given a vector a, its n-th entry is
denoted as an. Sets are represented by calligraphic symbols.
The symbol > stands for transposition, and inequalities are
understood element-wise. The vector of all ones is denoted
by 1; the corresponding dimension should be clear from
the context. The operator | · | yields: the absolute value for
real-valued arguments; the magnitude for complex-valued
arguments; and the cardinality when the argument is a
set. The set of complex numbers, of real numbers, and of
nonnegative real numbers are denoted as C,R, and R≥0,
respectively. Operators <(·) and =(·) extract the real and
imaginary parts of a complex-valued argument, respectively,
and act entry-wise. Given a matrix A, an eigenvalue λ
with its associated eigenvector ξ forms the eigenpair (λ, ξ).
The norm of A is defined by ‖A‖ =

√
λmax(A>A),

where λmax(A>A) is the largest eigenvalue of A>A. This
definition coincides with the 2-norm of a matrix. The graph
of a function φ : R→ R is the set of all points of the form
(x, φ(x)), with x ∈ R.

II. POWER DISTRIBUTION GRID MODEL

Consider a power distribution network with N + 1 buses
modeled by an undirected graph G = (N , E), whose nodes
N = {0, 1, . . . , N} are associated with the electrical buses
and whose edges represent the electric lines. We label the
substation node as 0, and we assume that behaves as an
ideal voltage generator imposing the nominal voltage of 1
p.u. Define the following quantities:

• un ∈ C is the voltage at bus n ∈ N .
• vn ∈ R is the voltage magnitude at bus n ∈ N .
• in ∈ C is the current injected at bus n ∈ N .
• sn = pn + iqn ∈ C is the nodal complex power at bus
n ∈ N , where pn, qn ∈ R are the active and the reactive
powers. Powers will take positive (negative) values, i.e.,
pn, qn ≥ 0 (pn, qn ≤ 0), when they are injected into
(absorbed from) the grid.

• y(v,w) ∈ C is the admittance of line (v, w) ∈ E .

Vectors u, i, s ∈ Cn collect the complex voltages, currents,
and complex powers of buses 1, 2, . . . , n; and the vectors
v,p,q ∈ Rn collect the voltage magnitudes, and their active
and reactive power injections. Denote by ze and by ye = z−1e
the impedance and the admittance of line e = (m,n) ∈ E .
The network bus admittance matrix Y ∈ C(N+1)×(N+1) is
a symmetric matrix that can be expressed as Y = YL +

diag(yT ), where

(YL)mn =

{
−y(m,n) if (m,n) ∈ E ,m 6= n,∑
m 6=n y(m,n) if m = n,

(1)

and the vector yT collects the shunt components of each line.
The matrix YL is a complex Laplacian matrix, and hence
satisfies YL1 = 0. We partition the bus admittance matrix
separating the components associated with the substation and
the ones associated with the other nodes, obtaining

Y =

[
y0 y>0
y0 Ỹ

]
with y0 ∈ C,y0 ∈ CN , Ỹ ∈ CN×N . If the network is
connected, Ỹ is invertible [14]. Let Z̃ := Ỹ−1, R̃ := <{Z̃},
and X̃ := ={Z̃} ∈ CN×N . The power flow equation can be
written as

u = Z̃i + û, (2a)
u0 = 1, (2b)
unīn = pn + jqn, n 6= 0, (2c)

where īn denotes the complex conjugate of in and û :=
Z̃y0. Equation (2a) represents the Kirchoff equations and
provides the relation between voltages and currents. Finally,
equation (2c) comes from the fact that all the nodes, except
the substation, are modeled to be constant power buses. Volt-
age magnitudes are nonlinear functions of the nodal power
injections; however, using a first-order Taylor expansion, the
power flow equation can be linearized to obtain

v = R̃p + X̃q + |û|, (3)

and to express the power losses as a scalar quadratic function
of the power injections [15]

l = q>R̃q + p>R̃p. (4)

Assume a subset C ⊆ N of buses host DERs, with |C| =
C. The remaining nodes constitute the set L = N \C. Every
DER corresponds to a smart agent that measures its voltage
magnitude and performs reactive power compensation. It
is convenient to partition the reactive powers and voltage
magnitudes by grouping together the nodes belonging to the
same set

q =
[
q>C q>L

]>
,v =

[
v>C v>L

]>
.

