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Abstract—Impulsive inputs applied at influential nodes of a
network system may result in undesirable behavior and degrade
performance. This paper proposes the notion of vulnerability
matrix (VM) to characterize the effect of impulse inputs on a
network following either discrete-time or continuous-time dynam-
ics. The VM describes the first-order effects of impulse inputs
on edge flows and is based on the controllability Gramian. We
provide explicit expressions for the elements of the vulnerability
matrix for the class of directed line networks in terms of the
edge weights. Simulations validate our results and highlight the
utility of the proposed metric in capturing the transient effects
of nodal impulse inputs on edge flows.

Index Terms—controllability Gramian, network systems, di-
rected line networks

I. INTRODUCTION

Complex networks are critical components of modern soci-
ety touching almost every aspect of daily life. We encounter
them in social dynamics, intelligent transportation, water dis-
tribution systems, biological systems, energy systems, and
robotics. Networks can be mathematically modeled as graphs
using nodes and edges [1], [2]. Inputs are applied at the
nodes and get propagated across the network through flows
on the edges, whose capacity is often constrained. The edge
flows may represent various physical quantities depending
upon the application, e.g., power (in energy networks), traffic
(in transportation systems), or information (in communica-
tion networks). The ability to alter the network behavior
through nodal inputs and their propagation through capacity-
constrained edges depends on the network topology as well as
its dynamics. Malicious inputs at influential nodes can result
in large undesirable changes in edge flow characteristics and
lead to network failures. Such influential nodes are ideal for
adversarial attacks and make the network vulnerable. This
paper develops formal tools to identify influential nodes by
looking at the effect of impulse inputs on edge flows.

Literature review: The relative importance of a node/edge in
a complex network with respect to a given metric is quantified
by the notion of centrality [3]–[5]. Centrality can depend
on many factors, including the network topology and the
inherent dynamical properties of the nodes and interconnec-
tions. An exhaustive list of centrality measures is available in
the introduction of our previous work [6]. Network central-
ity has been traditionally studied purely from a topological
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perspective. Works from the controls literature, e.g., [7]–[9]
and references therein, instead look at the combined effect
of network topology and the underlying dynamics. In [10],
novel measures based on the controllability and observability
Gramians are proposed to quantify the influence of each node
on the rest of the network and vice-versa. A Gramian-based
vulnerability analysis of networks, with respect to coordinated
attacks on network links and manipulated data injections is
presented in [11]. The work [12] proposes a novel security
index to quantify the effect of attack inputs injected by an
adversarial agent on the outputs and states of a network
system. The work [13] employs the H2−system norm as a
measure to characterize robustness properties and fundamen-
tal limits of dynamical networks against external distributed
stochastic disturbances. [14] presents novel measures based
on the H2−system norm for linear networks with noisy nodal
inputs to identify vulnerable nodes and interconnections. The
work [15] characterizes the response of the network to external
stimuli or parameter changes by the network’s fragility, com-
puted using the stability radius. Thus, in general, for dynamical
network systems, vulnerability analysis have been attempted in
terms of the system’s (abstract) structural properties (controlla-
bility, observability, or stability radius). On the other hand, the
study of flow vulnerabilities in dynamical networks is mainly
focused on the analysis of sequence of steady states, e.g.,
[16]. The work [17] provides an analytical study of network
susceptibilities quantifying the response of the dynamics to
small parameter changes. Finally, [18] shows that network
components may fail due to the transients arising from the
dynamics, something often overlooked by the analysis of
sequential steady states. Note that the relationship between
Gramian-based vulnerability metrics and the change in net-
work flows is not present in the aforementioned literature.

