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ABSTRACT Frequency control plays a pivotal role in reliable power system operations. It is conventionally
performed in a hierarchical way that first rapidly stabilizes the frequency deviations and then slowly
recovers the nominal frequency. However, as the generation mix shifts from synchronous generators
to renewable resources, power systems experience larger and faster frequency fluctuations due to the
loss of inertia, which adversely impacts the frequency stability. This has motivated active research in
algorithms that jointly address frequency degradation and economic efficiency in a fast timescale, among
which the distributed averaging-based integral (DAI) control is a notable one that sets controllable power
injections directly proportional to the integrals of frequency deviation and economic inefficiency signals.
Nevertheless, DAI does not typically consider the transient performance of the system following power
disturbances and has been restricted to quadratic operational cost functions. This manuscript aims to
leverage nonlinear optimal controllers to simultaneously achieve optimal transient frequency control and
find the most economic power dispatch for frequency restoration. To this end, we integrate reinforcement
learning (RL) to the classic DAI, which results in RL-DAI control. Specifically, we use RL to learn a
neural network-based control policy mapping from the integral variables of DAI to the controllable power
injections which provides optimal transient frequency control, while DAI inherently ensures the frequency
restoration and optimal economic dispatch. Compared to existing methods, we provide provable guarantees
on the stability of the learned controllers and extend the set of allowable cost functions to a much larger
class. Simulations on the 39-bus New England system illustrate our results.

INDEX TERMS Frequency control, Lyapunov stability, reinforcement learning, steady-state and transient
performance.

I. INTRODUCTION

The key to the normal operation of a power system is
the balance between electric power supply and demand
over the network [1]. For instance, the main cause of the
2021 Texas power crisis is that the deficient supply of
power due to frozen equipment could not meet the high
demand for electricity in cold weather. A system frequency
deviation from its nominal value is a reflection of a power
imbalance [2], which makes frequency control a vital task of
grid operators. Traditionally, this task is performed in a hi-
erarchical structure composed of three layers with timescale

separation: primary—droop control (<20s), secondary—
frequency restoration (30 s—10 min), and tertiary—economic
dispatch (>15min) [2].

Nowadays, power systems are experiencing a change
in the mix of generation, where conventional synchronous
generators are gradually being replaced by renewable energy
sources like solar and wind energy [3]. It is anticipated
that the renewable share of the electricity generation mix
in the United States will double from 21% in 2020 to 42%
in 2050 [4]. Intermittent renewable sources are typically
inverter-interfaced, which may adversely affect the robust-
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ness of the frequency dynamics due to the loss of inertia [5].
This exposes power systems to larger and faster frequency
fluctuations than before, which has motivated active research
on flexible distributed frequency control schemes that can
break the hierarchy by addressing simultaneously frequency
degradation and economic efficiency at a fast timescale.

A key challenge in frequency control is that the power
imbalances across the network are not explicitly known.
A number of studies have proposed distributed algorithms
to overcome this challenge. The works in [6]-[14] focus
on optimizing the steady-state frequency and economic
performance using a principled design of fixed updating
rules involving agent communication for control dynamics.
The approaches mainly fall in two categories. The first
category [7], [8], [12]-[14] rests on a primal-dual interpre-
tation of power system dynamics under a properly designed
optimization problem. This approach, however, always re-
quires the estimation of certain system parameters. The
second category [6], [9]-[11] builds upon various consensus
algorithms to converge to an equilibrium with nominal
frequency and economic efficiency. A notable example in this
category is the distributed averaging-based integral (DAI)
mechanism [6], [10], [11], [15], where the controllable
power injections are directly proportional to the integrals
of frequency deviation and economic inefficiency signals. A
key caveat to this approach is that DAI control has been so
far restricted to quadratic cost functions.

The works above focus on the optimization of the steady-
state performance and do not typically consider the transient
performance along the system trajectories following power
disturbances. In fact, the optimization of transient perfor-
mance is a challenging problem due to the nonlinearity of
power dynamics and the uncertainty in power disturbances.
Reinforcement learning (RL) [16] is a powerful tool for
learning from interactions with uncertain environments and
determining how to map situations to actions so that a desired
performance is optimized. By virtue of the above feature,
RL has emerged [17], [18] as an effective instrument to
address the optimal transient frequency control problem in
nonlinear power systems under unknown power disturbances.
Nevertheless, the Achilles’ heel of standard RL algorithms
is their lack of provable stability guarantees, which presents
a significant barrier to their practical implementation for the
operation of power systems. In fact, many works [19]-[22]
optimize the transient performance by learning control poli-
cies that exhibit good performance against data but without
any provable guarantees on steady-state performance. The
recent paper [23] on RL for optimal primary frequency
control proposes a way to address the stability issue by
identifying a set of properties that make a control design
stabilizing and then restricting the search space of neural
network-based controllers. In this paper, we extend this idea
to achieve provable guarantees on frequency restoration and
economic efficiency at the steady-state.

With the aim of filling the gap between the optimization
of steady-state and transient frequency control performance,
we propose to unify these two perspectives by integrating
RL into DAI control. In our approach, we employ RL to
seek the optimal control policy in terms of the transient
performance as a map from the integral variables of DAI
to the controllable power injections, while DAI inherently
ensures the optimal steady-state performance. This results
in nonlinear optimal frequency controllers which we term
RL-DAI control that generalizes the standard DAI approach.
Specifically, the generalization is manifold:

e Unlike the classic DAI control that only addresses
quadratic operational cost functions, RL-DAI control ad-
mits any strictly convex cost functions whose gradients
are identical up to heterogeneous scaling factors;

e Unlike the standard RL methods that do not provide stabil-
ity guarantees, RL-DAI control encodes the stabilization
requirement on the control policy as mild conditions on its
continuity and monotonicity. Such conditions can be easily
realized by an ingenious parameterization of the control
policy as a monotonic neural network, which is trained
by a RL algorithm based on recurrent neural networks
(RNNs);

e RL-DAI control jointly optimizes both steady-state and
transient frequency control performance by leveraging
the added degrees of freedom in tuning parameters that
characterize the nonlinear control policy.

The rest of this manuscript is organized as follows. Sec-
tion II describes the power system model and formalizes
the optimal frequency control problem. Section III describes
the proposed generalized DAI control and shows how it
guarantees the asymptotic convergence of the closed-loop
system to the equilibrium that achieves the steady-state per-
formance objectives. Section IV illustrates how to integrate
RL with DAI control such that the transient performance
can be optimized without jeopardizing stability. Section V
validates our results through detailed simulations. We gather
our conclusions and ideas for future work in Section VI.

Il. MODELLING APPROACH AND PROBLEM STATEMENT
In this section, we describe the power system model used
in this manuscript for analysis and the frequency control
problem we aim to address.

A. POWER SYSTEM MODEL

We consider! a n-bus power system whose topology can
be characterized by a weighted undirected connected graph
(V, &), where buses indexed by 7,5 € N :={1,...,n} are
linked through transmission lines denoted by unordered pairs

{i.j} e c{{i,j}li,j e N,i#j}.

