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Stabilization of linear cyber-physical systems
against attacks via switching defense

Shenyu Liu Sonia Martı́nez Jorge Cortés

Abstract—This paper studies cyber-physical systems modeled
with linear dynamics subject to attacks on its parameters. The
attacker knows at all times the defense employed and injects
a destabilizing piecewise Lipschitz time-varying attack signal.
The defender does not know the specific attack and aims to
preserve system stability. We propose a partitioning strategy for
the set of possible attacks that generates a finite collection of
candidate defenses such that, for each member of the partition,
there is a defense that stabilizes the system with respect to
all static attack signals belonging to it. The defender then
implements a mechanism that switches among the candidate
defenses based on the evaluation of a Lyapunov-based criterion
that determines whether the current defense is stabilizing. We
characterize the properties of the switched time-varying system
with delay, the latter arising from the interval between the switch-
triggering events and their actual implementation. Our analysis
provides a tolerance on the implementation delay that prevents
the defense signal from constantly switching. In addition, we
also identify a condition on the switching frequency that ensures
global exponential stability. Simulations of the proposed switched
defense mechanism illustrate its performance and advantages
over static defenses.

I. INTRODUCTION

Cyber-physical systems (CPSs) require the tight integration
of multiple facets, including computation, communication, and
control, to operate reliably and efficiently in the physical
world. CPSs are widespread in many important application
domains such as industrial processes, the transportation net-
work, the power grid, the internet of things, and many more
[1]. Resiliency against attacks is a critical aspect of CPS
operation, particularly given the challenges posed by the
complex interconnections between the different layers. At the
same time, this complexity also presents an opportunity to
exploit the features of CPSs to develop approaches to security.
This paper investigates the extent to which switching can
be leveraged as a defense mechanism to provide protection
against attacks in the stabilization of CPSs.

Literature review: CPSs are specially vulnerable because
of the unexpected effects resulting from the interaction of the
cyber and physical worlds across the communication, com-
putation, and control layers [2], [3]. These include embedded
systems prone to bugs and attacks, communication networks
under attack, the susceptibility to the flaws of individual com-
ponents, and increased functionality that opens up new vulner-
abilities. Depending on which layer (perception execution, data
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transmission, or application control) the attacks are injected
in, CPSs may suffer from different levels of malfunction and
different countermeasures need to be adopted [4], [5], [6], [7],
[8]. Unlike classical false data injection attacks, which are nor-
mally modeled as additive corruptions to the sensor or actuator
signals [9], the type of attacks considered here directly alter
the topology of the network or the dynamics of the system.
These type of attacks are common for CPSs; for example, the
sabotage in the topology can be achieved via denial-of-service
(DoS) attack, causing congestion in the communications [10].
The sabotage in the dynamics can be achieved via load alter-
ing [11], [12] or pole-dynamics [13] attacks. Whether a CPS is
attacked on its topology or dynamics, the attack results in large
uncertainties in the system parameters. Hence a valid design
approach to preserve its functionality is to synthesize robust
controllers against uncertainty in the parameters, for which
there is a large body of literature, see e.g. [14] and references
therein. It is known [15] that a single, static feedback controller
has limited strength against large time-invariant uncertainties.
Its viability becomes even more restrictive in the face of
time-varying uncertainties. Hence, it becomes necessary to
design time-varying – either switched or continuously varying
– controllers to ensure the secure operation of CPSs with
uncertainties in their parameters, especially when these are
caused by time-varying attacks with potentially considerable
destabilizing effects.

When a switched defense mechanism is adopted, the CPS
then becomes a switched system with uncertainties. The re-
search [16], [17], [18], [19] on the stability of such systems
typically considers switching sequences that are independent
from the uncertainties of the parameters. Instead, in our study
here, both are coupled, as the switching arises as a defensive
response to the uncertainty caused by the attack signals.
We borrow the idea of partitioning the set of uncertainties
from [17], [18], albeit in these works such partition is given
a priori, whereas here is the outcome of our design to obtain
a finite set of candidate defenses. Recent work [20], [21] on
event-triggered control has considered stabilization for systems
with uncertain parameters in general, but not specifically
driven by adversarial attacks. Finally, we note that gain-
scheduling [22], [23] is a popular approach for controlling
parameter-varying systems. It proceeds by designing first a
collection of candidate controllers for the systems at different
operation points and later interpolating them with a continuous
time-varying controller. However, the reliance of the controller
on knowledge of the time-varying parameters makes it not
applicable to our setting, as the uncertainties caused by the
attacker are not precisely known by the defender.
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Statement of contributions: We study the problem of stabi-
lizing a cyber-physical system described by a linear dynamics,
where defense and attack actions correspond to structured
additive perturbations to the system matrix. The attacker is
aware of the employed defense at all times and injects a
piecewise Lipschitz time-varying attack signal aiming at de-
stabilizing the system. The defender is unaware of the specific
value of the attack and aims to preserve system stability by
injecting a switched defense signal. Our first contribution
is the design of a divide-and-conquer strategy to partition
the set of possible attacks into finitely many subsets such
that, for each of them, there exists a single defense that can
handle arbitrary attack signals taking values in the subset.
We identify conditions on the desired convergence rate of the
system such that the proposed algorithm outputs an admis-
sible partition, a set of finite candidate defenses, along with
accompanying Lyapunov certificates. Our second contribution
synthesizes a defense mechanism that switches among the
candidate defenses. Building on the output of the divide-and-
conquer strategy, we develop a Lyapunov-based criterion that
employs the system state and its time derivative to determine
(despite the lack of knowledge of the time-varying attack
signal) whether the current defense is stabilizing the system
at the desired rate. Motivated by practical considerations, we
consider the case where there might be a delay between the de-
termination of a defense switch and its actual implementation.
Our third contribution is the characterization of the properties
of the resulting switched time-varying system with delay.
Specifically, we find an upper bound for the implementation
delay under which the corresponding Lyapunov certificate is
guaranteed to be decreasing after a switch. We also bound
the evolution of the system trajectories under the switched
defense mechanism and provide precise conditions on the
switching frequency that guarantee global exponential stability
of the cyber-physical system with a prescribed convergence
rate. Simulations on a network system with a compromised
agent and a power system subject to dynamic load attacks
provide further validation of the results.

Organization: Section II introduces the problem formula-
tion, including the dynamics for the cyber-physical system,
the way in which attack and defense actions affect it, and
the information available to the attacker and the defender.
Section III proposes an algorithm for finding candidate de-
fenses and analyzes its correctness properties and performance.
Section IV builds on the identified set of candidate defenses
to design a switched defense mechanism. Our exposition pro-
vides conditions on the implementation delay of the defense
and the switching frequency to guarantee system stability.
Section V provides two examples of cyber-physical systems
where the proposed defense mechanism is implemented. We
gather our conclusions and ideas for future work in Section VI.

Notation: Let R and R≥0 denote the set of real and
nonnegative real numbers, respectively, Rn the n-dimensional
real space and Rn×n the space of n × n real matrices.
For a vector x ∈ Rn, |x| denotes its 2-norm and for a
matrix A ∈ Rn×n, ‖A‖ denotes its induced 2-norm. A
matrix P ∈ Rn×n is denoted as P � 0 (resp. P � 0,
P ≺ 0, P � 0) if it is symmetric and postive definite

(resp. postive semi-definite, negative definite, negative semi-
definite). We let σmax(A), σmin(A) denote the largest and
smallest singular values of A. Note that ‖A‖ = σmax(A),
so we use both notations interchangeably. When P � 0,
then σmax(P ), σmin(P ) correspond to the largest and smallest
eigenvalues of P , respectively. The matrix A ∈ Rn×n is
Hurwitz if all its eigenvalues are in the left half plane. For
r > 0 and x ∈ Rn, Bn(x, r) := {x′ ∈ Rn : |x′ − x| < r}
denotes the n-dimensional open ball (we omit the superscript n
when the dimension is clear from the context). We let ⊗ denote
the Kronecker product of matrices and vec the vectorization
of matrices.

Consider an n-dimensional time-varying system

ẋ = f(t, x) (1)

with well-defined solutions. We denote by t 7→ x(t) its
solution with initial condition x(0) = x0. The system (1) is
globally exponentially stable (GES) with convergence rate λ
if there exists c, λ > 0 such that |x(t)| ≤ c|x0|e−λt, for all
t ≥ 0 and all x0 ∈ Rn.

II. PROBLEM FORMULATION

Consider the following n-dimensional, continuous-time, lin-
ear time-varying system

ẋ(t) = A(ν(t), ω(t))x(t), (2a)

where the system matrix A(ν, ω) : Rmν×Rmω 7→ Rn×n takes
the form

A(ν, ω) := A+

mν∑
α=1

ναDα +

mω∑
β=1

ωβKβ . (2b)

One can think of A ∈ Rn×n as the nominal system matrix
upon which defensive actions, described by {Dα}mνα=1 ⊂
Rn×n, and attack actions, described by {Kβ}mωβ=1 ⊂ Rn×n, are
superimposed. Throughout the paper, these matrices remain
constant. The vectors ν := (ν1, · · · , νmν )> ∈ N ⊆ Rmν
and ω := (ω1, · · · , ωmω )> ∈ Ω ⊆ Rmω are the defense
and attack signals describing how the corresponding actions
are modulated, with N and Ω the defensive action space
and attacking action space, respectively. This formulation (2)
encompasses several interesting defense/attack problems, as
described.