Statement of contributions: We consider networks described
either by linear discrete-time or continuous-time dynamics
with scalar states. The information regarding the nodal inter-
connections is captured by the network’s weighted adjacency
matrix. Our treatment requires the network dynamics to be
stable and has no restriction on the structure of the adjacency
matrix. Our first contribution pertains to the derivation of
analytical expressions of the evolution of edge flows over a
time horizon after the application of an impulse input at a
node. We show that the first-order effects of impulse inputs
on edge flows can be written in terms of the controllability
Gramian. Based on this observation, we introduce the concept
of vulnerability matrix (VM). The VM quantifies the influence
of each node on the edge flows when an impulse nodal input
is applied, thereby helping to identify network vulnerabilities.
Our analysis captures the transient effects of impulse inputs,



which are often missed when only sequential steady states
are analyzed. Our second contribution focuses on the class
of directed line networks with positive edge weights and
stable dynamics. We provide expressions for the elements of
the controllability Gramian, which in turn helps us explicitly
describe the elements of the VM. Our numerical simulations
show that nodal influence rapidly decreases as one moves
away from the input node. We also illustrate our results on
a family of stable 7-node directed line networks and 1000
random Erdős-Rényi networks. These examples also highlight
the application of our proposed theory in the case of networks
having one dominant directed line.

II. PRELIMINARIES

Consider1 a network consisting of n nodes and scalar
states represented by the triplet GA = (V,EA, wA), where
V = {1,2, . . . ,n} is the node set, EA = {(i, j) | i ∈V, j ∈V }
is the edge set with cardinality ne, and wA :EA 7→R is a weight
function. The pair (i, j) denotes an edge directed from node i
to node j, i.e., i→ j. The weighted adjacency matrix A∈Rn×n

is defined by a ji = wA(i, j) 6= 0 if (i, j) ∈EA, else a ji = 0. The
network dynamics are linear and either discrete or continuous
time-invariant as follows,

x(t +1) = Ax(t)+bk uδ (t), t ∈ {0, . . . ,T −1},
ẋ = Ax(t)+bk uδ (t), t ≥ 0,

(1a)
(1b)

where t denotes time/iteration, T > 0 is a finite time horizon,
x ∈Rn, u ∈R is the magnitude of the impulse applied at node
k at t = 0 with location denoted by the input vector bk = ek.
We define the output for the dynamics (1) along the edge i→ j
at time t as,

yi j = ci j(xi− x j), (2)

where ci j ∈ R is a known constant. Note that yi j ∈ R in (2)
indirectly depends on u through x, due to the dynamics (1).

We assume the system dynamics (1) to be stable, i.e.,
srad(A)< 1 for discrete-time dynamics (1a) and R

(
λi(A)

)
< 0

for continuous-time dynamics (1b) for all i∈{1,2, . . . ,n}. We
consider an initial state x(0) = x0. The output defined in (2)
is often used as a metric to measure network edge flows [17],
[19] and is relevant in network theory. In power networks,
for e.g., the matrix A is a Laplacian, the choice ci j = a ji
represents the line susceptance, and x the vector of bus voltage
angles. The metric (2) represents the active power flow on the
line [19] using the DC power flow approximation at 1 p.u.
voltage. It is therefore of interest to analyze the effect of
node disturbances on edge flows as these are often capacity
constrained. Another perspective of interest relates to (2) being
a weighted information flow in a network where the evolution
of the states is governed by (1).

1We let R and C denote the set of real and complex numbers, respectively.
For x ∈R (resp. x ∈C), |x| denotes its absolute value (resp. magnitude). The
real part of x ∈ C is denoted by R(x). For j ∈ {1, . . . ,n}, e j ∈ Rn is the jth

canonical unit vector (the bar is used to distinguish from exponential e). δ (t)
denotes the Dirac delta function. The transpose of a vector or matrix is denoted
by (·)>. For a vector x ∈Rn, xi denotes its ith coordinate. Given a matrix M,
we denote its (i, j)th element by mi j (or mi, j). For a square matrix N, we use
λ (N) to denote the vector of eigenvalues, and srad(N) for its spectral radius.

k Y12 Y13 Y25 Y35 Y41 Y43 Y54 ∑Yi j

1 5.6 4.9 4.5 3.9 4.2 2.9 0.5 26.5
2 5.6 4.2 5.6 4.5 3.0 3.0 5.0 31.0
3 2.4 4.9 4.5 5.6 3.0 4.2 5.0 29.7
4 3.4 5.9 5.4 5.0 4.2 4.2 6.3 34.4
5 3.0 5.3 5.6 5.6 3.8 3.8 6.3 33.4

Table I: Max flow deviation along edge i→ j due to input at k.

