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Abstract— In the human brain, highly recurrent cortical
circuitry supports information processing, coordinates learning
episodes, and regulates healthy and diseased states. A key
outstanding challenge of neural engineering is to ultimately
control the collective dynamics of distinct neural populations,
so as to promote the emergence or recovery of desired activity
patterns. In this paper, we investigate the control of a general
rate model of neural activity with rectified activation function.
We first show that any target state in the open positive
orthant can be reached in finite time. Furthermore, we present
an array of results to perform (feedback and feedforward)
efficient control in prototypical classes of networks with distinct
connection types and in the case of sparse control inputs. Due
to the relevance of rate models in both biological and artificial
neural networks, our results lay the groundwork to enhance the
dynamical behavior of in vivo and synthetic neural circuitry.

I. INTRODUCTION

A quintessential objective of neural engineering is to
understand how neural representation of external stimuli and
internal spontaneous coordination produce actions relevant
to a particular condition or situation [1], [2]. In this context,
the design of authoritative control techniques for neuronal
dynamics may have profound consequences in both the
natural and artificial domains. In the former, targeted stim-
ulation techniques may be used to restore desirable brain-
wide activity patterns from diseased states [3], [4]. In the
latter, untangling how external inputs drive the dynamics of
large recurrent networks may inform the design of efficient
methods for information retrieval and storage [5], [6]. Owing
to a remarkable tradeoff between analytical tractability and
explanatory power at multiple spatial scales, neural mass
models are an ideal candidate for the design of control strate-
gies. To replicate brain rhythms, neural mass models describe
the evolution of population firing rates, which are obtained
by filtering the population activations through nonlinear
activation functions. In this work, we focus on the rectifier
activation function, which defines the popular rectified linear
units (ReLUs). Importantly, rectifiers possess wide-ranging
biological relevance (as measured in sensory neurons [7]),
and enable rich dynamics [8]–[10]. Our goal here is to
identify efficient control strategies for interconnected neural
populations with rectified linear activation functions. We
characterize the reachability set of this ubiquitous class of
models and exploit the piecewise nature of the rectified
function to derive an array of results aimed at performing
(feedback and feedforward) low-cost control in prototypical
classes of networks with distinct connection types.
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Related work. The study of neural mass models has been a
central theme in neuroscience since the early work of Wilson
and Cowan, FitzHugh, and Schelter [8]. In this context,
rectifier activation functions have been used since the 1960s
as a common feature of rate models. Yet, only recent work
performs formal analyses of these models with control-
theoretic tools. The work [11] focuses on characterizing
the stability properties of hierarchical (threshold-linear) rate
models. The paper [12] investigates controllability of 2 and
3-dimensional rate models with sigmoidal activation func-
tions (which can be approximated with rectifiers in certain
regimes). Notwithstanding, a comprehensive control design
for this class of models is still missing. From a dynamical
systems standpoint, ReLUs display features of piecewise-
linear and switching systems [13] (i.e., possess a piecewise-
smooth flow with state and input-dependent switches), which
yield a technically challenging control framework.
Paper contribution. The contribution1 is twofold. First, we
show that the positive orthant –which corresponds to firing
rates operating in linear regime– is reachable from any posi-
tive initial condition. This result emphasizes the versatility of
recurrent neural networks with rectifier activation function,
and promotes the investigation of efficient control methods
in diverse scenarios. Our second contribution focuses on this
latter aspect. Specifically, we improve upon our first result
by restricting our attention to pairs with population-specific
connectivity, and present a series of control strategies that
leverage the switch-affine nature of the system dynamics.
Our strategies feature multiple benefits, such as constant and
sparse inputs, straightforward extensions to larger networks,
the characterization of systems and states associated with
less cost to control, and practical relevance. We present
both feedforward and feedback control strategies. The former
finds application in biological settings [4], and the latter is
useful in the context of reservoir computing [5]. For space
reasons, all proofs are omitted and will appear elsewhere.