Additive topological attack and defense: Consider the linear
system

ẋ = Ax. (3)

An additive topological attack consists of altering some values
in the matrix A so that (3) loses certain desirable property (e.g.,
stability, connectivity of the underlying graph). Conversely, an
additive topological defense consists of altering some values
in A so that the system retains said property. Note that the
elements in A which are subject to attack or defense may
be different. Formally, if SD, SK ⊆ {1, · · · , n}2 denote the
indices of elements in A that are subject to defense or attack,
respectively, then the additive topological attack and defense
problem studies the dynamics of

ẋ =
(
A+

∑
(α,β)∈SD

ναβEαβ +
∑

(α,β)∈SK

ωαβEαβ

)
x, (4)
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where Eαβ is the basis matrix whose αβ-th element is 1 and
all others 0. The system (4) is a particular case of (2).

System stability via static output feedback: Consider the
following linear system with outputs

ẋ = Ax+BDuD +BKuK , (5a)
yD = CDx, (5b)
yK = CKx. (5c)

Here (uD, yD) and (uK , yK) are the defender and attacker
input-output pairs, respectively. Note that BD might be dif-
ferent from BK (meaning the inputs from the defender and
attacker can be injected into the system differently) and
CD might be different from CK (meaning the defender and
attacker probe the system in different ways). Both defender
and attacker employ static output-feedbacks u# = H#y#,
# ∈ {D,K}: the defender seeks to stabilize the system (5),
whereas the attacker wants to de-stabilize it. In closed-loop
form, we have

ẋ = (A+BDHDCD +BKHKCK)x. (6)

Let ν := vec(HD) and ω := vec(HK). Note that
vec(BDHDCD) = (C>D ⊗ BD)ν, and hence BDHDCD is
linear in ν. Similarly, BKHKCK is linear in ω. Therefore,
there exists matrices {Dα}, {Kβ}, which can be computed
from BD, CD and BK , CK , such that (6) can be written in
the form (2).

A. Assumptions on attack and defense
Here we describe the assumptions we make regarding

attacking and defensive actions to the system (2), as well as
the attacker and defender’s knowledge.

On the attacker side: We start with the assumptions on
the attack action space and attack signal, followed with a
discussion of their reasonableness.

Assumption II.1 (Regularity assumptions on the attack action
space and attack signal). The following conditions hold:

(i) Ω is compact and convex;
(ii) All attack signals ω : R≥0 7→ Ω are right-continuous

and piecewise Lipschitz, with Lipschitz constant L > 0.
In other words, if Ta := {ta1 , ta2 , · · · } is the set of
discontinuities of ω, then |ω(t) − ω(s)| ≤ L(t − s) for
any t > s > 0 such that (s, t) ∩ Ta = ∅;

(iii) There is τ0 > 0 such that the dwell time between two
consecutive discontinuities of ω must be no less than τ0;
in other words, |t− s| ≥ τ0 for all t, s ∈ Ta, t 6= s.

The first condition in Assumption II.1 captures a number of
possibilities, e.g., the attacker has a finite budget to carry out
its actions, or the fact that a large-sized attack would trigger
the defender to employ some other mechanism, causing the
system to fall into protected mode, e.g., [11]. Without loss
of generality, we assume Ω = [0, 1]mω in the sequel. This is
because, due to compactness of Ω, there exists a hypercube
Ωhc := Πmω

β=1[aβ , bβ ] ⊂ Rmω such that Ω ⊂ Ωhc. If we define
ω′β :=

ωβ−aβ
bβ−aβ for β = 1, . . . ,mω , it follows from (2b),

A(ν, ω) = A+

ων∑
α=1

ναDα +

mω∑
β=1

(
(bβ − aβ)ω′β + aβ

)
Kβ

=
(
A+

mω∑
β=1

aβKβ

)
+

ων∑
α=1

ναDα +

mω∑
β=1

ω′β(bβ − aβ)Kβ

=: A′(ν, ω′),

with ω′ := (ω′1, · · · , ω′mω )> ∈ [0, 1]mω , i.e., the system
dynamics still has the form (2).

The second condition in Assumption II.1 means that the
attack signal can occasionally jump, and in between jumps, it
can change continuously, with limits on its speed. In particular,
this captures the usual piecewise-constant model for DoS
attacks in the literature [24], with attack signals inducing on-
off-type changes to the system dynamics and being held con-
stant between changes. The piecewise Lispchitzness between
jumps considered here clearly allows for a broader class of
attack signals. The last condition in Assumption II.1 imposes
a minimal dwell time between consecutive jumps of the attack
signal. This can be the result of physical or computational
limits on the attacker’s capacity. From a practical standpoint,
this is reasonable if the attacker requires some non-negligible
operational time to physically implement its actions.

Beyond de-stabilizing the dynamics, we do not enter into
the specific goals of the attacker or the procedures it uses to
decide its attack signal, so long as it satisfies Assumption II.1.
Additionally, we consider the following assumptions on the
information available to the attacker.

Assumption II.2 (Assumptions on the attacker’s knowledge).
The following assumptions hold:

(i) The attacker knows the matrices A, Dα, Kβ in (2b).
(i.e., the attacker knows the functional form of the map
(ν, ω) 7→ A(ν, ω));

(ii) The attacker knows x(t);
(iii) The attacker knows the defense signal ν(t).

On the defender side: Similarly, we consider the following
assumptions for the defender.

Assumption II.3 (Regularity assumptions on the defensive
action space and defense signal). The following conditions
hold:

(i) N is convex;
(ii) There is λmax ≥ 0 such that, for each ω̂ ∈ Ω, there exists

ν̂ ∈ N so that A(ν̂, ω̂) + λmaxI is Hurwitz;
(iii) The defense signal ν : R≥0 → N is right-continuous and

piecewise constant, and there exists a finite set Nf ⊂ N
where all defense signals take value.

The second condition in Assumption II.3 means that, for
any attack action ω̂ ∈ Ω, one can always find a defense action
ν̂ ∈ N such that the rightmost eigenvalue of A(ν̂, ω̂) is at
least λmax away from the imaginary axis. This condition is
reasonable because, if it is violated, then there exists ω̂ ∈ Ω
such that A(ν, ω̂) is not Hurwitz for all ν ∈ N . Consequently
if the attacker applies the constant attack ω(t) = ω̂ to the
system (2), then there is no static defense action that can
stabilize it.

The last condition of Assumption II.3 is motivated by ease-
of-implementation and complexity considerations, and means
that the defense signal ν only takes finitely many values. The
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discontinuities of this map are switches, which are triggered by
some switch-triggering events that depend on the defender’s
knowledge about the system.

Similarly to what we did for the attacker, we summarize the
assumptions on the defender’s knowledge below.

Assumption II.4 (Assumptions on the defender’s knowledge).
The following assumptions hold:

(i) The defender knows the matrices A, Dα, Kβ in (2b);
(ii) The defender knows x(t), ẋ(t);

(iii) The defender knows the set Ω, but it does not know the
attack signal ω(t).

Comparing Assumption II.4 with Assumption II.2, we see
that the defender has fewer information about the system in the
sense that the value of ω(t) is unknown to the defender. This
assumption of unknown attack signals is reasonable when the
attacks are stealthy [25], [26], [27]. Assumption II.4 also states
that both the state x(t) and ẋ(t) are known to the defender,
even though the defender does not know ω(t). Knowledge of
ẋ(t) can be obtained by a concurrently running state estimator,
e.g. [28], or approximated with the information of x over a
short time interval [t, t+ δ]. As such, we do not require ẋ(t)
to be known exactly at time t; it can be obtained after a short
delay. Further discussion is provided in Section IV-A when
introducing the implementation delay.

B. Objectives for the defender

In the scenario described above, the defender aims to
accomplish the following two objectives:
O.1 Identify a finite set Nf ⊂ N , such that for each ω̂ ∈ Ω,

there exists ν̂ ∈ Nf so that the matrix A(ν̂, ω̂) is Hurwitz;
O.2 Design a switch-triggering mechanism so that the result-

ing defense signal ν(t) : R≥0 7→ Nf makes the system
(2) GES.

We refer to the elements in Nf as candidate defenses.
Objective O.1 means that, when the system is subject to
any static attack ω ∈ Ω, at least one of the candidate
defenses is capable of stabilizing the system. With regards to
Assumption II.3, this objective seeks to narrow down the set
of candidate defenses to be finite. In general, the construction
of such a finite set is nontrivial. Objective O.2 corresponds to
the defense mechanism design problem. Note that, when the
attack changes from being static to continuously time-varying,
determining whether a switching defense signal in Nf can
stabilize the system is already a challenging question, let alone
that ω is allowed to occasionally jump. As formulated, the
objective is even more challenging, as the defender does not
have knowledge of the attacking signal. Sections III and IV
describe our approaches to achieve objectives O.1 and O.2,
respectively.

III. FINDING A FINITE SET OF CANDIDATE DEFENSES

In this section, we describe our approach to achieve O.1.
We first show that a finite set of candidate defenses exists and
then design an algorithm to identify it.

