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Abstract— This paper proposes an optimization with
penalty-based feedback design framework for safe stabi-
lization of control affine systems. Our starting point is
the availability of a control Lyapunov function (CLF) and
a control barrier function (CBF) defining affine-in-the-input
inequalities that certify, respectively, the stability and safety
objectives for the dynamics. Leveraging ideas from penalty
methods for constrained optimization, the proposed de-
sign framework imposes one of the inequalities as a hard
constraint and the other one as a soft constraint. We
study the properties of the closed-loop system under the
resulting feedback controller and identify conditions on
the penalty parameter to eliminate undesired equilibria that
might arise. Going beyond the local stability guarantees
available in the literature, we are able to provide an inner
approximation of the region of attraction of the equilibrium,
and identify conditions under which the whole safe set
belongs to it. Simulations illustrate our results.

Index Terms— Safety-critical control, control barrier
functions, penalty methods.

I. INTRODUCTION

SAfety-critical control has garnered a lot of attention in
the controls and robotics communities motivated by ap-

plications to many different classes of engineered and natural
systems. Safety refers to the ability to ensure by design that the
evolution of the dynamics stays within a desired set. Control
barrier functions (CBFs) are a useful tool to deal with safety
specifications that do not require addressing the difficult task
of computing the system’s reachable set. In many scenarios,
safety must be achieved together with some stabilization goal,
and this raises interesting challenges for control design in
order to ensure that both are achieved via feedback controllers
that are easily implemented and have appropriate smoothness
guarantees. These challenges motivate us to develop here an
optimization with penalty-based feedback design framework
for safe stabilization of control affine systems.

Literature Review: We rely on ideas from two different
bodies of work. The first one is CLFs [1], which have been
successfully used in the control design for stabilization of
nonlinear systems. Of particular interest to this work is the
pointwise-minimum norm (PMN) formula [2], that uses a CLF
to compute a stabilizing controller. The second relevant body
of work pertains to CBFs [3], [4], whose aim is to render
a certain predefined safe set forward invariant. However, in

P. Mestres and J. Cortés are with the Department of Mechani-
cal and Aerospace Engineering, University of California, San Diego,
{pomestre,cortes}@ucsd.edu. This work was supported by NSF Award
IIS-2007141.

applications where both safety and stability must be certified,
CBFs fall short of providing provable stability guarantees. To
tackle this issue, [5] combines a CLF and a CBF into a so-
called CLBF, and then uses Sontag’s universal formula to
derive a smooth controller. However, in general it might be
difficult to satisfy the conditions required for the existence of
such a CLBF [6]. Another approach is the universal formula
for smooth safe stabilization from [7]. However, this formula
is only applicable in a set where both the CLF and the
CBF are compatible (i.e., there exists a control satisfying
their associated inequalities at every point of the set). An
alternative approach [4] to tackle joint safety and stability
specifications is to combine the CLF and the CBF in a
quadratic program (QP). To guarantee the feasibility of the
program when the functions are not compatible and to avoid
the resulting controller to be non-Lipschitz when they are [8],
the stability constraint is often relaxed. This results in a lack
of guarantee of stability, even for arbitrarily large penalties in
the relaxation parameter [9]. Moreover, as shown in [10], [11],
this QP formulation can introduce undesired equilibria beyond
the original equilibrium, which can even be asymptotically
stable. This line of work [9], [11] then identifies conditions
under which local stability guarantees of the equilibrium can
be given. Although the region of attraction is not explicitly
characterized, a strategy similar to the one pursed here could
be employed. An alternative design, e.g., [12], assumes a
priori knowledge of a CBF and a nominal (possibly unsafe)
stabilizing controller. Then, a safety filter is applied to this
nominal controller. As a result, the filtered controller generally
lacks stability guarantees. The recent paper [13] gives an
estimate of the region of attraction of the closed-loop system
obtained by using such a filtered controller.