II. PROBLEM SETUP AND PRELIMINARY NOTIONS

This paper investigates control strategies for neural net-
works modeled by firing rate dynamics with rectified linear
activation function. Our results are general, and are con-
cerned with networks where the nodes represent either the

1We use R, R≥0, and R>0 to denote the sets of real, nonnegative real,
and positive real numbers, respectively. For k ∈ R, the operator dke maps
k to the least integer greater than or equal to k. We use bold letters for
vectors and matrices. We use I for the identity matrix, and 0 for the zero
vector. Further, vi indicates the i-th component of a vector v. If x and y
are vectors, x ≤ y denotes xi ≤ yi for all i. Given x ∈ Rn, ‖x‖ is the 2-
norm. We use the short-hand notation x0 = x(0) to indicate the initial state,
and xf for the (target) state. Finally, ei denotes the i-th canonical vector.
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firing rate of a single neuron or the average firing rate of a
population of neurons. Specifically, we consider a rate model
of n interconnected nodes that obey the dynamics:

ẋ(t) = −x(t) + φ(Wx(t) + Bu(t)), 0 ≤ x0, (1)

where x ∈ Rn≥0 is the state of the system, i.e., the nodal firing
rates, and the synaptic weights are encoded in the connec-
tivity matrix W ∈ Rn×n. The vector u ∈ Rm represents an
external input to the system, such as unmodeled background
activity, an exogenous stimulus, a pattern to be learned, or
an electromagnetic control signal. Inputs are administered
to the network through an input matrix B ∈ Rn×m. To
model dedicated nodal inputs, we let K = {k1, . . . , km} ⊆
{1, . . . , n} be the control set, and let B = [ek1 , . . . , ekm ].
Finally, the vector-valued function φ(y) = max(0,y), where
max(·) is applied element-wise, defines a nonlinear response
function that rectifies the thresholded excitatory responses to
external inputs and the natural interactions with other nodes.
In machine learning, φ(·) defines the activation function of
rectified linear units (ReLUs) [14].

It is worth noting that the rate model dynamics (1)
partitions the phase plane into 2n distinct regions [11], which
are parameterized by a switching index σ ∈ {0, `}n. That
is, σi = 0 if node i is inactive, and σi = ` if node i is in
the linear regime. The switching of (1) is state and input-
dependent, and the regions associated to σ are defined as:

Ωσ = {x ∈ Rn≥0 : (Wx+ Bu)i ≤ 0 if σi = 0

0 < (Wx+ Bu)i if σi = `}.

In light of this switching behavior, it is useful to consider
(1) in the equivalent piecewise-affine form:

ẋ = −(I + ΣW)x+ ΣBu ∀x ∈ Ωσ, (2)

where the diagonal matrix Σ = Σ(σ) satisfies Σii = 1 if
σi = `, and Σii = 0 otherwise.

Despite possessing a seemingly “mild” nonlinearity, the
control of networks with dynamics (1) is a challenging
problem because (i) the input appears inside the nonlinearity,
(ii) the vector field is state-dependent, as a single trajectory
may cross multiple regions Ωσ , and (iii) the regions Ωσ
are parameter- and input-dependent (thus, typically time-
varying). Moreover, even though (1) is also equivalent to
a cone-wise linear system [15],2 necessary and sufficient
conditions for complete controllability3 on Rn do not to hold.
As the positive orthant is forward invariant with respect to
the dynamics (1), in what follows we overcome the issues
above and provide strategies to control state trajectories from
and to states in Rn≥0. We make use of the notion of reachable
sets to characterize which states can be reached in finite time.

Definition 1: (Reachable set) The reachable set from x0

for the rate dyanmics in (1) is the set of all states for which
there exists T ≥ 0 and an input u : [0, T ] → Rm such that
the solution x of (1) with x(0) = x0 satisfies x(T ). �

2Conewise form of (1): ẋ = −Ix+φ(y), with output y = Wx+Bu.
3A system is completely controllable if for any pair of states x0,xf ,

there exists a locally integrable input such that the solution to the systems
dynamics can be steered to x(T ) = xf in a finite time T > 0.

In the remainder part of the paper, we show that we
can design inputs to steer the state between any pair of
initial and final states in the positive orthant. We then
build upon this finding and investigate prototypical cases
of inhibitory-inhibitory, excitatory-excitatory, and excitatory-
inhibitory pairs to (i) discover whether sparse inputs (i.e.,
K ( {1, . . . , n}) affect the reachable set, (ii) design energy-
efficient controllers, (iii) elucidate feedback and feedforward
control approaches, and (iv) enact constant control inputs for
situations where dynamical controllers may not be feasible.