Example II.1 (Exhaustive computation of flow deviations).
The following example provides a motivation for our study.
Consider a 5-node network as shown in Fig. 1, following a
discrete-time dynamics with x0 = 0. For each node, we apply
an impulse input of magnitude u = 7 at t = 0 and analyze the
resulting flows. The system departs from the state x0, causing

3

1

2

4

5

0.8
0.7

0.8
−0.8

0.9
−0.6

0.6

Fig. 1: A 5−node network with edge weights as indicated.

a change in flow on each edge. As srad(A) = 0.77 < 1, the
dynamics is stable and the system returns back to the state x0.
We run the dynamic simulation for T = 250 iterations and
choose ci j in (2) as the weight of the edge i→ j. We record the
maximum flow deviation Yi j on each edge due to the impulse
nodal inputs in Table I, where Yi j = max

t∈[0, 250]
yi j. To quantify the

impact of an impulse at a particular node on the network, we
sum the maximum flow deviations as ∑Yi j. From the numerical
simulation results, we observe that an impulse at node 4 has
the maximum impact, while that at node 1 has the least impact.
Carrying out such simulations to observe the effect of impulse
nodal inputs is inexpensive because the size of the considered
network is relatively small and the magnitude of the input is
known. However, in real-world applications, the network size
is generally large and we may also not know the magnitude of
the impulse. This makes the simulation route computationally
intensive and non-robust. This motivates the introduction of
metrics to quantify the effect of impulse nodal inputs on edge
flows without the knowledge of the input magnitude. •

III. THE VULNERABILITY MATRIX

In this section, we present a novel metric which not only
uses the network’s topological properties but also its inherent
dynamics to characterize the effect of impulse nodal inputs on
edge flows. To this end, we first derive an analytical expression
for the evolution of edge flows for impulse inputs/disturbances.

Lemma III.1. (Analytical expressions for evolution of flow).
Consider the discrete-time/continuous-time network dynamics
(1). If an impulse input of magnitude u ∈R is applied at node
k at t = 0, then the evolution of the flow Fi j on the edge i→ j
defined by the output (2) with x(0) = x0 is given by



(i) For discrete-time dynamics,
Fi j(t)|k = ci j(ei− e j)

>At−1(Ax0 + ek u), for t ≥ 1,
(ii) For continuous-time dynamics,

Fi j(t)|k = ci j(ei− e j)
>eAt(x0 + ek u), for t ≥ 0.

Proof. For (i), the state evolution in response to an impulse
input at node k can be expressed as, cf. [20],

x(t) = Atx(0)+At−1bk u, for t ≥ 1. (3)

With the initial state x(0) = x0, bk = ek, the edge flow (2),
coupled with xi = e>i x, x j = e>j x yields the result.

For (ii), the state evolution is given by

x(t) = eAtx0 +
∫ t

0
eA(t−τ) ek uδ (τ) dτ. (4)

As the input at time t = 0 is an impulse, we have from [21],∫ t

0
eA(t−τ) ek uδ (τ) dτ = ueAt ek.

Substituting xi = e>i x, x j = e>j x in (2), yields the result.

In the statement of the result and in what follows, we use
the notation ‘ |k ’ to indicate the impulse input at node k. Next,
we analyze the first-order effects of impulse nodal inputs on
the network and compute the relevant analytical expressions.