A. Finding a finite number of candidate defenses is feasible

The following result establishes that, under Assumption II.3,
objective O.1 is feasible.

Lemma III.1 (Feasibility of O.1). Under Assumption II.3,
there exist a positive integer p and subsets Ω̂i ⊂ Ω, actions
ν̂i ⊂ N and positive-definite matrices P̂i ∈ Rn×n for all
i = 1, . . . , p such that1 Ω = ∪pi=1Ω̂i and for each i and all
ω ∈ Ω̂i,

A(ν̂i, ω)>P̂i + P̂iA(ν̂i, ω) + 2λmaxP̂i � −
1

2
I. (7)

Proof. From Assumption II.3, we have that for each ω̂ ∈ Ω,
there exists ν̂ ∈ N and P = P (ν̂, ω̂) � 0 such that

(A(ν̂, ω̂) + λmaxI)>P + P (A(ν̂, ω̂) + λmaxI) = −I. (8)

Define

cK :=

√√√√mω∑
β=1

‖Kβ‖2. (9)

Using the Cauchy-Schwarz inequality, we deduce

‖A(ν̂, ω̂)−A(ν̂, ω)‖ =
∥∥ mω∑
β=1

(ω∗β − ωβ)Kβ

∥∥
≤

mω∑
β=1

|ω∗β − ωβ |‖Kβ‖ ≤ cK |ω̂ − ω|,

for any ω ∈ Ω. Thus it follows from (8)

(A(ν̂, ω) + λmaxI)>P + P (A(ν̂, ω) + λmaxI)

= (A(ν̂, ω̂) + λmaxI)>P + P (A(ν̂, ω̂) + λmaxI)

+ (A(ν̂, ω̂)−A(ν̂, ω))>P + P (A(ν̂, ω̂)−A(ν̂, ω))

� −I + 2‖P‖cK |ω̂ − ω|.

Therefore, as long as ω ∈ B(ω̂, 1
4‖P‖cK ),

(A(ν̂, ω) + λmaxI)>P + P (A(ν̂, ω) + λmaxI) � −1

2
I.

The result now follows by noting that Ω is a compact set
and can be covered by a finite collection of sets of the form
{Ω̂i = B(ω̂i, 1

4‖P̂i‖cK
)}pi=1, with each triplet ω̂i ∈ Ω, ν̂i ∈ N

and P̂i = P (ν̂i, ω̂i) satisfying (7).

Notice that, although the proof of Lemma III.1 does not
explicitly identify the set of candidate defenses, it gives the
idea of how to achieve objective O.1. That is, one can start
by taking a subset Ω′ ⊂ Ω and verify if there exists ν′ ∈
N such that A(ν′, ω) is Hurwitz for all ω ∈ Ω′. If Ω′ is
sufficiently small, the existence of such ν′ is guaranteed by
Assumption II.3 and the continuity of eigenvalues with respect
to matrix elements. We then take other subsets and repeat this
process until the union of all subsets equals Ω. In this way, the
associated defensive actions for the subsets are the candidate
defenses.

1For defense signals, we use superscript i to indicate the i-th defense signal
and differentiate from the i-th element in the vector, which is normally indexed
with a subscript.
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B. Divide and conquer to find set of defensive actions

Here we provide a formal description of the procedure
described above to find the finite set of candidate defenses.
To do this, the first thing we need to establish is a way of
verifying whether a valid defense exists with respect to all
perturbations in a given subset of Ω. We next deal with this
problem for a subset that is a convex polytope. Consider the
system

ẋ = A(ν, ω)x, ω ∈ Ωpoly, (10)

where ν ∈ N is fixed and Ωpoly ⊆ Ω is a convex polytope.
Notice that, since A(ν, ω) is affine in ω, the system is a
polytopic system. For such systems, it is known [29, Section
5.1] that GES, even if ω is time-varying, can be ensured
by finding a quadratic Lyapunov function common to the
collection of all systems of the form (10) with ω ∈ C(Ωpoly)
(here, C(Ωpoly) denotes the collection of vertices of Ωpoly).
Therefore, to verify whether all the perturbations in R can be
defended by a single defensive action, it is sufficient to look
for a quadratic Lyapunov function and solve the following
optimization problem

(P1) maximize
ν,P,λ

λ (11a)

subject to
ν ∈ N (11b)
P � 0 (11c)

A(ν, ω)>P + PA(ν, ω) + 2λP ≤ 0, ∀ω ∈ C(Ωpoly).
(11d)

We denote the solution of problem (P1) by (ν∗, P ∗, λ∗). In
case λ∗ > 0, then the function

V (x) := x>P ∗x, (12)

is a common quadratic Lyapunov function for the poly-
topic system (10), as for all ω ∈ R we have V̇ (x) =
x>(A(ν∗, ω)>P ∗ + P ∗A(ν∗, ω))x ≤ −2λ∗x>P ∗x =
−2λ∗V (x). Therefore, the system is GES and ν∗ is a valid
candidate defense making A(ν∗, ω) Hurwitz for all ω ∈ Ωpoly.
Remark III.2 (Nonconvexity of problem (P1)). The optimiza-
tion problem (P1) is nonconvex since the constraints (11d) are
bilinear matrix inequalities (BMI). To solve it, one can employ
algorithms based on semi-definite programming with BMI
constraints, cf. [30], [31] and references therein. In general,
such algorithms do not guarantee the global optimality of the
solution, albeit for small-scale problems, they tend to produce
accurate results with relatively high efficiency. In our case, as
long as λ∗ > 0, locally optimal solutions are acceptable. �

We are now ready to describe formally the procedure to
find the finite set of candidate defenses, which essentially
consists of recursively partitioning the set of attacking actions
Ω = [0, 1]mω until the optimization problem (P1) is solvable
with a positive λ on each subset. We refer to this strategy as
“iterative bisection of unit hypercube”, cf. Algorithm 1 for a
formal description in pseudocode. We next provide an informal
description of the rationale behind its steps.

Informal description: Algorithm 1 stores in the “checklist”
R all components of Ω for which no common Lyapunov

Algorithm 1 Iterative bisection of unit hypercube
Input: A,mν ,mω, {Dα}mνα=1, {Kβ}mωβ=1, N, λmin

Output: Nf ,P,S, λ̄
1: R← {[0, 1]mω} . Initialization
2: i← 0
3: λ̄← +∞.
4: while R 6= ∅ do . Stopping criterion; when the checklist

is empty
5: for each Ωpoly =

∏mω
β=1[aβ , bβ ] ∈ R do . Test if a

valid defense exists for each subset in the checklist
6: C(Ωpoly) ← {(ω1, · · · , ωmω ) ∈ Ωpoly : ωβ =
aβ or bβ , for all β = 1, · · · ,mω}

7: Solve (P1). Denote the optimizer ν∗, P ∗, λ∗

8: if λ∗ > λmin then . Exist; record the solution
down and remove the subset from the checklist

9: i = i+ 1,
10: (νi, Pi,Ωi)← (ν∗, P ∗,Ωpoly),
11: R = R\{Ωpoly}
12: if λ∗ < λ̄ then . Update λ̄ if a smaller value

has appeared
13: λ̄← λ∗

14: end if
15: else . Does not exist; replace the subset by its

bisection in the checklist
16: k ← arg maxj=1,··· ,mω bj − aj
17: Ω−poly ← [a1, b1] × · · · × [ak−1, bk−1] ×

[ak,
ak+bk

2 ]× [ak+1, bk+1]× · · · × [amω , bmω ]
18: Ω+

poly ← [a1, b1] × · · · × [ak−1, bk−1] ×
[ak+bk

2 , bk]× [ak+1, bk+1]× · · · × [amω , bmω ]
19: R← (R\{Ωpoly}) ∪ {Ω−poly,Ω

+
poly}

20: end if
21: end for
22: end while
23: (Nf ,P,S)←

(
{νi}|N

f |
i=1 , {Pi}

|Nf |
i=1 , {Ωi}

|Nf |
i=1

)

functions has been found yet. R is initialized to be {Ω} (Step
1:), and the algorithm terminates once R = ∅. The algorithm
initializes the index i = 0 to count the total number of
subsets in the checklist for which common Lyapunov functions
have been found, and a uniform lower-bound on the decay
rate λ̄ = ∞ (Steps 2: and 3:). For each Ωpoly ∈ R, the
algorithm determines the set C(Ωpoly) and solves (P1), finding
the optimizer ν∗, P ∗, λ∗ (Steps 6: and 7:). If λ∗ > λmin, then
a common Lyapunov function whose decay rate meets the
prescribed threshold value λmin on Ωpoly has been found, in
which case the algorithm increments the index i by 1, stores
ν∗, P ∗,Ωpoly at νi, Pi,Ωi, and removes Ωpoly from R (Steps
8: to 11:). In addition, if λ∗ < λ̄, then the uniform lower-
bound on the decay rate is updated to be λ̄ = λ∗ (Steps 12:
to 14:). On the other hand, if λ∗ ≤ λmin, we fail to find a
common Lyapunov function over R with a sufficiently large
decay rate, and thus we need to refine the partition. To this
end, note that all the elements in R, including the selected
Ωpoly, are hypercubes. The algorithm then identifies a longest
edge of Ωpoly and evenly bisects Ωpoly into two components
Ω−poly,Ω

+
poly along the dimension where that longest edge lies
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in (Steps 16: to 18:). The algorithm then replaces the element
Ωpoly ∈ R with {Ω−poly,Ω

+
poly} (Step 19:), and the process is

repeated for all the remaining elements in R, until it becomes
empty.