III. REACHABILITY ANALYSIS OF NEURAL POPULATIONS
WITH RECTIFIED LINEAR ACTIVATION FUNCTION

This section introduces a control strategy to reach any
target state in the open positive orthant. Our first result shows
that no component can be driven to zero in finite time.

Lemma 3.1: (Zero components cannot be reached in
finite time) Consider the rate dynamics (1) with initial
condition x0 ∈ Rn>0. There does not exist a final time T <∞
such that xi(T ) = 0 for any i ∈ {1, . . . , n}.

We now show that there always exists an input that reaches
any state in the open positive orthant in finite time.

Theorem 3.2: (Reachability of the positive orthant in
finite time) The open positive orthant Rn>0 is a reachable
set from any x0 ∈ Rn≥0 for the rate dynamics (1) with
B = I. Moreover, given xf ∈ Rn>0, there exists an input
u : [0, T ] → Rn such that x(T ) = xf with T = 1 if
2xf ≥ x0, and T = dlog2(maxi(x

0
i/x

f
i))e otherwise.

The proof of Theorem 3.2 relies on the (iterative) appli-
cation of the dynamical feedback controller

u(t) = (I−W)x(t) + xf − x0, (3)

to reach any target state in xf ∈ Rn>0 from x0 ∈ Rn≥0 in
finite time T > 0. As (3) generates a straight trajectory in
the phase space, we refer to it as the straight-line controller.
The following example illustrates some applications of the
straight-line controller (3) in Theorem 3.2.

Example 1: (Applications of the straight-line controller)
Consider n = 3 nodes with rate dynamics (1), B = I and
synaptic weights W as in Fig. 1(a). From x0 = [3 3 3]>, the
application of (3) to reach a desired final firing rate xf1 =
[7 4 6]> is illustrated in Fig. 1(b). If, instead, the desired
firing rates are xf2 = [7 1 1.5]> (from the same initial state
x0), it holds 2xf2 < x0. Therefore, we apply (3) to reach
xi = (x0 +xf2)/2 first, and then again from xi to reach xf2 .
By applying (3) twice, we reach xf2 at a final time T = 2,
in accordance with Theorem 3.2. �

A few comments are in order. Theorem 3.2 shows the
reachability of the entire open positive orthant in finite
time from any initial conditions in Rn≥0. However, if any
component of xfi = 0, then T → ∞, consistently with
Lemma 3.1. Clearly, the straight-line controller (3) can also
be used to enforce and track any desired straight trajectory.

While the straight-line controller guarantees reaching any
target state in a finite amount of time, its naı̈veté inherently
presents a number of drawbacks. First, it assumes that n
distinct inputs are available, i.e., B = I. Second, feedforward
control laws may be preferable whenever the state cannot be



1 2

3

W =



1 −2 3
4 −5 6
7 −8 9




.

(a)

4
8

4
8

3

6

x0

x(1) = xf1

x1

x2

x3

4
8

4
8

3

6

xi

x(2) = xf2

x1

x2

x3

−1

1

co
rr

el
at

io
n

tim
e

0

2

(b)

Fig. 1: (a) The 3-node network in example 1 and its connectivity matrix W. The
network comprises 2 excitatory and 1 inhibitory unit and satisfies Dale’s law (i.e.,
each column in W is either positive or negative). (b) This plot illustrates how the
controller (3) steers the firing rate of the 3 nodes from x0 to xf1 and from x0 to
xf2 . The state trajectory is colored to emphasize its time evolution. Accordingly to
Theorem 3.2, x(T1) = xf1 in time T1 = 1. In regards to xf2 , because it does
not satisfy 2xf2 ≥ x0, the same controller is used to reach the intermediate point
xi = (x0 + xf2 )/2 first, and then xf2 , yielding a final time T2 = 2.

continuously monitored. Third, there might be more energy
efficient control laws that avoid canceling out the dynamics.
Fourth and finally, in biological settings, the control method
may require constant inputs (e.g., direct current stimula-
tion [4]), thus constraining the control action.