Theorem III.2. (First-order effect of impulse inputs on states
and edge flows). Consider the discrete-time/continuous-time
network dynamics in (1). If an impulse input of magnitude
u ∈ R is applied at node k at t = 0, then

(i) ∑
∞
t=0

(
∂xi

∂u

)2
∣∣∣∣k =Wk

ii =
∫

∞

0

(
∂xi

∂u

)2
∣∣∣∣kdt,

(ii) ∑
∞
t=0

(
∂Fi j

∂u

)2
∣∣∣∣k=c2

i j
(
Wk

ii +Wk
j j−2Wk

i j
)
=
∫

∞

0

(
∂Fi j

∂u

)2
∣∣∣∣kdt,

where Wk is the discrete-time/continuous-time controllability
Gramian with only one input at node k.

Proof. First, we consider (i) under the discrete-time dynamics.
We recall from (3) in Lemma III.1 that

xi = e>i At x0 + e>i At−1 bk u, for t ≥ 1.

Differentiating with respect to the input variable u and noting
that bk = ek for the nodal input location, we have

∂xi

∂u
= e>i At−1 ek, for t ≥ 1.

Note that ∂xi
∂u = 0 for t = 0. To evaluate the overall impact over

time, we compute the sum from t = 1 to ∞, and obtain
∞

∑
t=0

(
∂xi

∂u

)2
=

∞

∑
t=0

(e>i At ek)
2 =

∞

∑
t=0

e>i At ek e>k At> ei.

Finally, using the definition of the discrete-time controllability
Gramian [20] for the input matrix ek,

∞

∑
t=0

(
∂xi

∂u

)2
= e>i

( ∞

∑
t=0

At ek e>k At>)ei = e>i W
k ei =Wk

ii .

For the continuous-time dynamics, we proceed similarly as
above. Using the relation (4), bk = ek, and differentiating

∂xi

∂u
= e>i eAt ek.

Next, with the integral relation below∫
∞

0

(
∂xi

∂u

)2
dt =

∫
∞

0
(e>i eAt ek)

2dt,

applying suitable algebraic manipulations and the definition of
the continuous-time controllability Gramian [20] for the input
matrix ek, we get the required result.

For (ii), under the discrete-time dynamics, note that differ-
entiating (2) with respect to the input variable u results in

∂Fi j

∂u
= ci j

(
∂xi

∂u
−

∂x j

∂u

)
.

Squaring and evaluating the summation with respect to t from
0 to ∞, we obtain

1
c2

i j

∞

∑
t=0

(
∂Fi j

∂u

)2
=

∞

∑
t=0

(
∂xi

∂u

)2
+

∞

∑
t=0

(
∂x j

∂u

)2
−2

∞

∑
t=0

∂xi

∂u
∂x j

∂u
.

We can compute the last term in the expression as
∞

∑
t=0

∂xi

∂u
∂x j

∂u
=

∞

∑
t=0

ei At ek e j At ek = e>i
( ∞

∑
t=0

At ek e>k At>
)

e j

= e>i Wk e j =Wk
i j .

The result now follows from (i). The proof for the continuous-
time dynamics is analogous.

If i→ j is the qth edge in the set EA, then for an impulse
input u at node k, we define

γk q = γ
k
i j :=

∞

∑
t=0

(
∂Fi j

∂u

)2
∣∣∣∣k = ∫ ∞

0

(
∂Fi j

∂u

)2
∣∣∣∣k dt,

which are computed using Theorem III.2. By collecting all
such γkq for 1 ≤ k ≤ n and 1 ≤ q ≤ ne, we get a matrix
Γ = (γkq) = (γk

i j) ∈ Rn×ne . We refer to this matrix as the
‘Vulnerability Matrix’ (VM). The kth row of VM captures the
effect of an impulse input at node k on the edge flow in each
edge of the network. Instead, the qth column in VM represents
the effect of an impulse input (applied one at a time) at each
node of the network on the qth network edge. The sum ∑

ne
q=1 γkq

of the kth row elements encodes the influence of the kth input
on all the edge flows. This is referred to as the vulnerability
influence of the node k and denoted by νk. Higher values of
νk make the node k a potential site for nodal impulse attacks
(when viewed from an adversarial viewpoint). An alternative
notion, which is not explored here for lack of space, is defining
vulnerability of a particular edge under impulse attacks at all
nodes by summing columns of VM, i.e., ∑

n
k=1 γk q.