1Throughout this manuscript, vectors are denoted in lower case bold and
matrices are denoted in upper case bold, while scalars are unbolded, unless
otherwise specified. Also, 1,,,0, € R" denote the vectors of all ones and
all zeros, respectively.
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The set of buses N is a disjoint union of two subsets: the
buses with generators®> G and buses that are purely loads L.
Generator buses are described with differential equations,
while load buses are treated as frequency-sensitive loads
governed by algebraic equations. More precisely, given net
power injections p := (p;,i € N) € R™ on each bus,
the dynamics of the voltage angle 6; (in rad/s) and the
frequency deviation w; (in p.u.) from the nominal frequency
fo (B0Hz or 60Hz depending on the particular system)
evolve according to

éi:2wf0wi, VZE./\/', (1a)

MW =— 0GW; —Z’Ui’l)jBijSin (Gl —9j> +p;+u; ViegG, (1b)

j=1
0=—qa4w; —Zvivaijsin (Qz—ﬁj)—i—pl—&—uz Vie £, (Ic)

j=1
where the parameters are defined as: m; := 2H; > 0 —

generator inertia constant (in s), a; > 0 — frequency sensi-
tivity coefficient from generator or load (in p.u.) depending
on whether i € G or i € L, v; > 0 — voltage magni-
tude (in p.u.), and B;; — susceptance (in p.u.) satisfying
Bij = Bji > 0 if {’L,j} € & and Bij = Bji = 0 if
{i,7} & . Finally, u; is a controllable power injection to be
designed for frequency control.

Remark 1 (Model assumptions). The model in (1) implic-
itly makes the following assumptions that are well-justified
for frequency control on transmission networks [8], [24].

o Lossless lines: V{i,j} € &, the line resistance is zero.

e Constant voltage profile: Vi € N, the bus voltage magni-
tude v; is constant.

o Decoupling: Reactive power flows do not affect bus volt-
age angles.

o V{i,j} € &, the equilibrium bus voltage angle difference

P — 051 €[0,7/2).

B. FREQUENCY CONTROL

The basic goal of frequency control is to keep the frequency
of the power system close to its nominal value. We now
illustrate this in more detail by following the same line of
argument as in [6], [9], [11], [25].

Since the frequency dynamics depend only on the phase
angle differences, for easy of analysis, we express the dy-
namics in center-of-inertia coordinates [11], [25] by making
the following change of variables: ¢; := 6; — (Z?:1 0;)/n,
Vi € N. Then, the dynamics in (1) can be rewritten and
stacked into a vector form as:

§=2rfy (In — llnlf) w (2a)

n
Mwg =— Ag(.dg - VgU((S) +pg +ug, (2b)
Oy =—Argwe =V UWO) +pp+us, (20

2The generator buses can have collocated loads.
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1 n n
522 v B;j cos (0; — 6;),
where § := (0;,i € N) € R", w := (w;,i € N) € R",
p = (p,ieN) € R", u:= (u,i € N) € R", M :=

diag(m;,i € N) € R*™™", Ag := diag(a;,i € G) €
RIGXIGI A, .= diag(a;,i € £) € RIFIXIZ] Here, a vector
with a set as subscript denotes the subvector composed only
of the elements from that set, e.g., wg = (w;,i € G) €
RIGI 3

The equilibria of (2) satisfy

w* = l177,15(;.1 (3a)
n

Oig| = — Agwg — VgU(8") +pg +ug,  (3b)

O =—Acwy — VU@ +p.+uz. (o)

Clearly, (3a) implies that there exists a scalar w* such that
w* = 1,w*. Then, (3b) and (3¢) can be combined into

0,=-Al,w*—VU@")+p+u* 4)

with A := diag(ei,7 € N) € R"™ ™. Moreover, after
premultiplying (4) by 17, we can characterize w* as
Wt = Z?:l pin+ ZZLZI u;k , (5)
D1 Qi
where we have used the zero net power flow balance
1TVU(8) = 0 of a lossless power system.

Observe from (5) that, in the absence of frequency control,
the system undergoing power disturbances p will synchro-
nize to a nonzero frequency deviation, i.e., w* # 0, since

= 0 only if " pi + > uf = 0. Therefore, the
main goal of frequency control is to regulate the frequency
such that w* = 0 by providing appropriate controllable
power injections w to meet power disturbances p. Note that
the existence of equilibrium points (6™, 1,w*) such that (4)
holds for w* = 0 is equivalent to the feasibility of the power
flow equation

VU(*)=p+u”, (6)

which is a standing assumption of this manuscript. In fact,
if the feasibility of (6) holds, then there are multiple choices
of u to meet (6). Consequently, we seek to select among
the possible candidates by optimizing certain performance
metrics, which we describe next.

C. PERFORMANCE ASSESSMENT

For the design of frequency control strategies, not only fre-
quency performance but also economic factors must be taken
into account. Moreover, the secure and efficient operation
of power systems relies on properly controlled frequency
and cost in both slow and fast timescales. Thus, we now
introduce the frequency and economic performance metrics
used in this manuscript based on different timescales.

3For a finite set G, |G| denotes the cardinality of G.
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1) STEADY-STATE PERFORMANCE METRICS

Our control objective in the long run is to achieve the
nominal frequency restoration, i.e., w* = 0,, as well as
the lowest steady-state aggregate operational cost C'(u*) :=
i, Ci(uf), where the cost function C;(u;) quantifies
either the generation cost on a generator bus or the user
disutility on a load bus for contributing w;. This results in the
following constrained optimization problem called optimal
steady-state economic dispatch problem:

min  C(u") := Z Ci(uf) (7a)
=1
s.t. ZpiJrZu:‘:O, (7b)
=1 =1

where (7b) is a necessary constraint on the steady-state
controllable power injections ™ in order to achieve w* = 0,,
as discussed in Section II-B. Here, we adopt the standard
assumption that the cost function C;(u;) is strictly convex
and continuously differentiable [9], [13] with respect to u;.
Then, the optimization problem (7) has a convex objective
function and an affine equality constraint. Thus, by the
Karush-Kuhn-Tucker conditions [26, Chapter 5.5.3], u* is
the unique minimizer of (7) if and only if it ensures identical
marginal costs [6], [9], [10], [15], [25], i.e.,

2) TRANSIENT PERFORMANCE METRICS
Following sudden major power disturbances, the transient
frequency dip can be large in the first few seconds, especially
in low-inertia power systems. This may trigger undesired
protection measures and even cause cascading failures. Thus,
besides the steady-state performance, one should also pay
attention to the transient frequency performance with mod-
erate economic cost. With this aim, we define the following
transient performance metrics evaluated along the trajectories
of the system (1):
e Frequency Nadir is the maximum frequency deviation
from the nominal frequency on each bus during the
transient response, i.e.,

oo = max i (1) ©

e Finite horizon economic cost measures the average cost on
a generator or load bus for its participation in frequency
control during a time horizon 7, i.e.,

_ 1 (7
T 0

Then the optimal transient frequency control problem be-
comes:

n

min Z sz‘”oo‘i‘l)z C;r s.t. wstabilize (1), (10)
i€g i=1

where p > 0 is the coefficient for tradeoff between the

frequency performance and the economic cost. Note that we

impose the stability requirement on w as a hard constraint

in the optimization problem (10), which will play a pivotal
role in its design.