Also, the matrices R̃ and X̃ can be decomposed according
to the former partition, yielding

R̃ =

[
R RL

R>L RLL

]
, X̃ =

[
X XL

X>L XLL

]
. (5)

with R and X being positive-definite matrices. Fixing the
active and reactive loads along with the active solar gener-
ation, from (3) and (4), the voltage magnitudes and power
losses become functions exclusively of qC :

v(qC) =

[
X
X>L

]
qC + v̂ (6a)

l(qC) = q>CRqC + q>Cw + l̂, (6b)



where the following definitions are used

v̂ :=

[
XL

XLL

]
qL + R̃p + |û|, (7a)

w := 2RLqL, (7b)

l̂ := q>LRLLqL + p>R̃p. (7c)

III. OVERVIEW OF THE PROPOSED APPROACH FOR DER
CONTROL

This section proposes a two-stage approach to optimally
use the flexibility in the DERs’ reactive powers while en-
suring the stable operation of the distribution network. In
the first stage, a centralized OPF instance is formulated to
determine the optimal DER reactive power set points given
the noncontrollable (re)active power injections across the
network. Altough the considered OPF formulation is convex,
solving numerous instances of it for real-time operation
might be computationally challenging. Further, the necessity
for (re)active power information from across the network in-
troduces communication challenges. Towards alleviating the
aforementioned concerns, we train a fleet of neural networks
(one per DER) to (approximately) predict the optimal set
points, given merely local nodal voltages as inputs. In the
second stage, we develop a control scheme to steer the DERs’
reactive power injections to the set points obtained from the
neural network outputs while formally guaranteeing stability.

A typical OPF formulation for the DERs’ dispatch would
solve for an optimal q∗C , given the tuple (p,qL), such
that the stipulated voltage limits and DER reactive-power
capacity limits are satisfied, and a certain network criterion
is optimized. Although arbitrary cost functions could be
considered, here we consider an OPF problem that minimizes
line losses. Such an OPF can be posed as

q∗C(p,qL) := arg min
qC

l(qC) (P1)

s.t. (6)− (7), and (8a)
vmin ≤ v(qC) ≤ vmax, (8b)
qmin ≤ qC ≤ qmax, (8c)

where vmin,vmax ∈ RN are the desired voltage lower and
upper limits on all the network buses, and qmin,qmax ∈
RC are the minimum and the maximum DERs’ reactive
power injections. We denote the set of the feasible reactive
power injections for the DER at node n as Bn = {qn :
qn ∈ [qmin,n, qmax,n]}. Problem (P1) is strictly convex, cf.
(6a)–(6b), and admits a unique minimizer. Moreover, the
minimizer is a function of the uncontrolled variables p and
qL, which appear implicitly in the objective function and the
constraint (8b) via (7).

In principle, solving (P1) given a tuple (p,qL) is tractable,
thanks to the problem convexity. However, due to thehigh
penetration of renewable generation, DNs are witnessing
increased variability that requires solving numerous instances
of (P1) with a limited time and budget. To tackle this
challenge, several neural network-based approaches have
been put forth to predict approximates of q∗C with (p,qL)
presented as the neural network inputs [8]. Once trained, the
time required for neural network inference when presented

with a new input is minimal. While this alleviates the
computational burden of solving OPFs, the need for the
network-wide quantities (p,qL) imposes a significant com-
munication burden for implementation. To simultaneously
reduce the computational and communication complexities,
a common approach is to deploy solutions based on local
control rules, whose performance in terms of optimality
is generally lacking. For DER reactive power dispatches
to achieve voltage regulation, such rules [16] are often
presented as piecewise linear functions of local voltages.
Designing these rules to harness efficient DN operation has
recently garnered tremendous interest [4], [11], [17].