From [7], [8], the controllability Gramian is related to the
average controllability of the system, when computed along all
directions of the state space. This in turn also corresponds to
the energy in the output response to a unit impulse input [6],
[22]. Thus, Theorem III.2 presents an energy-based expression



in terms of the controllability Gramian which quantifies the
effect of impulse nodal inputs on edge flows. As we assume the
system matrix A is stable, we can compute the controllability
Gramian using the Lyapunov equations [20] with input only
at the node k as the solution to

discrete-time: AWkA>−Wk =−ek e>k ,

continuous-time: AWk +WkA> =−ek e>k .

(5a)

(5b)

IV. EDGE FLOW VULNERABILITIES IN DIRECTED LINE
NETWORKS

In this section, we characterize the vulnerability of edge
flows in a network in terms of its structure. To this end, we
need to express the controllability Gramian in terms of the
edge weights. The analysis is complex for general networks,
so we focus our attention on the particular class of directed
line networks, cf. [23]. A directed line network is a sequential

1 2 3 n
a21 a43

a11 a22 a33 ann

Fig. 2: A directed line network with n nodes.

arrangement of nodes, e.g., starting at node 1 and ending
at node n, see Fig. 2. The presence of self-loops ensures
the stability of the continuous-time network dynamics. In
our analysis presented next, we first study the discrete-time
instance, followed by the continuous-time version.

A. Discrete-Time Directed Line Networks

Consider the directed line networks with no self-loops (i.e.,
aii = 0 for all i ∈ {1, . . . ,n}) and with positive edge weights
(i.e., a ji > 0). The directed line networks with no self-loops
following discrete-time dynamics yield a diagonal controlla-
bility Gramian [6], [23], which can be expressed in terms of
their edge weights. Therefore, we can derive an analytical
expression for the edge flow vulnerabilities in terms of the
network edge weights. We first define the notation

ρi j := ai+1, i ai+2, i+1 . . . a j−1, j−2 a j, j−1 =
j

∏
r=i+1

ar,r−1,

for i < j and the directed line path i→ i+ 1, . . . , j− 1→ j
between the node i and node j. If i = j, then ρii = aii. Notice
that for i < y < j with the directed line path i→ y→ j, we
have ρi j = ρi yρy j. From [6], [23], we can write the diagonal
elements of the controllability Gramian for an input node k as

Wk
ii = 0 for 1≤ i≤ k−1 and Wk

ii = ρ
2
ki for k ≤ i≤ n. (6)

This allows us to provide the following expressions of the edge
flow vulnerabilities.

Theorem IV.1. (Edge flow vulnerability for directed line
networks with discrete-time dynamics). Consider a directed
line network of n nodes with stable discrete-time dynamics (1a)
with positive edge weights and input node k. Then

γ
k
i, i+1 =


0 for 1≤ i≤ k−2,
c2

k−1,k for i = k−1,
c2

i, i+1 (1+a2
i+1, i)ρ2

k, i for k ≤ i≤ n−1.

Proof. Directed line networks have a diagonal controllability
Gramian, Wk

i, i+1 = 0 for all i. By using (6), we know Wk
ii = 0

for 1≤ i≤ k−1 which, when combined with Theorem III.2,
implies that γk

i, i+1 = 0. For i= k−1, we have Wk
k−1,k−1 = 0 and

Wk
kk = 1, so γk

i, i+1 = c2
k−1,k. Finally, from (6), for k≤ i≤ n−1,

we have Wk
i+1, i+1 = a2

i+1, iW
k

ii = a2
i+1, iW

k
ii ρ2

k, i and the result
follows from Theorem III.2.