D. REINFORCEMENT LEARNING FOR FREQUENCY
CONTROL

Our goal is to design an optimal stabilizing controller that
brings the system (1) to an equilibrium that restores the
nominal frequency, i.e., w* = 0,, and solves the optimal
steady-state economic dispatch problem (7), while solving
the optimal transient frequency control problem (10) at the
same time. A good starting point to achieve our steady-
state control goal is the well-known DAI control. However,
it is not straightforward how to also optimize the transient
performance. This is hard to be done purely by conventional
optimization methods since power systems are nonlinear and
power disturbances are unknown. Therefore, we would like
to integrate RL into DAI to jointly optimize steady-state and
transient performance.

lll. GENERALIZED DISTRIBUTED AVERAGING-BASED
INTEGRAL CONTROL

We start this section by briefly reviewing distributed
averaging-based integral (DAI) control and then generalizing
it to account for nonlinear control laws. We show that the
closed-loop system is stable as long as the nonlinearity satis-
fies conditions on continuity and monotonicity. Interestingly,
the steady-state performance objectives are still achieved un-
der our proposed generalized DAI even for nonquadratic cost
functions provided that the gradients of the cost functions on
individual buses satisfy certain condition.

A. REVIEW AND GENERALIZATION OF DAI

DAI control [6], [10], [11], [15] is an established choice of
frequency control strategy to meet the steady-state perfor-
mance objectives discussed in Section II-C. However, most
works restrict the cost functions to be quadratic, i.e.,

1
iciu%, Vie N, (11)

where ¢; > 0 is the cost coefficient. With the cost functions
given by (11), the power injections u in the system (2) under
DAI are

Ci (’U,Z) =

’U,l(Sl) =k;is;, Vi € N, (12a)

with

n
§; = — 2w fow; — ¢ ZQij (cius — cju )

j=1

(12b)

where k; > 0 is a tunable control gain and @Q;; >
0 is the weight associated with an undirected connected
communication graph (V,€q) (not necessarily the same
as the physical system topology graph (V,€&)) such that
Qij = Qji > 0 if buses ¢ and j communicate, i.e.,
{i.j} € Eq € {{i.4}|i.j €N i#j}, and Qi = Qi = 0
otherwise, Vi,7 € N. The core idea behind DAI is that
the control dynamics can settle down only if the nominal
frequency restoration, i.e., w; = 0, Vi € A/, and the identical
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marginal costs, i.e., VCi(u;) = ciu; = cju; = VCj(uy),
Vi,j € N, are simultaneously achieved, which ensures that
w* =0, and u* is the solution of the optimal steady-state
economic dispatch problem (7).

However, DAI in (12) does not address the transient
behavior of the system. Thus, trajectories that eventually
reach the equilibrium may have poor transient performances.
Therefore, it is desirable to modify DAI so that we have
better flexibility in improving the transient performance.
Inspired by the fact that the control policy w;(s;) of DAI
in (12a) is directly proportional to the integral variable
s;, we generalize DAI by allowing w;(s;) to be any Lip-
schitz continuous and strictly increasing function of s;, with
u;(0) = 0. This extends u;(s;) from a linear function to any
nonlinear function satisfying these mild requirements. The
added nonlinearity provides us with a good opportunity to
solve the optimal transient frequency control problem (10)
while remaining the optimal steady-state performance.

Assumption 1 (Continuity and monotonicity of w). Vi
N, the function u;(-) : R — R is Lipschitz continuous and
strictly increasing with u;(0) = 0.

In our treatment, we also relax the restriction to quadratic
cost functions by allowing DAI to handle any cost functions
satisfying the following assumption.

Assumption 2 (Scaled cost gradient functions). There ex-
ists a strictly convex and continuously differentiable function
Co(*) : R — R and a group of positive scaling factors
¢ = (G i e N) € R such that

VCi() =VCo(Gir),  VieN.

Assumption 2 admits any strictly convex cost functions
whose gradients are identical up to heterogeneous scaling
factors. To look in greater detail at how this generalizes be-
yond quadratic cost functions, we provide some examples of
common strictly convex functions that satisfy Assumption 2.
If the cost functions on individual buses are:

13)

e power functions with positive even integer powers:

Cilui) = g + by, (14)
r
where ¢; > 0 and r is a positive even integer, then
VCi(u;) = ciui ™, Vie N . (15)
Thus, we can choose
L .
Co()= () and  G=c[ . (16

which satisfies, Vi € N,
VC’l(uz) zciuzlz(c[lui) r=lo (Qui)r_lzvco(gui).

e arbitrary strictly convex and continuously differentiable
functions that are identical up to constant terms:
Ci(u;) = Colu;) +bi,

then VC’I(uZ) = VOO(Uz) = VCO(CZ‘U,') with Ci =1,
VieN.
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Clearly, the quadratic cost functions in (11) belong to the first
scenario since (14) reduces exactly to (11) if r =2 and b; =
0, which validates our generalization through Assumption 2.

Now, under Assumptions 1 and 2, we are ready to propose
the generalized DAI as follows:

Si = —27rf0wi —CZZQ” (VCZ (u, (Sl)> —VCJ (uj (81))) (17)
j=1

Although not obvious at first sight, the generalized DAI
in (17) preserves the ability of the classic DAI to restore
the nominal frequency and solves the optimal steady-state
economic dispatch problem (7) for cost functions satisfying
Assumption 2. In addition, the more general nonlinear form
of w introduced in Assumption 1 provides us with more
degrees of freedom to better deal with the optimal transient
frequency control problem (10). All of these statements
would become clear as the analysis unfolds.

After combining (2) and (17), we can write the overall
closed-loop system dynamics under our proposed general-
ized DAI compactly as

§=2nfy <In — 11n1§) w, (18a)
n
Mdjg = - Agwg — VQU((S) +pg + Ug(S) N (18b)
Oz =—Agwe —VU() +pp +uc(s), (18c)
5§ =—-2nfow— ZLGVC(u(s)), (18d)

where s := (s;,i € N)€R"™, Z := diag({;,i € N) eR™™",
Lq := [Lq,;] € R™" is the Laplacian matrix associ-
ated with the communication graph whose ijth element is
LQ,ij = _Qij if ¢ 75 ] and LQ,ij = Z;’L’:l,j’#i Qij/ if
i =7, Vi,j €N, and u(s) := (u;(s;),i € N) € R" with
each u;(s;) satisfying Assumption 1.

We conclude this subsection by stating a property of the
inverse functions of the cost gradient functions on individual
buses, which is a consequence of Assumption 2. It is useful
later for the stability analysis of the closed-loop system (18).

Lemma 1 (Identical scaled controllable power injections).
If Assumption 2 holds, then

GVCTH () =V (), Vie N, (19)

where VC; () and VO (-) denote the inverse functions
of VCi(-) and VCo(-), respectively.

Proof:

See the Appendix A. ]
Provided that the cost functions on individual buses sat-

isfy Assumption 2, Lemma 1 indicates that, for any given

marginal price, each generator or load contributes the same

amount of controllable power injection up to a scaling factor.