C. Analysis of iterative bisection of unit hypercube algorithm

In this section we characterize the convergence properties
of Algorithm 1. The following result shows that it terminates
in a finite number of steps and finds a finite set of defensive
actions, solving problem O.1.

Theorem III.3 (Properties of the iterative bisection of unit hy-
percube algorithm). Under Assumption II.3, let λmin ≤ λmax

and denote by (Nf ,P,S) the output of Algorithm 1. Then,
the following hold

(i) The algorithm terminates in a finite number of steps;
(ii) λ̄ > λmin;

(iii) For any ω ∈ Ω = [0, 1]mω , there exists k ∈
{1, · · · , |Nf |} such that, for all x ∈ Rn,

x>PkA(νk, ω)x ≤ −λ̄x>Pkx. (13)

Proof. To prove (i), we resort to Lemma III.1 and take subsets
Ω̂i ⊂ Ω, actions ν̂i ∈ N and positive-definite matrices P̂i ∈
Rn×n such that Ω = ∪pi=1Ω̂i and (7) holds for all ω ∈ Ω̂i, i =
1, · · · , p. Define

σ̂ := max
i=1,···p

‖P̂i‖.

Given ω ∈ Ω arbitrary, there exists i ∈ {1, 2, · · · , p} such that
ω ∈ Ω̂i. Thus, for any ω′ ∈ B(ω, 1

8cK σ̂
), we have

A(ν̂i, ω′)>P̂i + P̂iA(ν̂i, ω′) + 2(
1

8σ̂
+ λmin)P̂i

≤ A(ν̂i, ω′)>P̂i + P̂iA(ν̂i, ω′) + 2(
1

8σ̂
+ λmax)P̂i

= (A(ν̂i, ω) + λmaxI)>P̂i + P̂i(A(ν̂i, ω) + λmaxI) +
1

4σ̂
P̂i

+ (A(ν̂i, ω′)−A(ν̂i, ω))>P̂i + P̂i(A(ν̂i, ω′)−A(ν̂i, ω))

� −1

2
I +

1

4σ̂
‖P̂i‖I + 2‖P̂i‖cK |ω′ − ω|I

� −1

2
I +

1

4
I +

1

4
I = 0,

where cK is defined in (9) and the inequality ‖A(ν̂i, ω′) −
A(ν̂i, ω)‖ ≤ cK |ω′ − ω| is derived using the same analysis
as in the proof of Lemma III.1. Hence, we conclude that
(ν, P, λ) = (ν̂i, P̂i,

1
8σ̂ +λmin) is a feasible solution of (P1) in

Step 7: if C(Ωpoly) ⊂ B(ω, 1
8cK σ̂

). Note that the radius of this
ball is independent of its center; this means that, once the set
R defined in Step 5: is small enough, (P1) will have an optimal
solution with λ∗ ≥ 1

8σ̂ +λmin > λmin and consequently Ωpoly
will be removed from R. Note that, when the checklist R is
updated, either an element of R is removed (Step 11:) or this
element is divided into two smaller ones (Step 19:). Hence, in
order to show that R will become empty in finitely many steps,
it suffices to show that any hypercube Ωpoly, when repeatedly
divided into two smaller hypercubes by bisection along the
dimension where the longest edge lies in, will be contained in
a ball of radius 1

8cK σ̂
in finitely many steps.

To this end, let di = bi − ai denote the length of the
edge of Ωpoly along the i-th dimension. Before the bisection,
the hypercube Ωpoly is contained in a ball of radius rbefore =
1
2

√∑mω
i=1 d

2
i , where the right-hand side is half of the diagonal

distance of Ωpoly. Now assume that the longest edge lies in
the k-th dimension. We have

d2
k ≥

1

mω

mω∑
i=1

d2
i =

4r2
before

mω
.

After the division, the length of the edge of either Ω+
poly or

Ω−poly along the k-dimension becomes dk
2 , while the lengths

of the other edges remain the same. Hence, similarly to the
previous analysis, both Ω+

poly and Ω−poly are contained in a ball
of radius

rafter =
1

2

√√√√(dk
2

)2

+
∑
i 6=k

d2
i =

1

2

√√√√mω∑
i=1

d2
i −

3

4
d2
k

≤ 1

2

√
4r2

before −
3

mω
r2

before =

√
1− 3

4mω
rbefore.

In other words, the radius of the ball containing the hypercube
decreases exponentially at the rate of

√
1− 3

4mω
after each

bisection. This implies that the radius of the ball that contains
the elements in R will be smaller than 1

8cK σ̂
after finitely many

bisections. Hence, we conclude that eventually R becomes
empty, and Algorithm 1 terminates in a finite number of steps.

Statement (ii) follows from the construction of λ̄ in Step 13:,
which corresponds to the smallest value among all solutions
λ∗ computed in (P1) also satisfying the condition λ∗ > λmin.
Finally, statement (iii) follows from the fact that S is a
partition of Ω and hence, for any ω∗ ∈ Ω, there exists
k ∈ {1, · · · , |Nf |} such that ω∗ ∈ Ωk. According to Step
7:, νk, P k, λ∗ is the optimizer of (P1), with Ωpoly = Ωk and
λ∗ ≥ λ̄ by construction. Thus the inequality (11d) holds for
all ω ∈ C(Ωk). Because Ωk is the convex hull of C(Ωk) and
(11d) is convex in ω, the inequality (11d) also holds for all
ω ∈ Ωk, including ω∗, which implies (13).

Remark III.4 (Trade-off between convergence rate of solutions
and computational complexity of Algorithm 1). Note that
Theorem III.3 requires λmin ≤ λmax and ensures that the
convergence rate of the solutions of (2), when equipped with
the proposed defense mechanism, satisfies λ̄ > λmin. If λmin

is chosen negative, then the trajectories may not be convergent
but divergent with a bounded divergence rate. In order to
ensure stability, one must choose λmin ∈ [0, λmax], and the
larger λmin is, the faster the convergence rate one may obtain.
Nevertheless, there is a trade-off between the choice of λmin

and the computational effort required by Algorithm 1. In fact,
the larger λmin is, the harder it becomes to satisfy the condition
λ∗ > λmin in Step 8 and hence the finer the partition needs
to be, resulting in a larger computational effort and a larger
number of candidate defenses. Moreover, if the value of λmax

is unknown, and as a result, one chooses a value of λmin larger
than λmax, this would cause Algorithm 1 to fail. If stability
is the only concern, one can take λmin = 0 for the minimal
computational complexity of Algorithm 1. �
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IV. SWITCHING DEFENSE MECHANISM

In this section, we propose a switching defense mechanism
that solves O.2. Our exposition characterizes the performance
of the strategy and the impact of the switching frequency on
system stability. We also consider the possibility that delays
are present between the determination of switch-triggering
defense events and their actual execution.

A. Defense mechanism as switched time-varying system with
delay

In order to explain the rationale behind our algorithm de-
sign, let us first introduce some useful notation. From now on,
we assume the total number of candidate defenses is given by
Algorithm 1 and hence fixed, and denote I := {1, · · · , |Nf |}.
Then Nf = {νi : i ∈ I} and P := {Pi : i ∈ I}.
As discussed in Section II, based on the knowledge under
Assumption II.4, the defender essentially aims to find a right
continuous, piecewise constant function π : R≥0 7→ I, such
that the defense signal ν(t) = νπ(t) makes the system (2)
GES. For convenience, we define the following quantities

σ := max
i∈I

σmax(Pi), σ := min
i∈I

σmin(Pi), (14a)

κ := max
i∈I

σmax(Pi)

σmin(Pi)
, µ := max

i,j∈I
σmax(PiP

−1
j ). (14b)

We have 1 ≤ µ ≤ κ ≤ σ
σ . In addition,

Pi ≤ µPj ∀i, j ∈ I, (15)

and for any i ∈ I and x ∈ Rn,

σ|x|2≤σmin(Pi)|x|2≤x>Pix≤σmax(Pi)|x|2≤σ|x|2. (16)

Lastly, for each k ∈ I, define the function Uk(x, y) : Rn ×
Rn 7→ R by

Uk(x, y) := x>Pky. (17)

Let k ∈ I be the defense used by the defender at a given
time. From the definition of Uk, we have

d

dt
Uk(x(t), x(t)) = 2Uk(x(t), ẋ(t)), (18)

i.e., Uk(x(t), ẋ(t)) encodes the rate of change of the function
Uk(x(t), x(t)). In view of (16), small values of Uk(x, x)
correspond to small values of |x|. In order to establish
GES, we would like Uk(x(t), x(t)) to decrease exponen-
tially. Therefore, by monitoring the value of the functions
Uk(x, x), Uk(x, ẋ), the defender can determine whether the
current defense signal is stabilizing the system at a desired
rate. The defender needs to update the defense signal when
Uk(x(t), ẋ(t)) is not decreasing fast enough.