Remark IV.2. (Effect of edge-weight magnitude). We note
that for 0 < a ji < 1, as one moves away from the input node,
γk

i, i+1 decreases and hence the vulnerability of the edge flow
decreases. However, for a ji ≥ 1, as one moves away from
the input node, the edge flows become more vulnerable to
an impulse nodal input. •

B. Continuous-Time Directed Line Networks

Next, we consider directed line networks following
continuous-time dynamics and having self-loops i.e., aii <
0 for all i. The condition aii < 0 ensures the stability of
network dynamics. Before proceeding to the derivation of edge
flow vulnerabilities for directed line networks, we derive ana-
lytical relationships between the elements of the continuous-
time controllability Gramian matrix.

Theorem IV.3. (Analytical expressions for Gramian matrix
elements). Consider a directed line network of n nodes with
stable continuous-time dynamics (1b) and input node k. Then
the elements of the controllability Gramian are given by,

Wk
ii = 0, Wk

i j =Wk
ji = 0 for 1≤ i≤ k, i≤ j ≤ n,

Wk
kk =

−1
2akk

, Wk
k j =

−a j, j−1W
k

k, j−1

βk j
for k ≤ j ≤ n,

Wk
ii =

−ai,i−1W
k

i−1, i

aii
, Wk

i j =
−
(
ai, i−1W

k
i−1, j +a j, j−1W

k
i , j−1

)
βi j

,

for k+1≤ i≤ n, i≤ j ≤ n, where βi j = aii +a j j.

Proof. As the controllability Gramian is symmetric, we just
compute the upper triangular part. From the continuous-time
Lyapunov equation (5b) for directed line networks and input
node k, with S = AWk +WkA>, we get

Si j = 2a11W
k

11 for i = j = 1,

= β1 jW
k

1 j +a j, j−1W
k

i, j−1 for i = 1, 2≤ j ≤ n,

= 2aiiW
k

ii +2ai,i−1W
k

i−1, i, for 2≤ k ≤ i = j ≤ n,

=Wk
i−1, jai, i−1 +Wk

i, j−1a j, j−1 +Wi jβi j,

for 2≤ k ≤ i≤ n, i+1≤ j ≤ n.

(7)

The right-hand side of the Lyapunov equation for the nodal
input at node k is −ek e>k , which is a matrix whose only non-
zero element is at the position (k,k) with value −1. Using this
fact, Skk = −1 and all other elements of the upper-triangular
matrix Si j = 0. We solve these linear equations for the Gramian
elements as unknowns to get the required result.

Note that unlike the discrete-time case, the continuous-time
controllability Gramian for stable directed line networks is not
a diagonal matrix. For this scenario the analytical expressions



for the edge flow vulnerabilities in terms of the edge weights
are complicated for any general edge i→ i+1. However, for
the edges adjacent to the input node, the flow vulnerability in
terms of the edge weights is computed using Theorem IV.4.

Theorem IV.4. (Analytical expressions for flow vulnerabilities
for edges adjacent to input node). Consider a directed line
network of n nodes with stable continuous-time dynamics (1b)
and input node k. Then for the edges adjacent to the input
node, we have

γ
k
k−1,k =

−c2
k−1,k

2akk
, for 2≤ k ≤ n,

γ
k
k,k+1 =

−c2
k,k+1

2akk

(
1+

a2
k+1,k

ak+1,k+1βk+1,k
+

2ak+1,k

βk+1,k

)
.

Proof. This can be proved by substituting i = k−1, j = k and
i = k, j = k+1 respectively in Theorem IV.3.

When all the edge weights are equal in magnitude, i.e.,
ai+1,i = a and aii =−a with a> 0, then by using Theorem IV.3
one can prove Wk

i+1, i+1 = Wk
i, i+1. This results in γk

i, i+1 =

a(Wk
ii −Wk

i, i+1). Even with this simplification, obtaining a
general analytical expression for γk

i, i+1 in terms of a is still
difficult. However, from numerical experiments, we observe
that as one moves away from the input node k along the
directed line, γk

k+i,k+i+1 decreases as 2s, where s ≥ 2i for
i = 1, . . . ,n. Consequently, the influence of the nodal impulse
on the flows along the directed line is expected to decrease
significantly with the distance from the input node.