Remark 2 (Existence and monotonicity of VC;” '(-) and
VC5 (). Note that the existence of VC; ' (-) is guaranteed
by the strict convexity of C;(-). More precisely, by [27,
Theorem 2.14], the strict convexity of C;(-) implies that
VC;(-) is a strictly increasing function. According to [28,
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Chapter 12.9], this further implies that VC;(-) has an
inverse function VC;~ 1() which is also strictly increasing.
The same argument holds for VC1(-).

B. CLOSED-LOOP EQUILIBRIUM ANALYSIS

The first result we show is that the steady-state performance
objectives are still achieved under the generalized DAI. This
is captured by the following theorem.

Theorem 1 (Closed-loop equilibrium). Suppose Assump-
tions 1 and 2 hold. Assume /{i, j} € €, |67 —67%| € [0,7/2).*
Then the equilibrium (8, w*, s*) of the closed-loop system
(18) is a unique point satisfying

w* = On; (20&)
VU(6") = p+ u(s®), (20b)
u(s") = VC ' (1)Z 1, (200)
with v uniquely determined by
VOi() = — 2=l @
Zi:l <1 !

Proof:

The equilibrium analysis is similar to the one presented in
Section II-B, except that the effect of the integral variables
s introduced by the generalized DAI should be considered.
Hence, in steady-state, (18) yields

0,=—Al,w* —VU(")+p+u(s*), (22a)
2rfolpw™ = — ZLgVC(u(s™)), (22b)

where we have used the equilibria characterizations w* =
1,w* and (4).

We then proceed to investigate the equilibrium by follow-
ing a similar argument as in [15, Lemma 4.2]. Premultiplying
(22b) by 17Z~* yields

21 folTZ 711, 0" = — 1T LoVC(u(s*)) =0,  (23)

where the second equality is due to the property of
the Laplacian matrix [29] that 1Ly = 0. Note
that 17271, > 0 since Z~' = 0 by construction.
Thus, (23) implies that w* = 0. Then, (22b) becomes
ZLgVC(u(s*)) = 0,, which indicates that VC'(u(s*)) €
range(1,), ie., VC(u(s*)) = ~1, for some constant .
Thus, u(s*) = (VC; '(v),i € N). Note that Zu(s*) =
(GVC; ()i € N) = VC;1(v)1, by Lemma 1, which
further implies that u(s*) = VO, '(7)Z'1,,.

Now, applying w* = 0 and u(s*) = VC;'(7)Z "1, to
(22a) yields

VU(*)=p+VC, ' (1)Z'1,.

Then, premultiplying (24) by 17" yields the equation that
determines ~y as shown in (21), where 12 VU () = 0 is used
again. We can show that the solution ~ to (21) is unique by
way of contradiction. Suppose that both v and 7 satisfy (21),

(24)

“This is the counterpart of the model assumption, V{i,j} € &, |07 —
0%] € [0,7/2) in Remark 1.

where 7y # 4. Then, VC; 1 (7)—VC;1(5) = 0, which after
being multiplied by (v —4) yields

0= =9 (VC () -VCI 7)) >0, (25

where the inequality is due to the fact that VC,1(-) is
strictly increasing as discussed in Remark 2. Clearly, (25)
is a contradiction. Thus, ~ is unique.

It remains to show that the equilibrium is unique. We
focus on the uniqueness of s*. By way of contradiction,
suppose that both s* and s* satisfy (20c), where s* # s*.
Then, u(s*) — u(s*) = 0,,, which after being multiplied by
(s* — )7 yields

0= (s" = )7 (u(s") — u(s")

n
=D (si = s7) (wils]) —wi(s7) >0, (26)

i=1
where the inequality results from our requirement that w;(s;)
is strictly increasing with respect to s;. Clearly, (26) is a
contradiction. Thus, s* is unique. By [30, Lemma 1], the
solution 6" to (24) is unique. This concludes the proof of
the uniqueness of the equilibrium. ]

Theorem 1 verifies that the generalized DAI preserves the
steady-state performance of the normal DAI. It forces the
closed-loop system (18) to settle down at a unique equilib-
rium point where the frequency is nominal, i.e., w* = 0,,
and the controllable power injections u* meet the identical
marginal cost requirement (8) since, Vi € N,

VCi(uf) =VCi(ui(s7)) B VC, (VO ()¢

EVGGYCT ()G = VOV () = 7.

Thus, the objectives of nominal steady-state frequency and
optimal steady-state economic dispatch for a broader range
of cost functions are both achieved.

C. LYAPUNOV STABILITY ANALYSIS

Having characterized the equilibrium point and confirmed
the steady-state performance of the closed-loop system (18)
under the generalized DAI, we are now ready to investigate
the system stability by performing Lyapunov stability anal-
ysis. More precisely, the stability under the generalized DAI
can be certified by finding a well-defined “weak” Lyapunov
function that is nonincreasing along the trajectories of the
closed-loop system (18). The main result of this whole
subsection is presented below, whose proof is enabled by
a sequence of smaller results that we discuss next.

Theorem 2 (Asymptotic stability). Under Assumptions 1
and 2, any trajectory of (18) starting from the neighborhood
{(6,w, s) eR"XR"xR™ | [6;—6;| € [0,7/2),V{i,j} €E} of
the equilibrium characterized by (20) with [0;—0%| €[0,7/2),
V{i,j} € & converges asymptotically to the equilibrium.

First note that the algebraic equation (18c) fully deter-
mines w, as a function of § and s, i.e.,

we=A;" (=Y U©) +p,+uc(s), 27
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which means that we only need to explicitly consider the
evolution of (8, wg, 8). Thus, in what follows, we only focus
on the state component (d,wg, s) for a neighborhood D :=
{(8,wg, s) ER"xRIGIxR™ | 6;—6;| €[0,7/2),V{i,j} €&}
of the equilibrium (8%,0/g|, s*). The next lemma formalizes
this thought by showing that the distance from the whole
state (0, w, s) to (6%, 0,, s*) is lower and upper bounded by
the distance from the partial state (J,wg, s) to (6*,0/g|, s*).

Lemma 2 (Bounds on whole state distance). Let || - |2
denote the Euclidean norm. Under Assumptions I and 2,
there exists some constant v > 0 such that, V(d,wg, s) € D,
16— 87[13 + llwgllz + lls — s*[I3 < [0 — 6713 + [lwll3 +
Is = 8|13 < v (6 = 87[13 + lwgll3 + s — s*13), where
(8%,0,, 8%) is the equilibrium of the closed-loop system (18)
characterized by (20) with |6; — 67| € [0,7/2), ¥{i,j} € £.

Proof:
See Appendix B. [ |
Lemma 2 indicates that it suffices to investigate the
evolution of (8, wg, s). To do so, we first find a well-defined
Lyapunov function W (d,wg, s) such that W (8", 0,g|, s*) =
0and W(d,wg,s) > 0,V(d,wg,s) € D\(6",0yg|,s*), and
then verify W (3, wg, s) <0, ¥(d,wg, s) € D.
Inspired by [9], we begin our construction of a Lyapunov
function by defining the following integral function:

Ls) = /0 e de,

which clearly satisfies VL(s) = wu(s). Another useful
property related to L(s) is given in the next lemma.