Statement of Contributions: We consider the problem of
safe stabilization of control affine systems. Given a control
Lyapunov function and a control barrier function whose 0-
superlevel set defines an arbitrary, possibly non-convex safe
set, we aim to synthesize a safe, stabilizing feedback and
identify the region of attraction of the origin for the result-
ing closed-loop system. In particular, we study under what
conditions such region of attraction contains the safe set.
The contributions of this paper are the following. Given the
safety and stability objectives, our first contribution designs
an optimization with penalty-based controller that has one of
the objectives as a hard constraint and the other as a soft
constraint. The controller depends on a penalty parameter that
can be tuned to enhance the soft objective at the cost of
reduced optimality, while guaranteeing the satisfaction of the



hard constraint. An advantage of the proposed design is that
the controller is automatically Lipschitz and has a closed-form
expression. Our second contribution shows that the controller
can introduce undesired equilibrium points different from the
origin. By choosing the penalty parameter appropriately, and
under some technical conditions, these undesired equilibria
can be eliminated. Finally, our third contribution shows that
the proposed controller can be tuned to provide an inner
approximation of the region of attraction of the origin for
the closed-loop system. As a consequence of this analysis,
we provide conditions under which all of the safe set belongs
to the region of attraction of the origin for the closed-loop
system. Simulations on a planar system compare our design
with other approaches in the literature.

II. PRELIMINARIES ON CLFS AND CBFS

This section presents1 preliminaries on control Lyapunov
and barrier functions. Consider a control-affine system

ẋ = f(x) + g(x)u, (1)

where f : Rn → Rn and g : Rn → Rn×m are locally
Lipschitz functions, with x ∈ Rn the state and u ∈ Rm the
input. Throughout the paper, and without loss of generality,
we assume f(0) = 0, so that the origin x = 0 is the desired
equilibrium point of the (unforced) system.

We start by recalling the notion of Control Lyapunov
function (CLF) [1], [2].

Definition 1: (Control Lyapunov Function): Given an open
set D ⊆ Rn, with 0 ∈ D, a continuously differentiable
function V : Rn → R is a CLF on D for system (1) if
• V is proper in D, i.e., {x ∈ D : V (x) ≤ c} is a compact

set for all c > 0,
• V is positive definite,
• there exists a continuous positive function W : Rn → R

such that, for each x ∈ D\{0}, there exists a control
u ∈ Rm satisfying

LfV (x) + LgV (x)u ≤ −W (x). (2)

CLFs provide a way to guarantee asymptotic stability of
the origin. Namely, if a Lipschitz controller u satisfies (2) for
all x ∈ D \ {0}, then the origin of the closed-loop system

1We denote by Z>0,R and R≥0 the set of positive integers, real, and
nonnegative real numbers, resp. We write int(S), ∂S for the interior and the
boundary of the set S, resp. Given x ∈ Rn, ‖x‖ denotes its Euclidean
norm. Given f : Rn → Rn, g : Rn → Rn×m and a smooth function
W : Rn → R, the notation LfW : Rn → R (resp. LgW : Rn →
Rm) denotes the Lie derivative of W with respect to f (resp. g), that is
LfW = ∇WT f (resp. ∇WT g). We denote by C1(Rn) and C2(Rn) the set
of continuously differentiable and twice continuously differentiable functions
in Rn, respectively. Given a ∈ Rn and b ∈ R, let H denote the hyperplane
defined by H = {x ∈ Rn : 〈a, x〉 = b}. We denote the projection of
v ∈ Rn onto H by PH(v) = v − 〈a,v〉−b

‖a‖2 a. A function β : R → R is of
class K if β(0) = 0 and β is strictly increasing. If moreover lim

t→∞
β(t) =∞,

β is of class K∞. A function V : Rn → R is positive definite if V (0) = 0
and V (x) > 0 for x 6= 0. Given a matrix M ∈ Rn×m, ker(M) = {x ∈
Rm : Mx = 0n}. Given a square matrix A ∈ Rn×n with eigenvectors
{vj}nj=1 and corresponding eigenvalues {λj}nj=1, the stable subspace of A
is defined as Vs(A) = span({vj : <(λj) < 0, j = 1, . . . , n}), where
<(λj) denotes the real part of λj . We denote by λ̄min(A) and λmax(A) the
smallest non-zero and largest real parts of the eigenvalues of A, respectively.

is asymptotically stable [1]. If W (x) in (2) is replaced by
γ(V (x)), where γ is a class K function, then such Lips-
chitz controller makes the origin exponentially stable. Such
controllers can be synthesized by means of the pointwise
minimum-norm (PMN) control optimization [2, Chapter 4.2],

u(x) = arg min
u∈Rm

1

2
‖u‖2

s.t. (2) holds.

Note that, at each x ∈ Rn, this is a quadratic program in u.
Next we recall the notion of Control Barrier Function

(CBF) [4]. Let C ⊆ Rn be a closed set describing the safe
states for the system (1).