However, the actual switches of the defense signal might
not be implemented immediately when a need to switch is
triggered. Delays might be present due to a variety of factors,
including the time taken by 1) the estimation of ẋ (see our
discussion after Assumption II.4); 2) the computation of the
new mode to switch to; and 3) a delay in the execution of the
switch. From a technical viewpoint, there is no difference in
the analysis of the three types of delays. To deal with delay,
we consider τd > 0, called implementation delay, so that,

whenever a need to switch the defense signal is triggered at
time t, such switch actually is applied to ν at time t + τd.
This implementation delay captures the cases 1)-3) above.
We remark here that even in the ideal scenario were these
cases do not happen, the introduction of an implementation
delay provides a minimum dwell time condition on the defense
signal that prevents chattering.

Algorithm 2 presents the pseudocode formalizing the intu-
ition for the defense mechanism described above. The design
parameter η ∈ (0, 1) specifies the desired rate of decrease of
Uk(x(t), x(t)). After the initialization with the data Nf ,P, λ̄
from Algorithm 1, the defense mechanism keeps monitoring
x(t) and ẋ(t), and computes the values of Uπ(t)(x(t), x(t))
and Uπ(t)(x(t), ẋ(t)). If the current defense does not meet
the desired rate of decrease, cf. Step 8:, the algorithm selects
a new index in I according to (20), cf. Step 10:, and then
after a delay of τd, it updates the defense accordingly, cf.
Step 11:. In other words, the condition (19) triggers a need to
switch the defense signal at some t, and then the defense will
actually implement such a switch according to the mode-to-
go rule (20) at time t+ τd. The binary variable fdelay ensures
that no more switches are considered while the defender is
implementing one during the τd seconds that follow the last
switching trigger.

Algorithm 2 Switched defense mechanism
Input: η ∈ (0, 1), Inputs for Algorithm 1
Output: ν(t)

1: Run Algorithm 1 and compute Nf ,P, λ̄ . Initialization
2: fdelay ← 0 at time 0
3: Pick i ∈ I randomly and (π(0), ν(0))← (i, νi)
4: while the system (2) is running do
5: Obtain x(t), ẋ(t)
6: Compute Uπ(t)(x(t), x(t)), Uπ(t)(x(t), ẋ(t))
7: if fdelay = 0 then . Not in delay
8: if x(t) 6= 0 and . Not decreasing fast enough

Uπ(t)(x(t), ẋ(t)) ≥ −ηλ̄Uπ(t)(x(t), x(t)) (19)

then
9: A need to switch is triggered; fdelay ← 1 at

time t
10: π(t+ τd) updates to

argmin
i∈I

Ui(x(t), ẋ(t)) + x(t)>Pi
(∑mν

α=1(ν
i
α − ν(t)α)Dα

)
x(t)

Ui(x(t), x(t))
(20)

11: ν(t+ τd)← νπ(t+τd)

12: fdelay ← 0 at time t+ τd
13: end if
14: end if
15: end while

Note that the implementation of the switched defense mech-
anism in Algorithm 2 does not require direct knowledge of the
attack signal ω.

B. The mode-to-go rule and the effect of delay
We analyze the switched defense mechanism introduced

above and establish properties that will later be used when
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studying stability of the closed-loop system (cf. Section IV-C).
Specifically, we study here the mode-to-go rule (20) and the
effect of implementation delay on the algorithm performance.
We start with the observation that if the defender knew
the attack signal, then when (19) triggers a need to switch,
the defender could simply switch to the mode k such that
ω(t) ∈ Ωk. As a consequence of Algorithm 1,

d

dt
Uk(x(t), x(t)) = 2x(t)>PkA(νk, ω)x(t)

≤ −2λ̄x(t)>Pkx(t) = −2λ̄Uk(x(t), x(t)).

In other words, Uk(x(t), x(t)) would decay exponentially at
the rate of −2λ̄, and mode k would give an effective defense.
However, from Assumption II.4, the defender does not have
knowledge of the attack signal ω and needs an alternative way
to select its defense. The following result guarantees that the
mode-to-go rule in (20) provides an effective defense.

Lemma IV.1 (A mode-to-go rule for effective defense). When
a need to switch is triggered at time t, the minimization (20)
in Step 10: of Algorithm 2 gives a mode-to-go k such that (13)
holds with ω = ω(t), x = x(t).

Proof. For any s ∈ R≥0 and any i ∈ I, it holds that

x(s)>PiA(νi, ω(s))x(s)

= x(s)>Pi

(
A(ν(s), ω(s)) +

mν∑
α=1

(νiα − (ν(s))α)Dα

)
x(s)

= x(s)>Piẋ(s) + x(s)>Pi
( mν∑
α=1

(νiα − (ν(s))α)Dα

)
x(s)

= Ui(x(s), ẋ(s)) + x(s)>Pi
( mν∑
α=1

(νiα − (ν(s))α)Dα

)
x(s).

Hence, when a need to switch π is triggered at time t, the
minimization in (20) corresponds to

minimize
i∈I

x(t)>PiA(νi, ω(t))x(t)

x(t)>Pix(t)
,

which, by Theorem III.3 (iii), gives a mode k with an optimal
value no larger than −λ̄. Hence (13) holds with mode k.

Lemma IV.1 suggests that, by executing Algorithm 2 and
if π could be updated instantaneously at time t, the controller
would always ensure that the function Uk(x(·), x(·)) has
the desired decay rate −2λ̄ after each switch. Nevertheless,
because of the implementation delay and the fact that ω is
time-varying, A(νk, ω(t)) may have changed with respect to t
when ν is actually updated at time t+ τd, so that the function
Uk(x(·), x(·)) may no longer decrease at this rate at time
t+τd. These observations highlight the importance of the next
result, which shows that when τd is sufficiently small, then
Uk(x(·), x(·)) is still guaranteed to decrease at a (designer-
chosen) fraction of the desired decay rate.

Proposition IV.2 (Bound on the implementation delay to
ensure decay rate). Define

cA := max
ν∈Nf , ω∈[0,1]mω

‖A(ν, ω)‖. (21)

Assume that a need to switch is triggered at time s, the attack
signal ω is Lipschitz with Lispchitz constant L over the time
interval (s, s+ τd], and the implementation delay satisfies

τd <
(1− η)λ̄

(4c2A + cKL)κ2
, (22)

where cK is defined in (9) and κ in (14b). Then,

Uπ(s+τd)(x(s+ τd), ẋ(s+ τd))

< −ηλ̄Uπ(s+τd)(x(s+ τd), x(s+ τd)).

Proof. Since ω is Lipschitz over (s, s + τd], it is differen-
tiable almost everywhere over the interval and, whenever the
derivative exists, it is upper bounded by L. Therefore, with a
constant defense signal ν̄,

‖Ȧ(ν̄, ω(t))‖ = ‖
mω∑
β=1

ω̇βKβ‖ ≤
mω∑
β=1

|ω̇β |‖Kβ‖

≤

√√√√mω∑
β=1

|ω̇β |2
mω∑
β=1

‖Kβ‖2 ≤ cKL, (23)

for almost all t ∈ (s, s+ τd]. Suppose that π switches from j
to k ∈ I at time s+ τd. Denote

rk(t) :=
x(t)>PkA(νk, ω(t))x(t)

x(t)>Pkx(t)
.

By definition, rk(t) is continuous over [s, s+τd] and it follows
from Lemma IV.1 that rk(s) ≤ −λ̄. In addition, since ẋ(t) =
A(νj , ω(t))x(t) for t ∈ (s, s+ τd), we have

ṙk(t) = (x>Pkx)−2
(
(x>A>j PkAkx+ xPkAkAjx

+ xPkȦkx)x>Pkx− 2(x>PkAkx)(x>PkAjx)
)
,

where we have abbreviated x(t) by x and A(ν#, ω(t)) by A#

for # = j, k. Taking the norm on both sides and applying the
bounds (14) and (23), we conclude

|ṙk(t)| ≤ (4‖Aj‖‖Ak‖+ ‖Ȧk‖)σmax(Pk)2|x|4

(σmin(Pk)|x|2)2

≤ (4c2A + cKL)κ2

for all t ∈ (s, s + τd), which implies that rk(t) is Lipschitz.
Thus, when (22) holds,

Uπ(s+τd)(x(s+ τd), ẋ(s+ τd))

Uπ(s+τd)(x(s+ τd), x(s+ τd))
= rk(s+ τd)

≤ rk(s) + τd(4c
2
A + cKL)κ2 < −ηλ̄,

which concludes the proof.