(28)

Lemma 3 (Strict convexity of L(s)). If Assumption 1 holds,
then the function L(s) defined in (28) is strictly convex.

Proof:

See the Appendix C. ]
Having characterized the properties of L(s), we consider

the following Lyapunov function candidate:

W (8,wg, s) := mfowi Mwg (29)
+U(8) —U(8*) — VU(6*)T (6 — 6%)
+ L(s) — L(s*) — VL(s*)T (s — 5%) ,
where (6”,0,g|,s*) corresponds to the unique equilibrium
point of the closed-loop system (18) satisfying (20). The next

result shows that this is a well-defined candidate Lyapunov
function on D.

Lemma 4 (Well-defined Lyapunov function). Let Assump-
tions 1 and 2 hold, the function W(0,wg,s) defined in
(29) satisfies W (8",0,g|,s*) = 0 and W(8,wg,s) > 0,
V(é,wg,s) eD \ ((5*,0|g‘,s*).

Proof:
See the Appendix D. [ |
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Next, we examine the system stability through the deriva-
tive of W (4, wg, s) along the trajectories of the closed-loop
system (18), whose expression is provided by the next result.

Lemma 5 (Directional derivative of Lyapunov function).
Let Assumptions 1 and 2 hold. Then the derivative of the
Lyapunov function W(8,wg, s) defined in (29) along the
trajectories of the closed-loop system (18) is given by
W(d,wg,s) =
— 2 fowf Agwg — u(s)" ZLoVC(u(s))
— 21 fo (VLU(8%) = VU(S) + uc(s) —uc(s*)” A
(VeU(0") = VeUB) +ur(s)—urp(s?)) .

(30)

Proof:
See the Appendix E. ]
Our next step is to show that W (d,wg,s) is non-
positive. From (30), we observe that the quadratic terms
defined by Ag and Azl are clearly negative. Thus, it
only remains to determine the sign of the the cross-term
u(s)TZLgVC (u(s)) defined by the scaled Laplacian ma-
trix ZLq. The first thing we notice is that this term as a
bilinear form with respect to the scaled Laplacian matrix
Z L can be expanded as the expression provided below.

Lemma 6 (Bilinear form on R" for scaled Lq). Vx :=
(vi,ieN) € Ry = (y,i€N) € R", we have

' ZLqy = Z{m‘}egQ i (Wi — y5) (G — Cjzj).
Proof:
See the Appendix F. u

With the help of Lemma 6, the problem of determining the
sign of the cross-term u(s)T ZLoVC(u(s)) can be solved
using the following corollary.

Corollary 1 (Sign of cross-term). If Assumption 2 holds,
then u(s)T ZLoVC(u(s)) > 0 with equality holding if and
only if VC(u(s)) € range(1,,).

Proof:
See the Appendix G. ]
We now have all the elements necessary to establish the
stability of the equilibrium as summarized in Theorem 2
by using W as a Lyapunov function. Therefore, we are
ready to finish the proof of Theorem 2. Using the expression
of W(é,wg,s) in (30), it follows directly from the fact
that Ag = 0, A;' = 0, and u(s)"ZLoVC(u(s)) >
0 by Corollary 1 that W (d,wg,s) < 0. Observe from
(30) that W(é,wg,s) 0 directly enforces wg = 0jg,
u(s)' ZLgVC (u(s)) 0, and V U(d) — ug(s) =
VeU(8") —up(s*) = pg. Clearly, wg = 0)g| implies that
wg = 0g|. By (18¢), VU(d8) — ur(s) = p, ensures that
wre = Oz It follows from wg = Oig| and we = O
that w = 0,,, which further indicates that 5 = 0, by
(18a). Finally, by Corollary 1, u(s)'ZLqaVC(u(s)) = 0
is equivalent to VC(u(s)) € range(1,) constantly. Hence,
ZLgVC(u(s)) = 0,, which together with w = 0,, implies
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that $ = 0,, based on (18d). Thus, we have shown that
W(8,wg,s) = 0 implies § = 0,, wg = Ojg, and
§ = 0,,. This means that the largest invariant set contained
in the set of points where 1/ vanishes is actually the set of
equilibria. Therefore, by the LaSalle invariance principle [31,
Theorem 4.4], every trajectory of the closed-loop system (18)
starting within D converges to the equilibrium set, which by
Theorem 1 consists of a unique point satisfying (20). This
concludes the proof of local asymptotic stability.

Theorem 2 shows that the closed-loop system (18) under
the generalized DAI is locally asymptotically stabilized to
the unique equilibrium characterized by Theorem 1, where
the steady-state performance objectives are achieved even for
a broader range of cost functions beyond quadratic ones.

IV. REINFORCEMENT LEARNING FOR OPTIMAL
TRANSIENT FREQUENCY CONTROL

In this section, we focus on integrating reinforcement learn-
ing (RL) into our proposed generalized DAI for the purpose
of further improving the transient performance of the system
without jeopardizing its stability. Basically, after parameter-
izing the control policy u;(s;) that maps the integral variable
s; of the generalized DAL to the controllable power injection
u; on each bus as a monotonic neural network, we train those
neural networks by a RL algorithm based on a recurrent
neural network (RNN) [23].

A. MONOTONIC NEURAL NETWORKS FOR STABILITY
GUARANTEE

Recall from Section III that the stability of the closed-loop
system (18) under the generalized DAI is ensured by any
nonlinear control policy u;(s;) that is a Lipschitz continuous
and strictly increasing function of s; with «;(0) = 0 as
summarized by Assumption 1, provided that the cost of each
buses satisfy Assumption 2. Within this class of stabilizing
controllers, we want to find one that has the best transient
performance when the frequencies are recovering to their
nominal values. In principle, optimizing over all controllers
satisfying Assumption 1 is an infinite-dimensional problem.
To make the problem tractable, we need to parameterize
u;(s;) in some way. Neural networks emerge as a natural
candidate due to their universal approximation property [32].
According to [23, Theorem 2], any function of our in-
terest can be approximated accurately enough by a single
hidden layer fully-connected neural network with rectified
linear unit (ReLU) activation functions for properly designed
weights and biases of the neural network. Such a neural
network is called a stacked ReLU monotonic neural network
whose architecture is shown in Fig. 1.

As illustrated in Fig. 1, each stacked ReLU monotonic
neural network is essentially a parameterized mapping from
the state s; to the control u; with parameters k:j' =
(k,i € D). bf = (bf,,j € D), k; := (k;;,j €D),and

2,37 2,37

SReLU is a widely used activation function in neural networks, which is
an element-wise operator applying the function max (0, z) to any element
x of its argument.

FIGURE 1: Stacked ReLU monotonic neural network.