Definition 2: (Control Barrier Function): Let h : Rn → R
be a continuously differentiable function such that C = {x ∈
Rn : h(x) ≥ 0}. The function h is a CBF of C for system (1)
if there exists a class K∞ function α such that, for all x ∈ C,
there exists a control u ∈ Rm satisfying

Lfh(x) + Lgh(x)u+ α(h(x)) ≥ 0. (3)
CBFs can be used to guarantee safety, i.e., forward invari-

ance of C under the dynamics (1). Namely, if a Lipschitz
continuous controller satisfies (3) for all x ∈ C, then C
is forward invariant [4, Theorem 2]. Similar to the PMN
controller above, a common design methodology [4] is via
the optimization

u(x) = arg min
u∈Rm

1

2
‖u‖2

s.t. (3) holds,

which results in a Lipschitz controller [14, Theorem 2].
When dealing with both the stability and safety of system

trajectories under the dynamics (1), it is important to note that
an input u might satisfy (2) but not (3), or vice versa. The
following notion, adapted from [7, Definition 2.3], captures
when the CLF and the CBF are compatible.

Definition 3: (Compatibility of CLF-CBF pair): Let D ⊆
Rn be open, C ⊂ D closed, V a CLF on D and h a CBF
of C. Then, V and h are compatible at x ∈ C if there exists
u ∈ Rm satisfying (2) and (3) simultaneously. We refer to
both functions as compatible if V and h are compatible at
every point of C.

III. PROBLEM STATEMENT

We are interested in designing controllers that are both
stabilizing and safe. We also require them to be Lipschitz
in order to guarantee existence and uniqueness of solutions
of the closed-loop system. Formally, consider a control-affine
system of the form (1). Let V : Rn → R be a CLF on the
open set D ⊆ Rn and h : Rn → R be a CBF of the closed
set C ⊂ D. We assume the origin belongs to C. Given the
availability of these functions, it seems reasonable to employ
V to ensure the stabilizing aspect of the controller and h to
ensure safety. We also seek to provide formal characterizations
of the region of attraction of the equilibrium for the resulting
closed-loop system. If V and h are compatible at every point in
the safe set, one option is to find the control through pointwise
optimization with (2) and (3) as constraints. However, [8] gives



a counterexample that shows that this pointwise minimization
can result in a non-Lipschitz controller. To remedy this, and
also to extend the design to scenarios where V and h might
not be compatible at some points in the safe set, a popular
approach [4] is to relax one of the inequalities (2), (3)
(in safety-critical applications, the CLF constraint (2)), and
formulate a QP that penalizes the relaxation parameter:

u(x) = arg min
(u,δ)∈Rm+1

1

2
‖u‖2 + pδ2, (4)

s.t. (3), LfV (x) + LgV (x)u ≤ −W (x) + δ.

Nevertheless, even in the case where the CLF and the CBF are
compatible at all points in the safe set, the resulting controller
might not be stabilizing even for arbitrarily large values of
p [9]. Moreover, as pointed out in [10], [11], this design
might introduce undesired equilibria in the closed-loop system,
which can even be asymptotically stable. To the best of the
authors’ knowledge, only local stability guarantees exist [11,
Theorem 3], [9, Theorem 1], and no estimates of the region
of attraction are available in the literature.

An alternative design, e.g., [12], assumes a nominal (possi-
bly unsafe) stabilizing controller unom is available, and seeks
to modify it as little as possible while guaranteeing safety.
This can be done by solving the following QP:

u(x) = arg min
u∈Rm

1

2
‖u− unom(x)‖2 , (5)

s.t. (3).

In general, the resulting modified controller might not retain
the stability properties of the original nominal controller but,
under certain conditions [13], one can provide an estimate
of the region of attraction of the equilibrium. Interestingly,
nominal controllers other than the given one might result in
larger regions of attraction, so in this sense the design directly
with the CLF offers greater flexibility.

We are interested in building an alternative to the de-
signs (4), (5) to solve the aforementioned issues. In particular,
we tackle the following problem:

Problem 1: Determine a Lipschitz control law u and a
region of attraction Γ ⊆ Rn, Γ ∩ C 6= 0 such that for all
x(0) ∈ Γ ∩ C, x(t) ∈ C for all t ≥ 0 and the system (1) in
closed-loop with u is asymptotically stable with respect to the
origin. 4

IV. SAFETY AND STABILITY VIA QP WITH PENALTY

In this section we design a candidate control law to solve
Problem 1 by leveraging the CLF V and the CBF h. We first
present our exposition in a general context, then particularize
to our setting. Consider general Lipschitz functions a, c :
Rn → R and b, d : Rn → Rm. Consider the following two
affine inequalities in u ∈ Rm,

a(x) + b(x)u ≤ 0, c(x) + d(x)u ≤ 0.