In light of the above observations, the remainder of this
paper focuses on developing control strategies for pairs (i.e.,
n = 2) of nodes with specific interconnection types. All
in all, our analysis provides valuable insight that can be
extended to larger networks (i.e., n > 2) and elucidates
which parameters make the system “easier” to control.

IV. CONTROL STRATEGIES FOR PAIRS OF RECTIFIED
LINEAR UNITS

In this section, we restrict our attention to node pairs.
Due to the relevance of Dale’s law in biological neuronal
networks [16],4 we constrain the signs of each column in
W to be either positive or negative. This choice gives rise
to (i) purely inhibitory circuits, which regulate the activity
of the auditory system [17], (ii) purely excitatory circuits,
which are believed to promote the emergence of spontaneous
activity in the retina, spinal cord, and hippocampus [18], and
(iii) excitatory-inhibitory pairs, which have been shown to be
especially relevant in the study of brain rhythms [10].

Before presenting our results, we emphasize that the main
challenge in developing controllers for our model stems
from the fact that the region boundaries between distinct
regions Ωσ (cf. (2)) intimately depend on the input u. As
we are interested in efficient control methods, we measure
the energy of a control input by

E(u) =

∫ T

0

‖u(τ)‖2dτ. (4)

Finally, because for n = 2 the phase plane is partitioned in 4
regions, we use Ω``, Ω0`, Ω`0, and Ω00 to denote the linear-
linear (Σ = I), inactive-linear (Σ = [0, e2]), linear-inactive
(Σ = [e1, 0]), and inactive-inactive regions (Σ = [0 0]).

A. Control of I-I pairs
We consider a pair of inhibitory nodes with dynamics (1)

and synaptic weights W =
[−a −b
−c −d

]
, with a, b, c, d ∈ R>0.

4Dale’s law states that neurons that are excitatory (resp., inhibitory) only
output excitatory (resp., inhibitory) signals.

TABLE I: Control strategies for I-I pairs

(x0,xf) case control strategy result

xf
i < x0

i for some i
coasting, feedforward

sparse, constant
Proposition 4.1

xf > x0 feedforward, energy-efficient Proposition 4.2

x0
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ax1 + bx2 − u1 = 0

cx1 + dx2 − u2 = 0

Ω`` Ω0`

Ω`0 Ω00

Fig. 2: Phase space of an I-I pair with parameters a = d = 0.25, c = d = 0.5, B =
I, and constant control inputs u = [4 3]>. The region boundaries are represented in
red and green. The initial firing rates x0 further partition R2

≥0 into 4 affine subspaces
which lend themselves to the design of distinct (tailored) control methods (see Table I).
Notice that, for u = 0, Ω00 = R2

≥0. As u > 0 becomes larger, the regions Ω``,
Ω0`, and Ω`0 manifest in the positive orthant, as depicted here. Conversely, u < 0
has no effect due to Wx being always negative for all x ∈ R2

≥0 in φ(·).

Fig. 2 illustrates the phase space properties of a controlled
I-I pair. It is worth noting that, due to Wx < 0 for all
x ∈ R2

≥0, any u < 0 produces no effect on the dynamics.
Table I summarizes the results of this section and the main
advantages of the proposed control strategies. We distinguish
between two cases: xf > x0, and all other possibilities (i.e.,
xfi < x0i for some i). We start our treatment by focusing on
the latter case, where we let one state coast along the vector
flow while applying a single control input (i.e., K = {1} or
K = {2}) to steer the other state.

Proposition 4.1: (Control of I-I pairs when xfi < x0i by
constant inputs and coasting) Consider an I-I pair with
dynamics (1) and K = {1}. Let S1 = {x : x2 ≤
x02 and x1 ≥ (x02/x

0
1)x2} and T = − log(xf2/x

0
2). Any

xf ∈ S1 is reachable by applying

u1 =

{
0 if 0 ≤ t < t1,

ū1 , amax(x01, x
f
1) + bmax(x02, x

f
2) if t1 ≤ t ≤ T,

if there exists t1 ≥ 0 solving

e−(a+1)T+at1x01 + ū1(1−e−(a+1)(T−t1))
a+1 − bx0

2(eaT−eat1 )

a = xf1.
(5)

Otherwise, xf is reachable by applying

¯̄u1 =

(a+ 1)

(
e−(a+1)T x01 − xf1 −

bx0
2

a
(eaT − 1)

)
e−(a+1)T − 1

(6)

for all 0 ≤ t ≤ T .