K2
number of neurons in the hidden layer. Here, the vectors

k; and k; are referred to as the “weight” vectors and the
vectors b, and b; are referred to as the “bias” vectors. To
see how this neural network architecture could provide the
desired properties of the mapping w;(s;), we now explain
the operations it performs in more detail. Firstly, observe
from Fig. 1 that the top d and the bottom d hidden neurons
perform similar operations to produce u; (s;) and u; (s;),
respectively, where wu;(s;) = uj (s;) + u; (s;). Thus, it is
natural to investigate the neural network by this partition. For
the top part, the state s; is transformed linearly as (si - b:j)
and then processed by the ReLU in the jth hidden neuron,
Vj € D. Denote ReL.U operator as o(-) for simplicity. Then,
the output of the jth hidden neuron in the top part becomes
o(s;— b;’j) = max (0, s; — bj:j), which is linearly weighted
by k;” j before contributing to the final output. Therefore, the
contribution from the jth hidden neuron to the final output
is k:;fja(si - bj"j) = kj'J max (0, s; — bi'j), which implies
that the jth hidden neuron is activated only if the state s;
exceeds the threshold bz'j, as illustrated in Fig. 2(b). At the
output layer, the contributions from all d hidden neurons in
the top part yield

b, = (ij,j € D), where D := {1,...,d} and 2d is the

d
u;"(s,) = Zk:‘ja(si - bi'j) = (k:j')T o (1d57; - bj_) )
j=1

The bottom part produces u; (s;) in the similar way.

In order to let u;(s;) satisfy Assumption 1, we need to
ensure that its net slope always positive and finite, as shown
in Fig. 2(a). This gives rise to the following requirements on
weights and biases:

by <o <b, <b,=0=0bf <bl,<---<bf,, (Bla)
—o0 < Zki_,j <0< Zk:‘j < oo, Ve eD. (31b)
j=1 j=1
Under (31), the stacked ReLU monotonic neural network
produces a control policy wu;(s;) satisfying Assumption 1.

The inequality constraints in (31) are not trivial to en-
force when training the neural network. A simple trick to
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Si Si S

(a) Monotonic Control policy

(b) Principle of stacking hidden neurons

FIGURE 2: Sketch of how hidden neurons in the 7th stacked
ReLU monotonic neural network form w;(s;).

address this challenge is to introduce a group of inter-
mediate parameters p;” = (p/;,j € D) € R, xF =
(Xi;,7 € D\{d}) e R¥"1, pu; == (p; ;,j € D) € R%, and
Xi = (xi;;d €D\ {d}) € R that are unconstrained
such that the original parameters kj‘ b?' , k;, and b; are
parameterized as

k;;: (H?:1)27 ki_j: (,Uj,_j)z— (,u;tjfl)% VjED\{l}, (32a)
kii=— (Ni_,1)2 k= (:ui_,j)2 + (N;j—1)2 ,  (32b)

i1 , i1 ,
biy="b;1=0, b, :Z(XL) ; ij:_Z(XZZ) - (32¢)
=1

In this way, the requirements in (31) naturally hold. Thus,
the remaining problem is just the search of optimal param-
eters ", x;, ;. and x; through the training of neural
networks. To highlight the dependence of the control policy
u;(s;) generated by the ith neural network on parameters
i, x; . pi, and x;, we will use the notation wu;(s;; Z;(d))
in the rest of this manuscript, where =;(d) denotes a set
of parameters =; := {u,x;,p;,Xx; } associated with a
stacked ReLLU monotonic neural network that has 2d hidden
neurons.

B. RECURRENT NEURAL NETWORK-BASED
REINFORCEMENT LEARNING
A recurrent neural network (RNN) is a class of neural net-
works that have a looping mechanism to allow information
learned from the previous step to flow to the next step. This
feature makes a RNN suitable for learning parameters related
to dynamic systems, where the prior states usually affect the
following states. Thus, to efficiently train the stacked ReLLU
monotonic neural networks for parameters =;(d), Vi € N,
we adopt the RNN-based RL algorithm proposed by [23],
whose scheme is shown in Fig. 3(a).

To fit into the RNN architecture, we have to discretize the
problem (10). Let the /th sampling instant after the initial
time to be (to + lh), where h is the sampling interval.
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Then, using voltage angles 6 := (0;,i € N) € R™ as an
example, we would like to approximate the continuous-time
state at the /th sampling instant O(ty + [h) as a discrete-
time state 8. Provided that 80 = 0(to), the simplest
way to obtain 0 ~ 0(to + [h) is through the reccurence
relation via Euler method, i.e., e+ — g +27rf0hw<l>. In
general, Euler method works well for small enough sampling
interval h, which means that the discretized system dynamics
are sufficiently close to the original system dynamics. This
allows us to solve the discretized problem below instead:

Sl + 03 Cir
i€g 1=1

[+1 — !
S.t. wéf >: (I‘g| —hM lAg) w<g)
+hM ! (~V5U (0" +pg+ug(s™)).
A7 (=VeU©Y) 4 pp+uc(s™)) |

0t = 0" 1 27 fohwV |
s = 5t —h(??‘(‘fow<l> +ZLQVC(u(s<l)))>,

min

33
Zi(d),ieN ( )

Wl =

u(s) = (ui(s§l>;Ei(d)),i € N) )
with
lof oo s= max Y (34a)
1€40,...,|T/h| -1}
1 |T/h|-1
C; (34b)

= T 2 Cilui(s{";Bi(d))) ,
=0

where |T'/h| denotes the floor of T'/h.

After a random initialization of {Z;(d),: € N}, the RNN-
based RL algorithm solves the problem (33) by gradually
learning the optimal {=;(d),¢ € N} through an iterative pro-
cess mainly composed of three parts — sampled trajectories
generation, loss function evaluation, and backpropagation-
based policy improvement — as illustrated in Fig. 3(a). For a
given operating point (9<0> , w<g0>, 5(9) of the power system,
a sample of system trajectory over a time horizon 1" follow-
ing sudden power disturbances can be generated by randomly
initializing the constant input p to the RNN cell and then
simulating forward |T'/h] time steps. The detailed structure
of the RNN cell is shown in Fig. 3(b), where the control sig-
nals u(s‘") produced by n stacked ReLU monotonic neural
networks with parameters {Z;(d),i € N'} are applied to the
discretized closed-loop system with states (9<l>,w<gl>,s<l>)
for the generation of (81 w<gl+1) , 8{+1)) In this way, the
RNN cell evolves forward for [ = 0,...,|T/h| — 1, which
yields one trajectory under the parameters {Z;(d),i € N'}
that are shared temporally. The loss function related to
this trajectory is defined as the objective function of the
problem (33), which can be computed by applying (34)
to the stored historical outputs of the RNN cell. Usually,
to improve the efficiency of training, multiple trajectories
are generated parallelly, where each of them is excited by
a randomly initialized constant input p. The collection of
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Sampled Trajectories Generation

ol ; i+
P
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“g | RNN wg i RNN Yg RNN |%g
> Cell Cell | Cell .
5O s S+ S(LT/h])
> [EE AN AR SRS —
7 v v
u(s?) u(s®) w(s{lT/h=1)
w(gl) wgﬂ) w(gLT/hD
ES)
) n
. N
Sl e+ 0 Cir
i€g i=1
7
L {Eid),i e N}« {Ei(d),i € N} — eVI({Ei(d),i € N})