Given a neighborhood C̄ of C, we assume that for every x ∈ C̄,
there exist u1, u2 ∈ Rm such that a(x) + b(x)u1 ≤ 0 and
c(x)+d(x)u2 ≤ 0. To select u, we regard at the first inequality
as a soft constraint and the second as a hard constraint.

Inspired by the theory of penalty methods for constrained
optimization [15, Chapter 13], we formulate a QP where we
include the soft constraint in the objective function with a
penalty parameter (ε > 0) and enforce the hard constraint.
The resulting solution of the QP is parametrized by x ∈ Rn
and ε:

uε(x) := arg min
u∈Rm

1

2
‖u‖2 +

1

ε
(a(x) + b(x)u),

s.t. c(x) + d(x)u ≤ 0. (6)

Since this optimization problem is a QP, it is convex. The
following result gives a closed-form expression for uε and
establishes that it is Lipschitz.

Proposition 4.1: (Closed-form expression for Lipschitz con-
troller): Let a, c : Rn → R and b, d : Rn → Rm be Lipschitz,
C̄ a neighborhood of C and assume that for every x ∈ C̄,
there exist u1, u2 ∈ Rm such that a(x) + b(x)u1 ≤ 0 and
c(x) + d(x)u2 ≤ 0. For each x ∈ C, let H(x) := {u ∈ Rm :
c(x) + d(x)u = 0} and e(x) := c(x)− 1

εd(x)b(x). Then,

uε(x) =

{
− 1
ε b(x) if e(x) ≤ 0,

PH(x)(− 1
ε b(x)) if e(x) > 0,

(7)

and uε is Lipschitz on C̄\{0}. Moreover, if d(0) 6= 0, uε is
Lipschitz at 0.

Proof: The expression (7) follows by calculating the
KKT points of (6). Note that (7) is well defined because if
d(x) = 0, necessarily e(x) = c(x) ≤ 0. Lipschitzness of
uε(x) follows from [16, Section 3.10, Theorem 2], which as
a special case includes the minimization of a quadratic cost
function subject to affine inequality constraints.

We next particularize the general design (6) to our setup.
We consider two cases:
Safety QP with stability penalty: The selection a(x) =
LfV (x) + W (x), b(x) = LgV (x), c(x) = −Lfh(x) −
α(h(x)), and d(x) = −Lgh(x) makes the CLF inequality (2)
a soft constraint and the CBF inequality (3) a hard one. We
denote by usafe

ε the controller resulting from (6). If Lgh(0) 6=
0, Proposition 4.1 guarantees that usafe

ε is Lipschitz on C.
Moreover, since it satisfies the CBF inequality (3) for all
x ∈ C, the resulting closed-loop system is safe for all ε > 0;
Stability QP with safety penalty: Alternatively, the selection
a(x) = −Lfh(x) − α(h(x)), b(x) = −Lgh(x), c(x) =
LfV (x) + W (x), and d(x) = LgV (x), makes the CBF in-
equality (3) a soft constraint and the CLF inequality (2) a hard
one. We denote by ustable

ε the resulting controller from (6). In
this case, d(0) = 0 and hence Proposition 4.1 only guarantees
that ustable

ε is Lipschitz in C̄\{0}. Moreover, since (2) is
satisfied for all x ∈ C̄\{0}, the origin is asymptotically stable
for the resulting closed-loop system.

From this point onwards, we formulate the results for the
controller usafe

ε . With minor modifications, similar results can
be stated for ustable

ε . Note also that Proposition 4.1 provides
a closed-form expression for the controllers. This allows the
closed-loop system to be implemented without having to
continuously solve the optimization (6), which is something
one faces with (4), e.g., [4]. The expression (7) indicates that
smaller ε lead to controllers with larger norms. Even though



here the input is unconstrained, this should be taken into
account in applications with limited actuation power.