Inspired by the recently reported success of neural-
network-based surrogates for OPF and ongoing efforts to-
wards designing local control rules for DERs, this work
proposes a two-stage approach. In the first stage, termed
the learning stage, we use historical data to learn functions
that map voltages to (approximate) solutions of the OPF
problem (P1). Specifically, for each agent n ∈ C, we aim
to learn a function φn of the local voltage vn as

φn : R→ Bn, vn 7→ φn(vn), (9)

with φn(vn) providing the optimal reactive power surrogates.
Then, we would like the generators to inject reactive power
set points qC such that, for each n ∈ C we have

qn = φn(vn), (10)

where the voltage vn in turn depends on the reactive power
injection qC as per (6a). Hence, the graph of the function φn,
namely, points of the form (vn, φn(vn)), consists of desirable
network configurations that are surrogates of the solutions
of (P1) and, for this reason, we term the the functions
{φn}n∈C equilibrium functions. The second stage, termed
the control stage, aims to design local control rules that steer
the network to configurations satisfying (10) for each n ∈ C.

Remark 1. (On the need for a control algorithm): The
outcome of the learning stage are functions that map local
voltages to (approximated) optimal reactive power set points.
Hence, one might ask why it is not enough just to apply those
reactive power setpoints provided by the learning function.
This is the approach taken in e.g., [6], [18]. The main reason
why not is because we are considering the case in which only
a few power injections, i.e., the DERs, are controlled. Ap-
plying the OPF solution surrogates q]C = φ(vC), computed
using the voltages vC , in general, could change the voltages
to a new configuration vC(q]) 6= vC . That is, (vn(qC), q]n)
belongs to graph of φn, but (vn(q]C), q]n) does not. Hence
the new configuration is not an approximated power flow
solution. The control scheme we develop aims exactly at iter-
atively steering the systems toward configurations belonging
to the graph of the equilibrium functions. •

IV. NEURAL NETWORK-BASED SURROGATES FOR
EQUILIBRIUM FUNCTIONS

This section describes our approach to learn equilibrium
functions for each agent in C that describe the solutions
of (P1) as a function of the individual voltages. The labeled
dataset required to accomplish the desired learning task is



obtained as described next. Given that (P1) takes (p,qL)
as input, we first build a set {(pk,qkL)}Kk=1 of K load-
generation scenarios. One can obtain the aforementioned
scenarios via random sampling from assumed probability
distributions, historical data, or from forecasted conditions
for a look-ahead period. Next, the OPF (P1) is solved for
the K scenarios to obtain the corresponding minimizers
(v(q∗C),q∗C(p,qL)). The entries for these minimizers are
then separated for each n ∈ C to obtain datasets of the form
Dn = {(v∗n,k, q∗n,k)}Kk=1, where the parametric dependencies
have been omitted for notational ease. Next, we seek to
independently learn equilibrium functions, one per node in C,
such that the elements of the respective sets Dn are close to
the graphs of the learned functions; with proximity quantified
in terms of the squared error. Using the mean square error
(MSE) metric, the learning task can be posed as

min
φn

1

K

K∑
k=1

|φn,k(v∗n,k)− q∗n,k|2. (11)

In addition, we impose the following conditions on each φn:
it needs to be C1) differentiable, C2) nonincreasing, and
C3) with range in Bn. The motivation for these requirements
will be clear later. Since we employ neural networks to
construct the equilibrium functions, ensuring that C1)−C3)
are satisfied is facilitated by choosing activation functions
such as sigmoids, tanh, and softsign. In the following, we
train the equilibrium functions using a single layer neural
network and, as activation functions, we choose

σ(x) =
ex − e−x

ex + e−x
.

The next result gives a parameterization for a function
satisfying C1) − C3) using a single hidden layer neural
network.

Lemma 1. (Parameterization of neural network satisfy-
ing the desired requirements): Consider a neural network
NN(x) : R 7→ R with one hidden layer of H neurons, with
output defined as

NN(x) =

H∑
h=1

whσ(x+ bh), (12)

where, σ(·) is the tanh activation function and (wh, bh)
denote the weight and bias associated with the h-th neuron. If
wh ≤ 0, for all h, then NN is continuous, differentiable, and
nonincreasing. Further, if

∑H
h=1 |wh| ≤ W , then NN(x) ∈

[−W,W ], for all x ∈ R.