Recall that the need to switch is determined by the satisfac-
tion of inequality (19), which is ruled out by Proposition IV.2
at time t+τd. In other words, when τd is sufficiently short and
when ω is Lipschitz during the implementation delay, then a
need to switch again will not be triggered immediately after
the implementation of a switch.
Remark IV.3 (Relation between dwell-time of defense and
rate of change of attack). Note from (22) that the bound
on τd decreases when the Lipschitz constant L of the attack
signal increases, and it approaches to 0 as L increases to
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infinity. This qualitative relationship is expected, reflecting
the fact that fast response is expected from the defender in
order to catch up with a faster time-varying attack signal.
On the other hand, we still need τd <

(1−η)λ̄
4c2Aκ

2 < ∞ when
L = 0. In other words, even when the attack signal is static,
Uk(x(t), x(t)) is still not ensured to decrease exponentially at
the desired rate forever and the defense signal might still need
to switch. This is because, at any given time t, the defense
mechanism reasons myopically about the defense such that the
corresponding function Uk(x(t), x(t)) has the fastest decay
rate at this moment, which does not necessarily imply that
such defense remains so for future times τ ≥ t (or even that
the function keeps decreasing in the future). This is because
the defender does not know whether ω actually belongs to Ωk,
and so the current defense at time t might not be the “correct”
defense designed to handle the attack ω. In fact, as discussed
above, based only on the information of x and ẋ, we may never
know what is the “correct” defense, so the defense mechanism
might need to switch slowly, but indefinitely. Finally, note the
dependence of τd on the design parameter η: a smaller η means
a larger value of τd at the cost of a slower convergence rate of
the system (2). Hence, the choice of η encodes the trade-off
between the tolerance to delay and the convergence rate. �

Now, to examine the combined effects of attacks, defenses,
and delays over a long time interval, let Td := {t1, t2, · · · }
be the set of discontinuities of ν(t), which is also the set of
discontinuities of π(t). Denote by

r(t) =
Uπ(t)(x(t), ẋ(t))

Uπ(t)(x(t), x(t))
,

which is an evaluation of the temporary decay rate of
Uπ(t)(x(t), x(t)). By definition, r(t) is piecewise continuous,
and the discontinuities are caused by the discontinuities in π
or ω. Proposition IV.2 establishes that, if the attack signal is
Lipschitz during the delay interval, then after the switch at
time t, we have r(t) ≤ −ηλ̄. However, in the case when ω
jumps during the delay interval, it is possible that r(t) > −ηλ̄.
In this case, according to (19), there is an immediate need for
a second switch. This complicates the stability analysis.

To handle this and systematically analyze the stability of the
system (2) equipped with our defense mechanism, define by
T̃d = {t̃1, t̃2, · · · } ⊆ Td the subset of Td containing only those
switches such that r(t̃i) ≤ −ηλ̄. We refer to such switches as
“effective”. The following result characterizes the behavior of
the temporary decay rate r(t).

Lemma IV.4 (Behavior of the temporary decay rate). Assume
that (22) holds and

τ0 > 2τd, (24)

where recall that τ0 is the minimal dwell time between con-
secutive jumps of the attack signal as in Assumption II.1 (iii),
and τd is the implementation delay of our proposed switched
defense mechanism Algorithm 2. Then when the need to switch
π, determined by the satisfaction of (19), is initially triggered
at time t∗ ∈ [t̃i−1, t̃i), there are only 4 possibilities for the
temporary decay rate function r(t) over each time interval
[t̃i−1, t̃i), as depicted in Figure 1. Moreover, in the first three

(a) (b)

(c) (d)

Fig. 1: The plot describes the 4 possibilities that can happen
after a switch is triggered during the interval (t̃i−1, t̃i]. (a) ω
does not jump; (b) ω jumps, triggering a need to switch; (c)
ω jumps during the delay for executing a switch, after which
r(t̃i) ≤ −ηλ̄; and (d) ω jumps during the delay for executing
a switch, after which r(t̃i) > −ηλ̄ and hence a second switch
is needed.

cases, r(t) ≤ −ηλ̄ for all t ∈ [t̃i−1, t̃i − τd) and r(t) ≤ κcA
for all t ∈ [t̃i − τd, t̃i) and, in the last case, r(t) ≤ −ηλ̄ for
all t ∈ [t̃i−1, t̃i−2τd) and r(t) ≤ κcA for all t ∈ [t̃i−2τd, t̃i).

Proof. In case (a) of Figure 1, ω does not jump during the
interval. Hence the need to switch π can only be caused
by the continuous variation of r. Thus by Proposition IV.2,
t̃i = t∗ + τd, yielding an “effective” switch. In all the other
cases, ω jumps during the time interval. In case (b), the jump
of ω leads to a jump in r, which further creates the need
to switch π. Because of (24), ω will not jump again over
(t∗, t∗ + τd] since it has already jumped at time t∗. Hence
again by Proposition IV.2, we have an “effective” switch at
t̃i = t∗+ τd. In the remaining two cases, the need to switch is
again caused by the continuous variation of r. However, during
the implementation delay, ω jumps. Proposition IV.2 is not
applicable here and consequently we cannot decide whether
this switch, caused by the need at time t∗, is “effective” or
not. If r(t∗ + τd) ≤ −ηλ̄, then we are at the situation of
case (c) and the switch is “effective”. Otherwise, in case (d),
there is an immediate need to trigger a next switch at time
t∗b = t∗ + τd. Note that since ω jumps no earlier than t∗,
it again follows from (24) that ω will not jump again over
(t∗b , t

∗
b + τd]. Hence Proposition IV.2 can be applied over this

time interval and conclude that there is an “effective” switch
at t̃i = t∗b + τd. That concludes all possibilities for the change
of r(t) over [t̃i−1, t̃i).
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The fact that r(t) ≤ −ηλ̄ for all t ∈ [t̃i−1, t̃i−τd) in the first
three cases, and r(t) ≤ −ηλ̄ for all t ∈ [t̃i−1, t̃i − 2τd) in the
last case can easily be concluded from the plots in Figure 1.
Other than those intervals, we can always conclude an upper
bound on r(t) directly from its definition:

r(t) ≤
σmax(Pπ(t))‖A(ν(t), ω(t))‖

σmin(Pπ(t))
≤ κcA,

which completes the proof.

C. Convergence analysis of closed-loop system

Here, we characterize the stability of the system (2) against
attacks under the switching defense mechanism. Notice that
the system (2) is a time-varying switched system. Since the
defender updates its defense signal to stabilize the current
mode in which the system is, it is reasonable to conjecture that
the system is GES if switches happen slowly. Slow switching
is ensured by imposing the following condition

∀t > 0 : Nπ(t) ≤ t

τa
+N0, (25)

for some τa > 0, N0 ≥ 1, where Nπ(t) := |(0, t] ∩ Td| is
the total number of switches of π up to time t. The condition
(25) is the classical average dwell time (ADT) condition for
switched systems [32]. The larger τa is, the slower π(t)
switches. We remark here that according to our defense
mechanism, both continuous or discrete changes of ω(t) may
lead to switches in π(t). Hence by imposing conditions on
the switching frequency of π(t), we are indirectly imposing
conditions on the switching frequency of ω(t). We are now
ready to present our guarantees on the system stability.

Theorem IV.5 (System stability under the switching defense
mechanism and slow switching). Consider the system (2),
where Assumptions II.1, II.2 hold for the attacker and Assump-
tions II.3, II.4 hold for the defender, subject to the switched
defense mechanism Algorithm 2. Assume the implementation
delay satisfies (22) and (24). Then, the solutions of the
system (2) satisfy:

|x(t)| ≤
√
σ

σ

(√
µe(κcA+ηλ̄)τd

)Nπ(t)

e−ηλ̄t|x0|. (26)

Moreover, if the switching signal π satisfies the ADT condi-
tion (25) with parameter τa such that

τa ≥
1
2 lnµ+ (κcA + ηλ̄)τd

ηλ̄− λ
, (27)

with λ ∈ (0, ηλ̄), then the system (2) is GES with decay rate λ.

Proof. Let V : R≥0 × Rn 7→ R≥0 be defined by V (t, x) =
Uπ(t)(x, x) = x>Pπ(t)x. Note that for almost all t ∈ R≥0,
d
dtV (t, x(t)) = d

dtUπ(t)(x(t), x(t)) = 2Uπ(t)(x(t), ẋ(t)) =
2r(t)Uπ(t)(x(t), x(t)) = 2r(t)V (t, x). Hence, under (24),
Lemma IV.4 implies that d

dtV (t, x) ≤ −2ηλ̄V (t, x) for all
t ∈ [t̃i−1, t̃i − τd) in cases (a)-(c) depicted in Figure 1 and
all t ∈ [t̃i−1, t̃i − 2τd) in case (d). Moreover, d

dtV (t, x) ≤
2κcAV (t, x) for all t ∈ [t̃i − τd, t̃i) in cases (a)-(c) and all
t ∈ [t̃i − 2τd, t̃i) in case (d). Therefore, for cases (a)-(c),

we have (here, we use t− to denote the time just before the
switch),

V (t̃i, x(t̃i)) ≤ µV (t̃−i , x(t̃−i ))

≤ µe2κcAτdV (t∗, x(t∗))

≤ µe2κcAτde−2ηλ̄(t∗−t̃i−1)V (t̃i−1, x(t̃i−1))

= µe2(κcA+ηλ̄)τde−2ηλ̄(t̃i−t̃i−1)V (t̃i−1, x(t̃i−1)),

where we have used the inequality Pj ≤ µPi for all i, j ∈ I
(which follows from the definition of µ in (14)) to bound the
change of V over any switch. Similarly, case (d), we have

V (t̃i, x(t̃i)) ≤ µV (t̃−i , x(t̃−i ))

≤ µe2κcAτdV (t∗b , x(t∗b))

≤ µ2e2κcAτdV ((t∗b)
−, x((t∗b)

−))

≤ µ2e4κcAτdV (t∗, x(t∗))

≤ µ2e4κcAτde−2ηλ̄(t∗−t̃i−1)V (t̃i−1, x(t̃i−1))

=
(
µe2(κcA+ηλ̄)τd

)2

e−2ηλ̄(t̃i−t̃i−1)V (t̃i−1, x(t̃i−1)).