In the interest of space, we only provide our results for
K = {1}, as a controller for the case K = {2} that reaches
any xf ∈ {x : x1 ≤ x01 and x2 ≥ (x01/x

0
2)x1} can be

derived analogously to the one in Proposition 4.1. Notice that
the controller designed in Proposition 4.1 is sparse and only
requires to apply a constant value. That is, we do not need
any state feedback to reach the final state, and we can do
so by means of a single time-invariant control input. Finally,
the choice of ū1 so that x1 ∈ Ω`0 reveals which network
parameters a and b are advantageous to steer the firing rate
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Fig. 3: Control of the I-I pair with parameters as in Fig. 2. (a) Comparison of the
trajectory from the controller ū1 = 5 in Proposition 4.1 applied at t1 = 1.4888 (in
blue), the trajectory from the optimal time-varying controller computed from (7) (in
purple, dashed), and the straight-line controller (3) (in orange, dotted). Both single-
input controllers yield a qualitatively similar trajectory and require similar control
energy (E = 13.25 for the one in Proposition 4.1, and E = 10.88 for (7)). To
emphasize how x ∈ Ω`0 after the control ū1 is turned on, the partitioning of R2

>0
by the regions Ω`0 and Ω00 is shown for t1 ≤ t ≤ T . The regions and regions
boundaries are color-coded as in Fig. 2. Because 2xf > x0 does not hold, the straight-
line controller (3) is applied 3 times (requiring energy E = 204.1), and intermediate
points xi1 ,xi2 are reached at t = 1 and t = 2, respectively. (b) Controller (8) applied
to the same I-I pair to reach xf = [9 7]> > x0 in T = 0.9. The regions Ωσ are
depicted at u(0) = [6.56 4.45]>. As u(t) increases, the region boundaries (in red
and green), shift to incorporate the entire trajectory in Ω``.

with only one input. We can see from the definition of ū1

that networks with a� b require less energy (cf. (4)) to steer
the system towards any xf with small x02 and large xf1.5

Remark 1: (Minimum-energy feedback control of I-I
pairs) If the inputs are not constrained to be constant, then
we can compute ū1 in Proposition 4.1 by solving

min
u1

∫ T

0

|u1(τ)|2dτ (7)

s.t. ẋ1 = −(a+ 1)x1 − bx02e−t + u1,

x1(0) = x01, x1(T ) = xf1, u1(t) ≥ ax1(t) + bx02e
−t,

which is convex, but requires measurements of x1(t). �
The next example compares the energy requirements of

the controller in Proposition 4.1 to the ones of (3) and (7).
Example 2: (Comparison between controllers for an I-I

pair) Consider the same I-I pair as in Fig. 2 with control
set K = {1}. We first apply the controller described in
Proposition 4.1, which yields ū1 = 5 applied at t1 =
1.4888 ≤ t ≤ T = 1.8971. Next, we solve the problem
in (7) with the YoP toolbox for Matlab [19]. The energy
of ū1 computed from Proposition 4.1 is E(ū1) = 13.25.
Instead, u1(t) from (7) yields E(u1(t)) = 10.88. The two
trajectories, which yield qualitatively similar results, are
depicted in Fig. 3(a). The slightly higher control cost of ū1 is
counterbalanced by advantages such as being constant and
feedforward. By allowing K = {1, 2}, we also apply the
straight-line controller (3). However, because 2xf < x0, the
controller achieves x(T ) = xf at T = 3 after reaching two
intermediate points x(1) = xi1 and x(2) = xi2 . Finally,
the controller (3) yields E(u) = 204.1, which is 1 order of
magnitude larger than the single-input controllers. �

Because control laws as the one in Proposition 4.1 allow
us to control the pair’s firing rate in all R2

>0 \ {x :
x > x0}, we conclude this section by investigating control

5The same reasoning leads to preferring c� d when steering the system
with K = {2} to any xf with large xf2 and small x01.
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ẋ2 > 0
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Fig. 4: Phase space of an E-E pair with parameters a = 0.6, b = 0.8, c = 1,
d = 0.5, B = I, and constant control inputs u = [−1 − 2.5]>. The region
boundaries are represented in red and green. To not clutter the figure, we choose not
to highlight the regions Ωσ . Notice that sign(ẋi) switches whenever x crosses the
nullclines N1 and N2 (in dashed purple and orange, respectively.