(a) RL scheme for training stacked ReLU
monotonic neural networks

&

o0 | [wl = (1ig — hM T Ag) Wl + hM T (<VU©OD) + pg +ug(s™)) | gy
>
W Wl = A7 (-VUO0) + p; +uc(s®)) S(+D)
1+1, 0 b 1] (1+1)
0+1) = 9 4 ox fohew®) with
s = 50— (2nfow® + 2LV C(u(s™)))
Closed-Loop System Dynamics
. . u(s™)
& 0@ (520 ()
\ Stacked ReLLU Monotonic Neural Networks

[u(s™) )

(b) Structure of the recurrent neural network cell

FIGURE 3: Illustration of the RNN-based RL algorithm.

these trajectories is called a batch and the number of such
trajectories is called the batch size. Then, the loss function
related to a batch of size |B| is defined as the mean of the
losses related to individual trajectories in the batch, i.e.,

|B] n (0]
J({Ei(d),i € ND:@Z(Z w§”||oo+pzcw> :

b=1 \i€g i=1
where, with abuse of notation, we simply introduce a su-
perscript [b] to denote the loss along the bth trajectory in
the batch rather than accurately distinguish ||wi<l>||oo and
C’LT along different trajectories to avoid complicating the
notations too much. Once the loss of the batch J({Z;(d),i €
N}) has been calculated, the parameters {Z;(d),: € N'} are
adjusted according to the batch gradient descent method with

a suitable learning rate &, i.e.,
{Ei(d),i e N} {Ei(d),i € N} = EVI({Ei(d),i € N},

where the gradient is approximated efficiently through back-
ward gradient propagation. This ends one epoch of the
iterative training process. The procedure is repeated until
the number of epochs E is reached, which produces the
optimal {Z;(d),i € N} for the stacked ReLU monotonic

neural networks so that the corresponding control policy
u;(s:; Z:(d)) on each bus helps the generalized DAI to best
handle the optimal transient frequency control problem (10).

V. NUMERICAL ILLUSTRATIONS

In this section, we provide numerical validation for the
performance of our RL-DAI on the 39-bus New England
system [33]. First, we will train the optimal control policy
u(s) = (u;i(si;Ei(d)),i € N) for the RL-DAT on the power
system model as described in Section IV-B. Then, we will
validate the performance of the trained RL-DAI in response
to sudden step changes in power.

The dynamic model of the 39-bus New England system
contains 10 generator buses and 29 load buses, whose
union is denoted as N. Each of the 10 generator buses
is distinctly indexed by some i € {30,...,39} := G and
each of the 29 load buses is distinctly indexed by some
i €{1,...,29} := L. The generator inertia constant m,, the
voltage magnitude v;, and the susceptance B;; are directly
obtained from the dataset. Given that the values of frequency
sensitivity coefficients are not provided by the dataset, we
set a; = 150p.u., Vi € G, and o; = 100p.u., Vi € L.°

We then add frequency control w; governed by our RL-
DAL to each bus, where the underlying communication graph
(V,€q) has 38 edges forming a path that connects all
buses with Q;; = 125, V{i,j} € £q. The operational cost
functions are assumed to be C;(u;) = c;u}/4 + b;,Vi € N,
where the cost coefficients c; and b; are generated randomly
from (0,1) and (0,0.001), respectively. Thus, Vi € N,
VCi(u;) = cqud by (15) and ¢; = ¢/ by (16), which
determines the evolution of the integral variable s; in RL-
DAI according to (17). Then we train the control policy
u(s) = (u;(si;Ei(d)),i € N) as described in Section IV.

A. TRAINING OF STACKED RELU MONOTONIC NEURAL

NETWORKS

Following the RNN-based RL algorithm illustrated in Sec-
tion IV-B, we can train the stacked ReLU monotonic neural
networks that construct control policy u(s) satisfying As-
sumption 2 for RL-DAI. Specifically, each sample of system
trajectories is generated by disturbing random step power
changes p to the system that is initially at a given supply-
demand balanced setpoint, where each p; is drawn uniformly
from (—5,5)p.u.. The values of all the hyperparameters
mentioned in Section IV-B are summarized as follows:
p=0.01,d=20,h=0.5ms, T =2.5s, |B| =64, E = 50,
and ¢ = 0.4 (exponentially decayed).

B. TIME-DOMAIN RESPONSES FOLLOWING POWER
IMBALANCES

For the purpose of comparison, the frequency deviations of
the original system without additional frequency control u
when there is a step change of 3 p.u. in power consumption
at buses 13, 21, and 27 are provided in the left panel of

Al per unit values are on the system base, where the system power
base is Sop = 100 MVA and the nominal system frequency is fo = 50 Hz.
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FIGURE 4: System performance under RL-DAI when a
—3 p.u. step power change occurs on buses 13, 21, and 27.

Fig. 4(a). Clearly, in the absence of proper control, there
exists noticeable steady-state frequency deviation from the
nominal frequency. The performance of the system under
RL-DAI in the same scenario is given in Fig. 4. Some
observations are in order. First, observe from Fig. 4(a)
that RL-DAI can perfectly restore the frequencies to the
nominal value as predicted by Theorem 1. Second, Fig. 4(d)
confirms that RL-DAI help generators and loads asymptot-
ically achieve identical marginal costs and thus the optimal
steady-state economic dispatch problem is solved. Third, a
comparison between the left and right panels in Fig. 4(a)
shows that RL-DAI improves the frequency Nadir. Last but
not least, the nuances between the shapes of the trajectories
of s and w in Fig. 4(b) and Fig. 4(c) are indicators of the
nonlinearity of the learned control policy u(s). Clearly, this
nonlinearity has not jeopardized the stability of the system.
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VI. CONCLUSIONS AND OUTLOOK

This manuscript develops a framework that bridges the
gap between the optimization of steady-state and transient
frequency control performance for power systems undergo-
ing power disturbances. We propose to generalize DAI by
adding properly designed nonlinearity to it. This provides
with the freedom to integrate RL techniques to DAI for
finding the stable nonlinear controller that optimizes the
transient frequency behavior while taking advantage of DAI
mechanism to optimize the steady-state cost of restoring
frequency to its nominal value.

Several interesting research directions are open. First, we
would like to expand the characterization of the properties
of the learned controller beyond its stabilizing nature to
address questions about robustness to unmodeled dynamics.
In addition, although the proposed controllers only require
local information when they are implemented, they are
trained in a centralized manner. Understanding how they
can be trained in a distributed way is also very relevant.
Finally, in this paper, we have extended the class of cost
functions from quadratic to functions that satisfy a certain
scaling property. It would be interesting to see if DAI control
can be applied to an even larger class of cost functions.

APPENDIX

A. Proof of Lemma 1

Yy € R, let @; = VC; '(y). Clearly, y = VC;(i;) by the
definition of the inverse function. Also, under Assumption 2,
VC’l(ﬂ,) = VCO(CﬂNLz), Vi € N. Thus, y = VCz(aZ) =
VC,o((iti;), which implies that (;ii; = VO ! (y). Therefore,
we have ;VC; ' (y) = (i, = VC; ' (y), Vi € N, which
concludes the proof.