Remark 1: (Nominal Controller): Our framework can be
adapted to the scenario described in (5), where instead of a
CLF, one has access to a nominal stabilizing controller unom

and a certificate of stability in the form of a Lyapunov function
V satisfying LfV (x) + LgV (x)unom(x) + W (x) ≤ 0 for
x ∈ D, with D some open set. To design a control u as close
as possible to unom that is safe and stabilizing, one can set
v = u− unom. Then, it is easy to check that V is a CLF for
ẋ = f̄(x) + g(x)v, where f̄(x) = f(x) + g(x)unom(x). In
this case, one could use the safety QP with stability penalty
setting a(x) = Lf̄V (x) + W (x), b(x) = LgV (x), c(x) =
−Lf̄h(x)− α(h(x)), and d(x) = −Lgh(x). •

V. ANALYSIS OF SAFETY QP WITH STABILITY PENALTY

Here, we analyze the closed-loop properties of (1) under
usafe
ε . We first show how to choose ε to avoid undesired

equilibria of the closed-loop system and then go on to solve
Problem 1. Throughout the section,

e(x) = −Lfh(x) +
1

ε
Lgh(x)TLgV (x)− α(h(x)).

A. Ruling out Undesired Equilibrium Points
Here we show that the closed-loop implementation of the

safety QP with stability penalty controller might introduce new
equilibria other than the origin. The next result characterizes
such equilibria and shows that, under some conditions, they
can be confined to an arbitrarily small neighborhood of the
origin for small enough ε.

Proposition 5.1: (Characterization of Equilibria): For ε >
0, the set of equilibrium points of the closed-loop system ẋ =
f(x) + g(x)usafe

ε (x) in C is Q = Qε1 ∪Qε2, with

Qε1 := {x ∈ C : e(x) ≤ 0, f(x) =
1

ε
g(x)LgV (x)},

Qε2 := {x ∈ ∂C : e(x) > 0, f(x) =
Lfh(x)

‖Lgh(x)‖2
g(x)Lgh(x)

+
g(x)

ε
(LgV (x)− Lgh(x)TLgV (x)

‖Lgh(x)‖2
Lgh(x))},

and 0 ∈ Qε1. Let V be a neighborhood of the origin, V̄ a
neighborhood of Pg := {x ∈ C\{0} : LgV (x) = 0} and let
N1, N2, NV,V̄3 and N4 be defined by

N1 := sup
x∈C
‖f(x)‖ ,

N2 := sup
x∈∂C
e(x)>0

∥∥∥∥∥f(x)− Lfh(x)

‖Lgh(x)‖2
g(x)Lgh(x)

∥∥∥∥∥ ,
NV,V̄3 := inf

x∈C\(V∪V̄)
‖g(x)LgV (x)‖ .

N4 := inf
x∈∂C
e(x)>0

∥∥∥∥∥g(x)(LgV (x)− Lgh(x)TLgV (x)

‖Lgh(x)‖2
Lgh(x))

∥∥∥∥∥ .
then,

• if N1 is finite, then Qε1 ⊆ V for all 0 < ε <
NV,V̄

3

N1
,

• if N2 is finite and N4 is positive, then Qε2 = ∅ for 0 <
ε < N4

N2
.

Proof: Since usafe
ε (x) takes a different form depending

on the sign of e(x), we distinguish two cases:
Case 1: e(x) ≤ 0: In this case, the equilibrium points of the
closed-loop system satisfy f(x) = 1

ε g(x)LgV (x). Note that
if g(x)LgV (x) = 0, by multiplying on the left by ∇V (x)T

we obtain LgV (x) = 0. Since V is a CLF, LfV (x) < 0
if x 6= 0. This implies that f(x) 6= 0 and hence x is not
an equilibrium point. Hence, no point other than the origin
satisfies LgV (x) = 0 and f(x) = 1

ε g(x)LgV (x), and we can
choose a neighborhood V̄ of Pg with Qε1 ∩ V̄ = ∅. Now, by

taking any neighborhood V of the origin, the choice ε < NV,V̄
3

N1

rules out any equilibrium of this kind in C\V . Note that, since
f(0) = 0 and ∇V (0) = 0, we have e(0) = −α(h(0)) ≤ 0,
and hence 0 ∈ Qε1.
Case 2: e(x) > 0: In this case the equilibrium points of the
closed-loop system satisfy

f(x)− Lfh(x) + α(h(x))

‖Lgh(x)‖2
g(x)Lgh(x) =

=
g(x)

ε
(LgV (x)− Lgh(x)TLgV (x)

‖Lgh(x)‖2
Lgh(x)). (8)