Lemma 1 means that we can find the desired equi-
librium functions {φn}n∈C by training the parameters of
neural networks defined by (12). The requirement that the
range of φn belongs to Bn is satisfied by selecting W =
min{|qmin,n|, |qmax,n|}.

V. A LOCAL CONTROL SCHEME TO REACH DESIRABLE
EQUILIBRIA

In this section, we propose and analyze a local control
scheme that aims to steer the system to configurations

satisfying (10) and (6a). For each n ∈ C, consider the
following reactive power update rule

qn(t+ 1) = qn(t) + ε(φn(vn(t))− qn(t)), (13)

where vn(t) is determined by (6a), and ε is a suitable positive
number with 0 ≤ ε < 1. Notice that, if algorithm (13) is
initialized at qn(0) ∈ Bn, then qn(t) ∈ B for t ≥ 0; indeed,
the new reactive power set point is a convex combination of
two numbers in Bn. Algorithm (13) is a generalized version
of the local scheme proposed in [5], which, instead of the
learned φn’s, considers linear functions. The following result
characterizes the convergence properties of (13).

Proposition 1. (Asymptotic stability of equilibrium points):
Let the functions φn’s meet conditions C1)−C3), and define

M = max
n∈C

{
max
v∈R

∣∣∣∣dφndv
∣∣∣∣} .

If the stepsize parameter ε > 0 satisfies

ε ≤ min

{
1,

2

(1 + ‖X‖M)

}
, (14)

then the equilibria of the control rule (13) are asymptotically
stable. Moreover, if q] is an equilibrium point and v] =
v(q]) is its associated voltage, then (v]n, q

]
n) belongs to the

graph of φn for every n ∈ C.

Remark 2. (Interpretation of the requirements on the
learned equilibrium functions): We explain here the reasons
for the requirements C1)−C3) on the equilibrium functions
{φn}n∈C . Constraining the range of each φn to Bn ensures
that the reactive power set points are always feasible and
avoids the use of projections in (13). The continuity, the dif-
ferentiability, and the monotonicity assumptions are instead
used in the proof of Proposition 1, i.e., these requirements
on the learning of the equilibrium functions guarantee the
stability of the closed-loop system. This is done at the cost
of potentially increasing the optimality gap. •

Remark 3. (Non-incremental vs. incremental control rules):
One could think to update the reactive power using the rule

qn(t+ 1) = φn(vn(t)), (15)

where vn(t) is determined by (6a). Following [19], we refer
to algorithms like (15) as non-incremental, because the new
set points are determined based on the local voltage without
explicitly exploiting a memory of past set points. These
approaches can thus result in large variations in reactive-
power set points across time steps. Instead, we refer to
algorithms like (13) as incremental because they compute
small (as determined by ε) adjustments to the current set
points. Current practice is indeed to update the reactive
powers using non-incremental algorithms, e.g., see [3] or
the IEEE Std 1547 [20]. It is trivial to see that equilibrium
points of (15) belong to the graph of the equilibrium function,
too. The main issue is ensuring the convergence of (15):
several works [4], [5] provide conditions that guarantee the
stability of non-incremental algorithms, usually expressed as
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Fig. 1. The IEEE 37-bus feeder.

bounds on the voltage function slope. Actually, one can show
that (15) converges if

M ≤ 1

‖X‖
. (16)

To use (15), one would then need to additionally enforce (16)
in the learning process described in Section IV. The resulting
equilibrium function would then provide approximations of
the OPF solutions that are worsened because of the additional
restriction. By contrast, the incremental approach in (13) can
handle arbitrary finite maximum slopes M by choosing a
suitable stepsize ε that satisfies the condition (14). •

VI. NUMERICAL TESTS

We conduct a case study on the IEEE 37-bus feeder upon
removing the regulators, incorporating five solar generators,
and converting it to its single-phase equivalent, see Fig. 1.
The five solar generators are the controlled DERs.