V. NUMERICAL EXPERIMENTS

In this section we consider two examples to illustrate our
theory and demonstrate its efficacy. We use the maximum flow
deviation during the time evolution of the network dynamics as
a benchmark for evaluation. This captures the transient effects
of impulse nodal inputs, which are often omitted when only
sequential steady states are analyzed.

A. 7-Node Directed Line Network

Consider a family of 7−node networks with the following
edge weights: a21 = 0.7, a32 = 0.8, a43 = 0.9, a54 = 0.6, a65 =
0.7, a76 = 0.5. For networks with discrete-time dynamics
we have no self-loops, while we consider self-loops with
aii = −1 for all i, when the system follows continuous-time
dynamics. We use a nodal impulse input of magnitude u = 3
for analyzing both the discrete/continuous-time dynamics.

(i) Discrete-time dynamics: Using Theorem III.2, we first
compute the VM matrix as tabulated in Table II. Next, we
numerically simulate the dynamics until the iteration T = 100.
We compute the maximum deviation in flow on each edge
when the input is applied at different nodes. We then sum
these maximum flow deviations to quantify the impact of a
nodal impulse on the network. These results are tabulated in
Table III. Note that the largest flow deviation occurs when the
input is applied at node 2, which is also the node with the

maximum nodal influence. This makes node 2 an ideal site
for an impulse input attack.

k γ12 γ23 γ34 γ45 γ56 γ67 νk

1 0.73 0.51 0.46 0.12 0.07 0.01 1.91
2 0.49 1.05 0.94 0.25 0.14 0.03 2.90
3 0 0.64 0.47 0.40 0.21 0.05 2.76
4 0 0 0.81 0.49 0.26 0.06 1.62
5 0 0 0 0.36 0.73 0.15 1.24
6 0 0 0 0 0.49 0.31 0.80
7 0 0 0 0 0 0.25 0.25

Table II: VM, nodal influence νk for discrete-time dynamics.

k F12 F23 F34 F45 F56 F67 ∑Fk
i j

1 2.10 1.68 1.51 0.91 0.64 0.32 7.15
2 2.10 2.40 2.16 1.29 0.91 0.45 9.32
3 0 2.40 2.70 1.62 1.13 0.57 8.42
4 0 0 2.70 1.80 1.26 0.63 6.39
5 0 0 0 1.80 2.10 1.05 4.95
6 0 0 0 0 2.10 1.50 3.60
7 0 0 0 0 0 1.50 1.50

Table III: Max flow deviation matrix for discrete-time dynamics.
(ii) Continuous-time dynamics: In this case, we have self-

loops at each node with a negative edge weight. We follow a
similar approach as in the discrete-time case. For numerical
simulations, we use the MATLAB solver ‘ode45’ with a time-
span [0, 100] for computing the edge flow deviations. Our
results are tabulated in Tables IV and V.

k γ12 γ23 γ34 γ45 γ56 γ67 νk

1 0.13 0.03 0.01 0.00 0.00 0.00 0.17
2 0.25 0.17 0.03 0.01 0.00 0.00 0.46
3 0 0.32 0.21 0.03 0.00 0.00 0.56
4 0 0 0.41 0.10 0.01 0.00 0.52
5 0 0 0 0.18 0.13 0.01 0.32
6 0 0 0 0 0.25 0.08 0.33
7 0 0 0 0 0 0.13 0.13

Table IV: VM, nodal influence νk for continuous-time dynamics.

k F12 F23 F34 F45 F56 F67 ∑Fk
i j

1 0.68 0.20 0.10 0.06 0.03 0.02 1.09
2 0.80 0.75 0.25 0.12 0.05 0.03 2.00
3 0 0.94 0.84 0.22 0.09 0.04 2.13
4 0 0 1.06 0.61 0.16 0.06 1.89
5 0 0 0 0.71 0.69 0.15 1.55
6 0 0 0 0 0.82 0.52 1.34
7 0 0 0 0 0 0.57 0.57

Table V: Max flow deviation matrix for continuous-time dynamics.