Let us show that these equilibria can only occur in ∂C. Multi-
plying both sides of (8) by ∇h(x)T , we obtain −α(h(x)) = 0.
Since α is a class K∞ function, this can only occur when
h(x) = 0, i.e., x ∈ ∂C. Now, by taking ε < N4

N2
, all equilibrium

points of these kind are ruled out.
Note that the assumption that N1 and N2 are finite in

Proposition 5.1 is satisfied if C is bounded. The neighborhood
V of the origin in the statement can be taken arbitrarily small
and, consequently, if N4 is positive, the controller usafe

ε with
sufficiently small ε confines the equilibria of the closed-loop
system arbitrarily close to the origin. However, as V gets
arbitrarily small, NV3 (and hence ε) could also get arbitrarily
small. In Corollary 5.4 later, we give sufficient conditions to
ensure that this does not happen.

Remark 2: (Existence of boundary equilibria): The as-
sumption that N4 is positive is not satisfied if g(x)LgV (x)
and g(x)Lgh(x) are linearly dependent. In this scenario, using
condition (8), we infer that the equilibrium points in ∂C
that cannot be removed by tuning ε are those where f(x),
g(x)LgV (x) and g(x)Lgh(x) are collinear and e(x) > 0 for
all ε. •

B. Incompatibility and Region of Attraction
Here we show that usafe

ε solves Problem 1. The flexibility
provided by the design parameter ε is instrumental in doing so.
We first introduce a characterization of points where the CLF
and the CBF are incompatible, the proof of which follows as
a special case of [17, Theorem 1].

Lemma 5.2: (Characterization of incompatible points): Let
D ⊆ Rn be open, C ⊂ D closed, V a CLF on D and h a CBF
of C. V and h are incompatible at x ∈ C if and only if LgV (x)
and Lgh(x) are linearly dependent, LgV (x)TLgh(x) > 0 and
LfV (x) +W (x) >

LgV (x)TLgh(x)

‖Lgh(x)‖2 (Lfh(x) + α(h(x))).



The next result shows that, by taking ε sufficiently small for
the closed-loop system, any level set of V that does not contain
incompatible points is a region of attraction of a neighborhood
of the origin.

Theorem 5.3: (Parameter tuning for guaranteed region of
attraction): Let D ⊆ Rn be open, C ⊂ D closed, V a CLF
on D and h a CBF of C. Let ν > 0 be such that the sublevel
set Γν = {x ∈ Rn : V (x) ≤ ν} does not contain any
incompatible points. For x such that e(x) > 0 (which implies
Lgh(x) 6= 0 since h is a CBF), define

B(x) := LfV (x)+W (x)−
Lfh(x) + α(h(x))

‖Lgh(x)‖2
LgV (x)TLgh(x),

C(x) :=
(LgV (x)TLgh(x))

2

‖Lgh(x)‖2
− ‖LgV (x)‖2 .

Let V be a neighborhood of the origin, V̄ a neighborhood
of Pg := {x ∈ C\{0} : LgV (x) = 0} such that LfV (x) +
W (x) ≤ 0 for all x ∈ V̄ andW a neighborhood of Pν = {x ∈
Γν : e(x) > 0, C(x) = 0} such that e(x) > 0 and B(x) ≤ 0

for all x ∈ W\{0}. Define constants Mν
1 , Mν

2 , Mν,V,V̄
3 and

Mν,V,W
4 by

Mν
1 := sup

x∈Γν

|LfV (x) +W (x)|,

Mν
2 := sup

x∈Γν
e(x)>0

|Lfh(x) + α(h(x))

‖Lgh(x)‖2
Lgh(x)TLgV (x)|,

Mν,V,V̄
3 := inf

x∈Γν\(V∪V̄)
‖LgV (x)‖2 ,

Mν,V,W
4 := inf

x∈Γν\(W∪V)
e(x)>0

|C(x)|.

Then, for ε < ε̄ := min{ M
ν,V,W
4

Mν
1 +Mν

2
,
Mν,V,V̄

3

Mν
1
}, V is asymptoti-

cally stable and Γν ∩ C is forward invariant and a subset of
the region of attraction of V .

Proof: Let zε(x) := LfV (x)+LgV (x)usafe
ε (x)+W (x).

It follows from (7) that

zε(x) =

{
LfV (x) +W (x)− 1

ε ‖LgV (x)‖2 if e(x) ≤ 0,

B(x) + 1
εC(x) if e(x) > 0.