Now note that in each of the cases (a)-(c), one switch of
π occurs over the interval (t̃i−1, t̃i] (in fact, exactly at t̃i)
and, in case (d), two switches of π occur over the interval
(t̃i−1, t̃i]. Hence with the convention t̃0 = 0 and by concate-
nating the changes from V (t̃i−1, x(t̃i−1)) to V (t̃i, x(t̃i)), for
i = 1, 2, · · · together, we conclude

V (t, x(t)) ≤
(
µe2(κcA+ηλ̄)τd

)Nπ(t)

e−2ηλ̄tV (0, x0),

where recall that Nπ(t) denotes the total number of switches
of π over the interval (0, t]. Therefore, it follows from (16)
that

σ|x(t)|2 ≤ V (t, x(t))

≤
(
µe2(κcA+ηλ̄)τd

)Nπ(t)

e−2ηλ̄tV (0, x0)

≤
(
µe2(κcA+ηλ̄)τd

)Nπ(t)

e−2ηλ̄tσ|x0|2,

yielding (26). To show that the system is GES when π satisfies
an ADT condition with the inequality (27), notice that in this
case(1

2
lnµ+ (κcA + ηλ̄)τd

)
Nπ(t)

≤ (ηλ̄− λ)t+N0

(1

2
lnµ+ (κcA + ηλ̄)τd

)
.

Taking the exponential on both sides and substituting
into (26), we conclude |x(t)| ≤ c|x0|e−λt with c :=√

σ
σ e

N0( 1
2 lnµ+(κcA+ηλ̄)τd), concluding the result.

Remark IV.6 (Qualitative interpretation of Theorem IV.5).
Note that the condition in Theorem IV.5 is conservative, given
that various approximations are made in order to get the
constants κ, cA, µ. As a result, the right-hand side of (27)
might be overestimated. In some cases, one can easily check
that this condition is satisfied. For instance, if Algorithm 1
gives a common Lyapunov function (i.e., all Pi’s are the
same) and if the defense mechanisms has no implementation



11

delay, we have µ = 1 and τd = 0, and therefore the right-
hand side of (27) is 0. In this case, the defense mechanism
is guaranteed to stabilize the system no matter how fast the
attack signal varies. Generalizing this observation qualitatively,
one can interpret the condition as saying that GES of the
system (2) is guaranteed when the attack signal varies slowly
enough (leading to a slow switching π and hence larger τa),
the computed Pi’s are similar to each other (small µ), and the
delay in the defense mechanism is short (small τd). �

V. SIMULATIONS

This section illustrates in two examples how the proposed
switched defense mechanism guarantees stability of the at-
tacked system. The first example consists of a network system
with a compromised agent and the second one deals with
dynamic load altering attacks on a power system.

A. Network with a compromised agent

Consider a network of 5 first-order agents, cf. Figure 2,
whose nominal dynamics is given by ẋ = Ax, with

A =


−1 0 0 2 −2
0 −1 0 2 −2
0 0 −1 2 −2
0 0 0 0 1
0 0 0 −3 2

 .
Agents 1, 2, 3 are identical receivers which update their state
using the information received from the other two agents.
Agent 4 is a defensive influencer which can uniformly change
the impact on its propagating information, labeled as ν in
Figure 2. Agent 5 is a compromised influencer, which can
similarly change the impact on its propagating information. In
addition, the attacker identifies the defensive agent in the net-
work, so the compromised agent can also alter the information
received from Agent 4. These two types of modifications from
the attacker are labeled by ω1, ω2 in Figure 2. Consequently,

5 4

3

2

1

−1

2−
ν

−
2

+
ω

1

−1

2
−
ν

−
2

+
ω

1

−1

2
−
ν

−2 +
ω1

−3− 3ω2 − ν

1 + ω1

−ν2 + ω1

Fig. 2: The network of 5 agents

the resulting network system can be formulated in the form
of (2),

ẋ =
(
A+ νD1 + ω1K1 + ω2K2

)
x, (28)

where D1,K1,K2 ∈ R5×5 are matrices such that D1 has
−1 for all the elements in the 4-th column and 0 for all other
elements, K1 has 1 for all the elements in the 5-th column and
0 for all other elements, and K2 has 1 for the (5, 4)-th element
and all other elements 0. We take N = R and Ω = [0, 1]2.
One can verify that the second condition in Assumption II.3
holds. We then run Algorithm 1 with λmin = 0, which results
in a partition S of Ω into the 10 subsets shown in Figure 3
and a convergence rate guarantee of λ̄ = 0.081.

0 1/8 1/4 1/2 3/4 10

1/8

1/4

1/2

1

ω2

ω1

3.76

1

4.89

2

3.93

3

4.41

4

3.13

5

3.31

6

3.89

7

2.95

8

2.63
9

2.81
10

Fig. 3: Partition of Ω generated by Algorithm 1. For each
subset, the red number at the corner denotes the index and
the black number in the middle denotes the corresponding
candidate defense ν.

Defense against pre-set attacks: We first consider the attack
signals depicted in the top plot of Figure 4 and examine the
system performance under the switched defense mechanism.
The attack signals are such that ω1 is a periodic ramp function
with slope 1/12 and period 12. ω2 is a binary signal that starts
at 0, jumps to 1 at time 8 and switches back to 0 at time 12.
The attack signal ω = [ω1 ω2]> is piecewise Lipschitz and
Assumption II.1 is satisfied with L = 1/12, τ0 = 4. The other
two plots in Figure 4 illustrate the state trajectories and switch-
ing defense signal evolving under the action of the defense
mechanism for the initial state x(0) =

[
−1 0 1 1 1

]>
with parameters η = 0.9 and τd = 0.5. All states converge to
0 under the switching defense mechanism.

Defense against strategic attacks: Next, we consider a
strategic attack and examine the system performance under the
switched defense mechanism. For each ν ∈ Nf , let ων ∈ Ω
be the “worst-case” attack, in the sense that the rightmost
eigenvalue of A(ν, ων) has the largest real part (this can be
obtained using the structured pseudospectral abscissa, cf. [33]).
We then define the attack signal w(t) such that w(0) = 0 and

ω̇(t) :=

{
L ων(t)−ω(t)
|ων(t)−ω(t)| if ω(t) 6= ων(t),

0 if ω(t) = ων(t).
(29)

Intuitively, the dynamics (29) is such that, when ω(t) is not the
“worst-case” attack with respect to the current defense signal
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Fig. 4: From top to bottom: attack signals, state trajectories,
and switching defense signal of system (28). The red dotted
line in the bottom plot indicates the triggers for switches,
which is always τd ahead of π.

ν(t), then it changes linearly with rate L towards this “worst-
case” value. If ω(t) is already the “worst-case” attack, then
it does not change. With this definition, the attack satisfies
Assumption II.1 for the Lipschitz constant L and any τ0 > 0.
Moreover, since it can be computed that for any ν ∈ N , there
exists ω ∈ Ω such that A(ν, ω) is unstable, such an attack
signal can destabilize the system if no defense action, or a
defense action which eventually becomes steady is taken.

We study the performance of the defense strategy for
different values of the Lipschitz constant L of the attacker and
the implementation delay τd of the defense mechanism. We use
η = 0.8 and, for each pair of L, τd, we simulate 100 trials with
initial state obeying a normal distribution N(0, 1). Tables I, II,
and III show, respectively, the average relative overshoot,
defined as maxt≥0 |x(t)|/|x(0)|, the average settling time,
defined as min{t ≥ 0 : |x(s)| ≤ 0.02|x(0)| ∀s ≥ t}, and
the average number of switches up to time t = 100. One can
observe the tendency2 of the relative overshoot and the settling
time increase with τd, and the number of switches increases
with τd and L. When τd ≥ 0.4, the settling time increases
significantly when L increases. Moreover, when τd = 0.5 and
L ≥ 1.5, the system becomes unstable. This is expected, since
when the delay becomes large, the defense action cannot catch
up with the attack action and hence the destabilizing effect
brought by the attack action will accumulate.

2The lack of monotonicity in this tendency can be explained by noting that
the specific strategic attack resulting from (29) does not necessarily provide
the worst-case attack to the stability of the system. Our stability analysis under
the proposed defense mechanism instead provides a worst-case guarantee, so
we cannot expect to observe a monotonic behavior with respect to τd and L
as reflected by Remark IV.3 and Theorem IV.5.

We also observe that, although Algorithm 1 produces 10
candidate defenses, some of them are never used in the simu-
lations. This indicates that, depending on the state trajectory,
some modes might always be dominated by other modes while
determining the “mode-to-switch” in Step 10: of the defense
mechanism. This suggests the possibility of refinements to the
defense mechanism that prune dominated modes to improve
its efficiency.