Simulation setup. We use the Matlab-based OPF solver
Matpower [21] to compute both the exact optimal solution
of (P1) and the solution of the power flow equation. We
implement the neural networks using TensorFlow 2.7.0 and
conduct the training process in Google Colab with a single
TPU with 32 GB memory. The number of episodes and the
number of neurons H are 1000 and 200, respectively. The
neural networks are trained with the learning rate set to 0.01
using the Adam optimizer [22].

Real-world dataset. The feeder has 25 buses with non-
zero load. We extract minute-based load and solar generation
data for June 1, 2018, from the Pecan Street dataset [23],
and the first 75 nonzero load buses from the dataset are
aggregated every 3 loads and normalized to obtain 25 load
profiles. Similarly, we obtain five solar generation profiles for
the active power of DERs. The normalized load profiles for
the 24-hour period are scaled so that 97% of the total load
duration curve coincides with the total nominal load. This
scaling results in a peak aggregate load being 1.1 times the
total nominal load. We synthesize reactive loads by scaling
active demand to match the power factors of the IEEE 37-bus
feeder. The 5 DERs have different generation capabilities,
precisely, qmax = [0.4020 0.4020 0.4020 0.0500 0.0500]>

and qmin = −qmax. Voltage limits are set to vmax = 1.03
p.u. and vmin = 0.97 p.u. Fig. 2 shows the total demand and
solar generation across the feeder. Fig. 3 plots the learned

Fig. 2. Minute-based data for the total (feeder-wise) solar power generation
and active power demand.

Fig. 3. Learned equilibrium function for DER 31 along with the dataset
points in purple.

equilibrium function of DER 31, along with the exact optimal
reactive power set points obtained by solving by (P1).

Simulation results. We first verify the stability properties of
the local control algorithm (13) stated in Proposition 1. Fig. 4
reports the evolution of the DERs’ reactive power injections
when loads are fixed. The power trajectories converge to
their final value. Next, we run the control algorithm (13)
in a scenario where loads are time-varying. Specifically,
we obtain loads by randomly perturbing the consumption
data used to learn the equilibrium functions. This can be
interpreted as having the data from the dataset prescribing
a day-ahead forecast, whereas their random perturbation act
as the true realization of the load. These loads are minute-
based and we consider 120 iterations of (13) per minute.
We compare the performance of the system when the agents
perform (13) with the one where control actions are not
taken. Fig. 5 reports the minimum voltage deviations, i.e.,
v − 1, and Fig. 6 the line power losses. In contrast to the
uncontrolled case, our approach brings the voltages within
the desired values, and significantly reduces line losses.

VII. CONCLUSIONS

We have put forward a two-stage approach to the design
of local volt/var control schemes capable of steering DNs
toward desirable equilibria. In the first stage, we learn the
equilibrium function for each DER bus that, given the local
voltage, provides as an output a reactive power set point.
Points in the graph of the equilibrium function represent



Fig. 6. Comparison of the power losses between the proposed approach
and the uncontrolled case during time period [1095, 1105] minutes with
120 iterations of (13) per minute and ε = 0.01.

Fig. 4. The convergence property of the local control schemes, where we
use the power data of the 1095-th minute and consider 600 iterations of
(13) with ε = 0.01.

Fig. 5. Comparison of the minimum voltage deviations between the pro-
posed approach and the uncontrolled case during time period [1095, 1105]
minutes with 120 iterations of (13) per minute and ε = 0.01.

approximations of solutions of an OPF problem. We employ
a neural network representation that, by design, has the re-
sulting equilibrium function be differentiable, nonincreasing
(but without constraints on the slope), and bounded. In the
second stage, we devise an incremental control algorithm
whose equilibria belong to the graph of the equilibrium
function. The properties of the learned equilibrium maps play
a key role in showing that the equilibria are asymptotically
stable. Future research directions include reducing the opti-
mality gap, relaxing the differentiability requirement on the

equilibrium maps, and extending the proposed framework
to the more general scenario where communication among
neighboring agents is allowed.
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