We show that zε(x) ≤ 0 for all x ∈ C\V if ε < ε̄, from which
the result follows. First, note that V̄ as required in the statement
exists because V is a CLF and hence, any point x 6= 0 that
satisfies LgV (x) = 0 is such that LfV (x) + W (x) < 0
(without loss of generality, since if LfV (x) + W (x) = 0
we can take W̃ (x) = 1

2W (x)). Hence, by continuity there
exists a neighborhood V̄ of Pg where LfV (x) + W (x) −
1
ε ‖LgV (x)‖2 ≤ LfV (x) + W (x) < 0 for all x ∈ V̄ , for
any ε > 0. Hence by taking ε < ε̄, we ensure that zε(x) ≤ 0
for all x ∈ V̄ independently of the sign of e(x). Note also
that W as required in the statement exists because Γν does
not contain any point where V and h are incompatible and
therefore by Lemma 5.2, all points in Γν satisfying C(x) = 0
necessarily also satisfy B(x) < 0 (without loss of generality,
using a similar argument as above). Therefore, by continuity
of B(x) for any ε > 0 we can take a neighborhood W around
Pν so that B(x)+ 1

εC(x) ≤ B(x) ≤ 0 for all x ∈ W (since by
Cauchy-Schwartz’s inequality, C(x) ≤ 0). Hence, by taking

ε < ε̄, independently of whether e(x) ≤ 0 or e(x) > 0 we
ensure that zε(x) ≤ 0 for all x ∈ W ∪ V̄ . Now we argue
that if ε < ε̄, zε(x) ≤ 0 for all x ∈ Γν\(W ∪ V ∪ V̄).
Note that Γν\(W∪V ∪ V̄) does not contain any points where
LgV (x) and LgW (x) are linearly dependent, since that would
imply C(x) = 0 and hence x ∈ W . Thus, by Cauchy-
Schwartz’s inequality, C(x) < 0 for all x ∈ Γν\(W ∪V ∪ V̄).
Hence, Mν,V,W

4 > 0. Note also that Mν,V,V̄
3 > 0. Therefore,

regardless of whether e(x) ≤ 0 or e(x) > 0, by taking ε < ε̄
we ensure that zε(x) ≤ 0 for all x ∈ Γν\(W ∪ V ∪ V̄), as
claimed. Moreover, since by construction usafe

ε satisfies (3)
and is Lipschitz, by [4, Theorem 2], trajectories stay inside C
for all t ≥ 0.

Note that in the statement of Theorem 5.3, one can pick V
arbitrarily small, which might require an arbitrarily small ε.
The next result states that under some additional reasonable
assumptions, this does not happen and hence there exists a
finite ε for which trajectories converge to the origin.

Corollary 5.4: (Convergence to the origin): Under the same
assumptions and notation of Theorem 5.3, assume addi-
tionally that f, g ∈ C1(Rn), V ∈ C2(Rn), 0 ∈ int(C)
and ker(g(0)T ) ⊆ Vs(∂f∂x (0)). Then, for ε < ε̂ :=

min{ λ̄min(g(0)g(0)T∇2V (0))

|λmax( ∂f∂x (0))|
, ε̄}, the origin is asymptotically sta-

ble and Γν ∩C is forward invariant and a subset of the region
of attraction of the origin.

Proof: Since 0 ∈ int(C), e(0) < 0 and the Ja-
cobian of the closed-loop system evaluated at 0 is J =
∂f
∂x (0) − 1

ε g(0)g(0)T∇2V (0). We show that, with ε <
ε̂, one has vTJv < 0 for v ∈ Rn\{0}. First, con-
sider v ∈ ker(g(0)T ). By assumption, v ∈ Vs(∂f∂x (0)),
and hence vTJv = vT ∂f∂x (0)v < 0. Now, assume
v /∈ ker(g(0)T ). Since ∇2V (0) is positive definite and
g(0)g(0)T is positive semidefinite, ker(g(0)g(0)T∇2V (0)) =
ker(g(0)g(0)T ) and g(0)g(0)T∇2V (0) has non-negative
eigenvalues [18, 7.2.P21]. Hence, vTJv ≤ (λmax(∂f∂x (0)) −
1
ε λ̄min(g(0)g(0)T∇2V (0)))‖v‖2. This implies that J + JT is
negative definite, and since the real parts of its eigenvalues
are twice those of J , we obtain that J is Hurwitz. Therefore,
we can take V in Theorem 5.3 such that the closed-loop
trajectories with ε < λ̄min(g(0)g(0)T∇2V (0))

|λmax( ∂f∂x (0))|
starting at V

converge to 0. Finally, reasoning as in Theorem 5.3, V is
decreasing on Γν\V , and the result follows.