laws for the case xf > x0. To present our result, we let
G(t) =

∫ t
0
e(W−I)>(W−I)tdt be the controllability Gramian

of dynamics (1) with K = {1, 2} in Ω`` [20].
Proposition 4.2: (Control of I-I pairs when xf > x0)

Consider an I-I pair with dynamics (1) and control set K =
{1, 2}. There always exists T > 0 such that x(T ) = xf for
any pair (x0,xf) ∈ R2×2

>0 with xf > x0 by the controller

u(t) = −e(W−I)>(T−t)G(t)−1(e(W−I)Tx0 − xf). (8)

Fig. 3(b) illustrates an application of (8). Note that (8) is
a minimizer of

min
u

∫ T

0

‖u(τ)‖2dτ (9)

s.t. ẋ =(W − I)x(t) + Bu(t), x(0) = x0, x(T ) = xf .

Therefore, amongst all the controllers that keep x(t) ∈
Ω`` at all times, which is a sufficient condition to reach
any xf > x0, (8) is the most energy efficient. Numerical
simulations suggest that (8) is also the minimum-energy
control for (1) when T is sufficiently small and xf > x0.
However, computing the final time T for which this holds
is beyond the scope of this paper. We conclude this section
by observing that Proposition 4.2 immediately extends to
networks of n > 2 nodes.

B. Control of E-E pairs

Next, we turn our attention to a pair of excitatory nodes
with dynamics (1) and synaptic weights W =

[
a b
c d

]
, with

a, b, c, d ∈ R>0. Notice that any u(t) > 0 yields x(t) ∈ Ω``

at all times. Besides distinguishing between different relative
locations of x0 and xf , we shall also distinguish between
E-E pairs with a, d > 1, and E-E pairs with 0 < a ≤ 1
or 0 < d ≤ 1. In the former case, there are no nullclines
Ni , {x : ẋi = 0} that cross R2

>0 for any value of
u > 0. Instead, in the latter case, nullclines typically intersect
R2
>0 even in the absence of control. Fig. 4 illustrates the

complexity of the phase space of an E-E pair.
We start by presenting control strategies for pairs with

a, d > 1. Table II summarizes our control strategies.
Proposition 4.3: (Control of E-E pairs when xf > x0)

Consider an E-E pair with dynamics (1), a, d > 1, and con-
trol set K = {1, 2}. For any T > 0 such that e(W−I)Tx0 <
xf , the controller (8) achieves x(T ) = xf .



TABLE II: Control strategies for E-E pairs with a, d > 1

(x0,xf) case control strategy result

xf > x0 feedforward, energy-efficient Proposition 4.3
feedforward, sparse, constant Remark 2

xf
i < x0

i for one i feedforward, constant Proposition 4.4
xf < x0 feedback, faster than (3) Proposition 4.5

Proposition 4.3 emphasizes that specific values of x0 and
xf allow us to exploit the dynamics in Ω`` to use (8).
Moreover, the only condition is to set a final time T small
enough to guarantee that the input remains positive.

Proposition 4.4: (Control of E-E pairs when x0i < xfi by
constant inputs) Consider an E-E pair with dynamics (1),
a, d > 1, and control set K = {1, 2}. Suppose xf2 < x02
and xf1 > x01, and let T = − log(xf2/x

0
2). The controller

ū with ū1 =
(a−1)

(
e(a−1)T x0

1−x
f
1−

bx0
2

a (eT−e(a−1)T )

)
e(a−1)T−1

, ū2 =

−cxf1 − dx02, achieves x(T ) = xf if ū1 > −axf1 − bx02.

The same reasoning can be used to design a controller for
xf with xf2 > x02 and xf1 < x01, and is omitted here. With
respect to synaptic weights that lower the energy needed to
control the system, |ū2| becomes smaller (thus decreasing
‖ū‖) if c� 1 when xf1 � 1, or if d� 1 when x02 � 1. We
are left with the case xf < x0, which we treat next.