From the last column of Table IV, we observe that node
3 has the highest influence on the edge flow deviations, as
confirmed too by the last column of Table V. This is consistent
with the result in Theorem III.2. Note that for a particular
nodal input, the edge flow deviation as well as its vulnerability
decreases as one moves away from the node in both discrete-
time and continuous-time cases. The above simulation results
also highlight that, even though the discrete-time, continuous-
time cases have the same directed line edges, they have
different influential input locations.



(iii) Weak directed line networks: Consider the directed line
network following the continuous-time dynamics in (ii). To
this network, we add 10 new edges at randomly selected
locations having edge weights (again selected randomly) from
the set (0, 0.1]. As the edge weights along the pure directed
line (i→ i+ 1) are significantly larger than the newly added
edge weights, we refer to such networks as ‘weak directed
line networks’. We construct 1000 such network cases. Using
the same u and time span as in (ii), we perform numerical
simulations to compute the edge flow deviations. With this
information for each network, we order its nodes according to
decreasing ∑Fk

i j. We observe that node 3 is the most influential
node in 861 cases, second-most influential in 138 cases, and
third-most influential in 1 case. Thus, Theorem III.2, even
without the exact structure of weak directed line networks
(since Table IV is computed for the directed line case), helps
identify the most influential node with reasonable accuracy.

B. Random Erdős-Rényi Networks

In this section, we underscore the efficacy of our proposed
VM metric and its utility on 1000 random Erdős-Rényi (ER)
networks [24], each having n = 100 nodes and following
continuous-time dynamics. For each network, we select the
edge locations with a probability of 0.4. The weight of each
edge is selected as a random scalar, drawn from the standard
normal distribution (using the MATLAB function ‘randn’).
We add self-loops of weight −7 at each node of the network.
This ensures that the real part of each eigenvalue of the matrix
A of each network is less that −0.1, thereby making the
dynamics stable. We numerically simulate the dynamics for
each network as in Example V-A (ii) for a time span of [0, 50]
and various input values u = {−30, −15, −3, 3, 15, 30}. For
each u and each network, we compute the flow deviations Fi j
and arrange the input nodes in descending order of ∑Fk

i j. Next,
for each ER network, we determine the node with the largest
vulnerability using the VM computed from Theorem III.2. We
observe that, for each case, the most influential node (com-
puted using Theorem III.2) features in the top three influential
nodes computed using the flow deviation simulations in around
95% (1st − 72%, 2nd − 16%, 3rd − 7%) of the cases. This
provides evidence of the vulnerability matrix as an effective
tool to identify vulnerable nodal sites for impulse attacks.

VI. CONCLUSIONS

We have analyzed the effect of impulse inputs on edge
flows in networks with stable linear invariant discrete-time or
continuous-time dynamics. Next, we introduced the notion of
vulnerability matrix, a map of first-order effects on the flow of
each edge due to an impulse input at each node of the network,
and and described its efficacy in identifying vulnerable nodes.
Our analysis captures the transient effects of impulse nodal
inputs on edge flows and quantifies them in terms of the
controllability Gramian. We have provided explicit expressions
for the entries of the vulnerability matrix for the class of
directed line networks with positive edge weights and stable
(discrete/continuous)-time dynamics. Numerical simulations
have illustrated our approach and examined its usefulness

in identifying the maximum flow deviation in the network.
Future work will extend the analytical characterization of the
vulnerability matrix to more general graph topologies and
apply our approach in the identification and prevention of
cascading failures in power networks.
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