B. Proof of Lemma 2
By a similar argument as in the proof of [11, Lemma 4], we
can easily get the first inequality and

lwellz <w (116 = 67|z + lu(s) —u(s™)]2)  (35)

for some constant 7 > 0. Under Assumption 1, each u;(s;) is
Lipschitz continuous, which indicates that there exists some
constant 17 > 0 such that, Vi € N\,

lui(si) —wi(sh)] < mlsi — s}, Vs; € R. (36)
Combining (35) and (36) yields
lwell2 <o (16 = 87 [l2 +nlls — s¥[|2)
1
<v(n+1) ([0 - 8|3+ lwgl3+[ls—s*[I5)* . BT
Using (37), we can get
16 = 8%(I3 + [[wll3 + lls — s™[13
=16 =873 + lwgl3 + [ls — s™[I5 + llwell3
~ 2 * *
<1472+ 17) (18— 81 + lwgll} + lls — s°113) -

which concludes the proof with v := 1 + 72 (n + 1)°.

11
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C. Proof of Lemma 3
Let  := (x;,i € N) € R" and y := (y;,i € N) € R". We
note that, V& # v,

(VL(z)-VL(y) (x — y) = (u(fﬂ) ~u(y)’ (z - y)
—Z (wi(q) — ui(yi)) (x5 — yi)

> 0, (38)

where the inequality results from the monotonicity of each
u;(s;) under Assumption 1. Thus, by [27, Theorem 2.14],
(38) indicates the strict convexity of L(s).

D. Proof of Lemma 4

We can check that W (d,wg, s) only vanishes at the equi-
librium term by term. Clearly, the kinetic energy term
ﬂ'fongwg > 0, Vwg # 0Ojg|. By [11, Lemma 4], the
potential energy term U (8) —U(6*) — VU (6*)T (6 — 6*) >
B16 =62 > 0, V6 # 6" satisfying |6; — 6;| € [0,7/2),
v{i,j} € &, for some constant 3 > 0. By [27, Theo-
rem 2.14], the strict convexity of L(s) shown in Lemma 3
ensures that L(s) — L(s*) — VL(s*)T (s —s*) > 0,
Vs # s*. It follows directly that W(S*,O‘g“s*) = 0 and
W((S,(dg,s) > O,V(&,wg,s) €D \ (5*,O|g‘,8*).

E. Proof of Lemma 5
We calculate the derivative of W (4, wg, s) along the trajec-
tories of the closed-loop system (18) as

W(67 wg, S)
27Tf()M(.dg r (.;J.g
—|vU ) —vu(sr)| |
VL(s) — VL(s*) 5

Lo fowl (~Agwg — VoU(8) + pg + u(s)
+2m fo (VU(8) — VU(6*)T ( 1n15>

+(u(s) —u(s")" (27 fow — ZLoVC(u(s)))
=2 fowg (—VgU(6") + pg + ug(s*))
D or fow? Agwg — (u(s) — u(s*)" ZLaVC(u(s))
21 fo (VU (6%) — VoU(8) + ur(s) — up(s*) we
Do fow? Agws — u(s) ZLoVC (uls))
27 fo (VLU (6*) = VeU(8) +ur(s) —us(s™)” AL
(=VU() +p, +uc(s))
@727Tf0w,£Agwg —u(8)' ZLoVC (u(s))
—27fo (VU (8%) = V. U(8) +ur(s) —uc(s)" A
[NVeU@)Hpe+uc(s)— (VU8 ) +pp+uc(s”))]
:—QWwagAgwg —u(8)T ZLoVC (u(s))
27 fo (VLU (6*) — VeU(8) +ur(s) —ue(s*)” AL
(VLU((S*) — VLU((S) + uL(s)f uL(s*)) ,

which is exactly (30). Here, some tricks are used to add or
remove terms for constructing a quadratic format without
affecting the original value of W (d,wg,s). In @, the
property that —VgU(8") + pg + ug(s*) = 0jg by (20b)
of Theorem 1 is used. In @), the fact that VU(6)T'1, = 0
is used. In @), the fact that w, is determined by (27) and
the property that w(s*)" ZLq = VC; '(v)17Z ' ZLg =
VC; 1 (y)1T Lo =07 obtained through (20c) of Theorem 1
are used. In @, the property that —V U(8") + p, +
u,(s*) = 0z by (20b) of Theorem 1 is used.

F. Proof of Lemma 6
This is a direct extension of the standard Laplacian potential
function [29]:

a:TZLQy

= EQ%(Z LQ,ijZ/j)
i=1 j=1

= Z Giw; Z Qijyi —
i=1 j=1,j#i

Z szszz Yi )

Zszz LQ iiYi Z LQ ij Y

Jj=1,5#i

> Qi

J=1.5#i

i=1 j=1,j#1

Y L)+ XY L - )
i=1j=1 =1 j=1

— - - QU . Q]z )

_ZZ D) Gii (yi — Y +ZZ Giwj (Y5 = vi)
i=1 j=1 =1 j=1

@ZZQQZJ szz (yl yJ)+ZZ 622” gjm] (yJ yz)
1=1 j=1 i=1 j=1

:ZZ QQ” (yi — ;) (Gwi — Gxj)
i=1 j=1

= Qij (yi — y5) (Giwi — Cy)
{i.j}€€q

where (D uses the symmetry of the Laplacian matrix Lq.

G. Proof of Corollary 1
It follows directly from Lemma 6 by setting & = u(s) and
y = VC(u(s)) that
u(8)' ZLoV O (u(s)) (39)
= Qi [VCi(ui(5:)) =V C;(u; (35)] [Giri(5) = (55)]
{i.j}€€q
We claim that, Vi, j € N, there is parity between the signs of
(VCi(ui(s:)) =V C;(u;(s;))) and (Gui(si)—Giu;(s;)), ie.,
sign (VC;(u;) —VCj(u;)) = sign (Gu; — Giuy),  (40)
where sign denotes the sign function. To see this, without
loss of generality, Vi,7 € N, we only consider the case
where VC;(u;) —VC;(u;) > 0. Since VC;(u;) > VCj(uy),
we have
Giug = HVCi(w)) > GVC;

GVve; H(VCj(uy))
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O VCH(VC;(uy)) @ GVCHVC)(ug)) = Cuy -

Here, the inequality results from the fact that (; > 0
and VO; *(-) is strictly increasing as mentioned in Re-
mark 2. By Lemma 1, @ and @ hold. The case where
VCi(u;) — VCj(u;) < 0 follows from an analogous ar-
gument. Therefore, our claim that (40) holds is true, which
together with the fact that Q;; > 0, V{i,j} € Eq, implies
that (39) is nonnegative. Notably, since each term of the
sum in (39) is nonnegative, as the sum vanishes, each term
must be 0. Thus, u(s8)T ZLqoVC(u(s)) = 0 if and only if,
V{’L,]} € 5Q9
[VCi(ui(si)) = VCj(u;(s5)] [Gui(si) — Guj(s;)] =0,

which is equivalent to VC;(u;(s;)) =VC;(u;(s;)), V{i,j} €
Eq by (40). Recall that the communication graph (V,Eq) is
assumed to be connected, which implies that VC1 (u1(s1)) =
. = Vi (un(sy)), ie., VC(u(s)) € range(1,,).
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