Proposition 4.5: (Feedback control of E-E pairs when
xf < x0) Consider an E-E pair with dynamics (1), a, d > 1,
and control set K = {1, 2}. Suppose xf < x0, and let Ti =
− log(xfi/x

0
i ), i ∈ {1, 2}. There always exists a controller ũ

of the form
ũ(t) = −Wx(t) + ū, (10)

with constant ū ≥ 0 that achieves x(T ) = xf in T =
min(T1, T2). Moreover, ū can be chosen as

ū =

{[
0 (xf2 − e−T x02)/(1− e−T )

]> if T1 < T2,[
(xf1 − e−T x01)/(1− e−T ) 0

]> otherwise.

It is worth noting that due to the final time T depending
on a natural logarithm instead of a logarithm in base 2, the
controller (10) achieves x(T ) = xf faster than (3).

Remark 2: (Sparse control inputs in E-E pairs) Dif-
ferently from pairs with inhibitory connections, E-E pairs
with a, d > 1 are more challenging to control with sparse
inputs. However, in the case of xf > x0, a single control
input can be designed in the same fashion as the one in
Proposition 4.1. In fact, a controller applied to node i with
i = arg maxi∈{1,2}− log(xfi/x

0
i ) ensures x(T ) = xf . �

We now briefly touch upon E-E pairs with a < 1 and/or
d < 1. Whenever either a < 1 or d < 1, and xfi > x0i
for some i, constant controllers can be designed analogously
to Proposition 4.4. Further, in the case xf < x0, feedback
controllers can be designed analogously to Proposition 4.5.
More interesting E-E pairs possess both a, d < 1, where we
can exploit the sign shift in ẋ between the nullclines, see
Fig. 4. Table III summarizes our results in this case.

Proposition 4.6: (Control of E-E pairs with a, d < 1
when xf > x0 by constant inputs) Consider an E-E pair
with dynamics (1), a, d < 1, and control set K = {1, 2}.
Suppose xf > x0. The constant controller

ū = (I− e(W−I)T )−1(W − I)
(
e(W−I)Tx0 − xf

)
(11)

TABLE III: Control strategies for E-E pairs with a, d < 1

(x0,xf) case control strategy features
xf > x0 feedforward, constant Proposition 4.6
xf < x0 feedforward, constant Proposition 4.7

other cases feedforward, constant Proposition 4.4
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Fig. 5: Phase space for a = 2.5, b = c = 2, d = 0.1 and constant input u =
[2 − 2]>. Because the weights and the input satisfy (12), there is a unique unstable
equilibrium x∗ = [2.638 2.979]> (as in (13)) in Ω`` at the intersection of the two
nullclines. The state trajectory plotted in this figure reveals the limit cycle orbit.

achieves x(T ) = xf for all T such that ū > 0.
We reason that, for constant controllers such as the one in

Proposition 4.6, systems with 1−a
b > c

1−d require a higher
cost (i.e., higher ‖ū‖). To see this, rewrite the nullclines as
x2 = 1−a

b − u1

b and x2 = c
1−d + u2

1−d , and notice that ẋ < 0
whenever the slope of the former line is larger than the slope
of the second one (see Fig. 4). The converse holds for the
case xf < x0, which we address next.

Proposition 4.7: (Control of E-E pairs with a, d < 1
when xf < x0 by constant inputs) Consider an E-E pair with
dynamics (1), a, d < 1, and control set K = {1, 2}. Suppose
xf > x0. The constant controller (11) achieves x(T ) = xf

for all T such that ū > −Wxf .
We conclude this section by emphasizing that controllers

akin to the one in Proposition 4.4 can be used to achieve
x(T ) = xf in the cases x0i < xfi, x

0
−i < xf−i.

C. Control of E-I pairs
We are now ready to address pairs of one excitatory neuron

and one inhibitory neuron. The with synaptic weights satisfy
W =

[
a −b
c −d

]
, with a, b, c, d ∈ R>0. In general, we can

adapt the control strategies developed above to E-I pair. In
the interests of space, we focus on what sets E-I pairs apart:
the existence of isolated attractive orbits in the phase space –
that is, limit cycles. In the following, we assume K = {1, 2}.