τd

L 0.5 1 1.5 2 2.5

0.1 3.54 3.79 3.94 3.59 3.51
0.2 3.98 4.02 3.95 3.98 3.64
0.3 3.66 3.88 4.42 3.45 3.64
0.4 3.97 4.25 4.35 3.86 4.09
0.5 3.74 4.48 unstable unstable unstable

TABLE I: Relative overshoot.

τd

L 0.5 1 1.5 2 2.5

0.1 9.8 10.3 9.2 8.8 8
0.2 11.2 9 7.7 6.8 7.5
0.3 11 10.5 11.2 10.2 9.2
0.4 13.4 16 37.4 40.6 42.8
0.5 16.2 51.1 unstable unstable unstable

TABLE II: Settling time.

τd

L 0.5 1 1.5 2 2.5

0.1 56 57 64 91 75
0.2 43 77 78 56 83
0.3 51 66 90 90 92
0.4 55 78 87 93 95
0.5 60 74 82 87 91

TABLE III: Number of switches over [0, 100].

B. Power system subject to dynamic load altering attacks

Here we consider an example taken from [11] of a power
system under dynamic load altering attacks. The system is
composed of nG generator buses and nL load buses. At each
generator bus, a linear swing equation models the generator
dynamics. A proportional-integral controller determines the
mechanical power input for each generator. The overall linear
state-space descriptor system can be written as

I 0 0 0
0 I 0 0
0 0 −M 0
0 0 0 0



δ̇

θ̇

ψ̇
ϕ̇

 = (30)


0 0 I 0
0 0 0 −I

KI +HGG HGL KP +DG 0
HLG HLL 0 DL



δ
θ
ψ
ϕ

+


0
0
0
PL

 ,
where δ, ψ ∈ RnG are the vectors of voltage phase angles
and of rotor angular frequency deviations at generator buses,
respectively, and θ, ϕ, PL ∈ RnL are the vectors of voltage
phase angles, of frequency deviations, and of power con-
sumption at load buses, respectively. In addition, M , DG ∈
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RnG×nG , DL ∈ RnL×nL are diagonal matrices with entries
equal to the inertia, damping coefficients of the generators,
and damping coefficients of the loads, respectively. Similarly,
KI ,KP ∈ RnG×nG are diagonal matrices with entries equal
to the integral and proportional controller coefficients of the
generators. Lastly,

Hbus :=

[
HGG HGL

HLG HLL

]
∈ R(nG+nL)×(nG+nL)

is the imaginary part of the admittance matrix.
Defense/attack formulation as a linear time-varying system:

Following [11], a dynamic load altering attack on load bus k
by feedback from generator bus l is an additional power
consumption on the load bus k in the form PAk,l = ωk,lψl, for
some ωk,l ∈ Ωk,l ⊂ R. Similarly, we can define a dynamic
load altering defense on load bus k by feedback from generator
bus l to be PDk,l = νk,lψl, for some νk,l ∈ Nk,l ⊂ R. If
LA,LD ⊆ {1, · · · , nL} × {1, · · · , nG} denote the sets of
attack and defense load-bus pairs, respectively, we have

PLk = PSk +
∑

l:(k,l)∈LA
PAk,l +

∑
l:(k,l)∈LD

PDk,l (31)

where PSk is the constant secured power consumption, which
can be ignored during the analysis of stability of the equi-
librium. It follows from (31) that if (k, l) 6∈ LA (resp.
(k, l) 6∈ LD) for all l ∈ {1, · · · , nG}, then the load bus k
is not subject to any load altering attack (resp., defense).

Note that (30) is a differential-algebraic equation, which can
be simplified by expressing ϕ in terms of δ, θ, ψ. Moreover,
by replacing PL with the expression (31), where PAk,l, P

D
k,l are

further replaced by their definitions, we can write δ̇θ̇
ψ̇

 =

A+
∑

(k,l)∈LA
ωk,l

0 0 0
0 0 (DL)−1Ek,l
0 0 0


+

∑
(k,l)∈LD

νk,l

0 0 0
0 0 (DL)−1Ek,l
0 0 0

δθ
ψ

 , (32)

where

A :=

I 0 0
0 DL 0
0 0 −M

−1  0 0 I
HLG HLL 0

KI +HGG HGL KP +DG


and Ek,l ∈ RnL×nG is the basis matrix whose (k, l)-th element
is 1 and all others 0. Hence, we recover the model (2), with
ω and ν being the vectors consisting of all the feedback gains
ωk,l and νk,l, respectively. We assume such gains can be tuned
online, i.e., might be time-varying.

Finite set of candidate defenses: For simplicity of presen-
tation, we consider a 5-bus system with 2 generator buses and
3 load buses. Assume that the inertia of each generator is 10
and the damping coefficients is 1 for any generator or load.
The imaginary part of the admittance matrix is

Hbus =


−5.5 2.5 2 0 0
2.5 −11.5 4 0 5
2 4 −14 8 0
0 0 8 −10 2
0 5 0 2 −7.8

 .

Pick KI = KP = 10I , so that the nominal system matrix
A is Hurwitz. Now consider dynamic load altering attacks on
load buses 1 and 2 by feedback only from generator bus 1,
and assume they saturate at magnitude of 100. In other words,
LA = {(1, 1), (2, 1)} and Ω := Ω1,1 × Ω2,1 = [−100, 100]2.
We further assume that all load buses are subject to dynamic
load altering defenses with respect to any generator buses and
there are no constraints on the feedback gain. In other words,
LD = {1, 2, 3} × {1, 2} and N :=

∏
(k,l)∈LD Nk,l = R6.

Using the parameter λmin = 0.05 for Algorithm 1, we obtain
a partition of Ω into 4 subsets. Table IV lists the corresponding
candidate defense signals νi and decay rate λ̄.

Defense against strategic attacks: We consider the same
strategic attack policy proposed in the previous example.
Figure 5 illustrates the attack signals, system trajectories, and
switching defense signal evolving under the action of the
defense mechanism with parameters η = 0.9, L = 20, τd = 1.
We have also simulated 100 trajectories with the same param-
eters and initial states uniformly randomly taken in [−1, 1]7,
and computed the average relative overshoot to be 3.35 and
the average settling time to be 40, respectively.

Mode 1 2 3 4 −

νi


142.85
109.93
12.47
−43.28
−21.13
−4.87




142.85
109.93
−87.53
−43.28
−21.13
−4.87




42.85
109.93
12.47
−43.28
−21.13
−4.87




42.85
109.93
−87.53
−43.28
−21.13
−4.87




240.34
381.07
−46.39
−199.61
−127.43
−50.19


|νi| 187.06 206.15 128.1460 154.69 513.5
λ̄ 0.0698 0.0423

TABLE IV: Defense designs for the power system obtained
by Algorithm 1.

We remark here that using the parameter λmin = 0 for
Algorithm 1 gives a single defense which can stabilize the
power system for any attack (the defense signal and its
corresponding decay rate λ̄ are shown in the last column of
Table IV). With the same initial condition as for generating
the solution in Figure 6, we get different state trajectories,
plotted in Figure 5. The overshoot is much larger and it takes
longer time for settling. Meanwhile, 100 trajectories under
the single defense mechanism with initial states uniformly
randomly taken in [−1, 1]7 are simulated, which yield an
average relative overshoot of 5.75 and average settling time
of 115. This means that in the comparison with the switched
defense mechanism, the performance of the single defense
fares worse, as the relative overshoot is about 1.7 times larger
and the settling time is almost 3 times larger. We have observed
a similar relative performance when generating solutions using
other values of L and τd. Moreover, Table IV also shows that
the switched defense requires a significantly smaller control
effort (|ν| of the defense) than the single defense.

VI. CONCLUSIONS

We have proposed a switched defense mechanism to glob-
ally exponentially stabilize a cyber-physical system subject
to attack. The system is described by a linear matrix whose
entries can be modified by the attack signal, which is unknown
to the defender and has a bounded rate of change. The defense
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Fig. 5: From top to bottom: attack signals, state trajectories,
and switching defense signal of the power system (32).
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Fig. 6: State trajectories of the power system (32) under a
constant defense. Note that the scale of the magnitude axis is
different from the one in the middle plot of Figure 5.

mechanism relies on switch-triggering events to modify the
system dynamics using information about the state and its
derivative. To design it, we have built on a partition of
the set of attacks that provides the defender with a finite
set of effective candidate defenses. Our stability analysis of
the resulting time-varying system incorporates the possibility
of an implementation delay in the execution of the defense
switches and shows that, as long as the delay is sufficiently
short, switches will not be constantly triggered. We have
also identified conditions on the switching frequency, under
which GES is guaranteed for all allowable attack signals.
Simulations on a compromised network system and a power
system subject to dynamic load altering attacks illustrate the
performance of the proposed defense mechanism. Future work
will explore the extension of our results when estimation errors
are present and to more general attack signals; refinements to
the proposed defense mechanism design, including different

partition techniques, alternative optimization problems with
LMI constraints, pruning dominated candidate defenses, and
distributed implementations; and the consideration of other
performance metrics (beyond the convergence rate) for the
design of defense mechanisms.
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