Under the assumptions of Corollary 5.4, by ensuring that
the origin is asymptotically stable in Γν , we rule out the
existence of equilibrium points in Γν other than the origin.
If the conditions of Corollary 5.4 are not satisfied or ε ≥ ε̂,
other undesired behaviors like limit cycles or convergence to
undesired equilibria like the ones found in Proposition 5.1
cannot be ruled out. Theorem 5.3 and Corollary 5.4 solve
Problem 1. Under the stated assumptions, by taking usafe

ε with
ε < ε̂ as a safe stabilizing controller, an inner approximation
of the region of attraction of the origin is the largest level set
of V that does not contain any incompatible points inside it.
In particular, if there exists a sublevel set of V that contains
C, usafe

ε with ε < ε̂ safely stabilizes the origin and the whole
safe set C is in its region of attraction.



VI. SIMULATIONS

Here, we compare the stability QP with safety penalty
controller with the CLF-CBF QP (4) and its modification,
M-CLF-CBF QP, introduced in [11, Theorem 3] to avoid
undesired equilibria. We focus on the following planar system(

ẋ1

ẋ2

)
=

(
x1

x2

)
+

(
1 0
0 1

)
u. (9)

For this system, V (x1, x2) = 1
2x

2
1+ 1

2x
2
2 is a CLF. The safe set

C is the complement of the ball {x ∈ R2 : ‖x− (0, 4)‖ ≤ 2},
and we use the CBF h(x1, x2) = x2

1 + (x2 − 4)2 − 4, with
α(s) = s. According to [11], the CLF-CBF QP (4) creates
undesired equilibria in int(C) for all values of p. Instead, both
M-CLF-CBF QP and the stability QP with safety penalty con-
troller usafe

ε , with ε 6= 1, do not introduce undesired equilibria
in int(C). The latter can be checked from the definition of Qε1
given in Proposition 5.1. In this example, the incompatible
points are given by {(x1, x2) ∈ R2 : x1 = 0, x2 > 4}.
Therefore, the approximation of the region of attraction given
by Theorem 5.3 is Γ2 = {x ∈ R2 : ‖x‖2 < 4}.
Figure 1 shows that the stability QP with safety penalty
controller and M-CLF-CBF QP behave similarly, whereas
CLF-CBF QP (4) fails to stabilize the origin. The plot also
illustrates that trajectories starting at (0, 9) converge to the
boundary equilibrium point at (0, 6) for all three approaches
(this corresponds to a point where f, gLgV , and gLgh are
collinear, cf. Remark 2). This is not surprising since, for
scenarios where the unsafe set is bounded, global convergence
with a smooth vector field is impossible due to topological
obstructions [6]. An advantage of the approach proposed here
is the explicit inner approximation of the region of attraction
which, as Figure 1 shows, is conservative.

Fig. 1: Safe stabilization of a planar system. The green ball is the set of
unsafe states and the small dots display ten initial conditions for the system
trajectories under the CLF-CBF QP, the M-CLF-CBF QP, and the safety
QP with stability penalty controllers. The orange dotted curve marks the
boundary of the estimate Γ2 of the region of attraction. The CLF-CBF QP
controller (with p = 1) preserves safety but does not reach the origin because
of undesired equilibrium points. The safety QP with stability penalty (with
ε = 0.01) and the M-CLF-CBF QP (with p = 1) preserve safety and have
trajectories converge to the origin, except for the one starting at (0, 9).

VII. CONCLUSIONS

We have addressed the problem of safe stabilization of
nonlinear affine control systems by proposing an optimization-
based feedback design framework inspired by penalty methods
for constrained optimization. Our design enforces strictly
either stability or safety via a hard constraint while promoting
the satisfaction of the other property via a soft constraint. We
have characterized the equilibria of the closed-loop system
under the proposed controllers. We have shown how to tune
the penalty parameter to eliminate spurious equilibria and to
increase the region of attraction to all Lyapunov level sets
that do not include points where the CLF and the CBF are
not compatible. Future work will develop tighter estimates
of the region of attraction, consider extra design parameters
and explore the extension of the proposed framework to
generalized notions of CBFs.
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