It is a known result that all solutions to (1) (except the
one originating from the unique unstable equilibrium in (13))
converge to a limit cycle if and only if [10], [21]:

d+2 < a, (a−1)(d+1) < bc, u1 > 0, u2 <
(d+1)u1

d . (12)

If (12) holds, the system has a unique unstable equilibrium

x∗ =
1

bc− (1 + d)(a− 1)

[
(1 + d)u1 − bu2
cu1 − (a− 1)u2

]
. (13)

Fig. 5 illustrates the emergence of a limit cycle.
The above conditions provide a novel control opportunity:

hitching a ride on the limit cycle. Because the region
boundaries x2 = a

bx1 + u1

b and x2 = c
dx1 + u2

d increase their
x2-coordinate as u > 0 becomes larger, there always exists
T > 0 such that u > 0 as in (8) reaches xf > x0 (akin
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Fig. 6: Left, application of the push-and-coast control strategy in an E-I pair with
a = 2.5, b = c = 2, d = 0.1. The controller (8) is used for TME = 0.6 to reach
from x0 = [0.1 0.1]> the closest point xi = [0.95 1]> in the limit cycle associated
to uLC = [2 − 2]> (in gray). The latter input is applied until x(TME + T LC =
2.67) = xf = [5.2 6]>. The total energy required is EME + ELC = 7.43. Right,
application of the coast-and-push strategy in the same E-I pair of the left panel with
the same x0, xf . Here, uLC = [0.2 − 0.22]> is applied for T LC = 2.06, and (8)
is applied for TME = 0.6. The total energy required is EME +ELC = 58.41, which
is 7.86 times more energy than the push-and-coast strategy for this pair (x0,xf).

to Proposition 4.2). For the sake of simplicity, we restrict
our analysis to this case, and suppose that the attractive
closed orbit γx∗ associated to x∗ is known. We let uLC =
(I−W)x∗ denote the control input associated to x∗ in (13).
We propose two control strategies to combine minimum-
energy control and limit-cycle coasting. In both strategies,
x∗ is such that x0 ≤ minx∈γx∗ x < maxx∈γx∗ x ≤ xf (i.e.,
the limit cycle lies between x0 and xf ).

1) Push-and-coast: Step (i): Utilize (8) to reach xi =
minx∈γx∗ ‖x − x0‖, where x∗ is such that xf ∈ γx∗ . Step
(ii): apply uLC until x(T ) = xf .

2) Coast-and-push: Step (i): utilize uLC with x∗ such that
x0 ∈ γx∗ until x(t) = minx∈γx∗ ‖x− xf‖. Step (ii) Apply
(8) to reach x(T ) = xf .

Given (x0,xf), to find which control strategy requires
the least energy, we let TME denote the time during which
the minimum-energy control (8) is applied, T LC denote the
time during which uLC keeps the limit cycle active, EME =
TME(xf−e(W−I)TME

x0)>G−1(TME)(xf−e(W−I)TME

x0) be
the energy associated with (8) [20], and ELC = T LC‖uLC‖
the energy associated with uLC. Clearly, the control strat-
egy requiring the least energy is the one that minimizes
EME +ELC. Fig. 6 compares them both. Notice that, in both
panels, the push control is guaranteed to be positive (thus,
x(t) ∈ Ω``) by xf > x0. Whenever the latter inequality is
not satisfied, the controller (8) may yield x(t) 6∈ Ω``.

Remark 3: (Control of E-I pair with x0 < xf by limit
cycle) The push-and-coast control strategy can be simplified
if there exists 0 < t1 < ∞ with {x(t1) = e(W−I)t1x0} ∩
γx∗ 6= ∅ from any x0,x(t1) ∈ Ω`` for u = 0. I.e., if x(t) =
e(W−I)tx0 intersects the limit cycle orbit, then the only
input needed to reach xf is uLC. This simplification agrees
with empirical observations of neural circuitry efficiently
exploiting limit cycle attractors during memory tasks [22].�

V. CONCLUSIONS

This paper presents control strategies for rate models of
interconnected neural units with rectified activation function.
We show that there exists a controller capable of steering
the network state between any pair of initial and final states
in the (open) positive orthant in finite time. Furthermore, by
focusing on interconnected pairs, we present feedforward and
feedback control strategies that feature constant input signals,

sparse controllers, and low control energy. Directions of
future research include an exhaustive investigation of limit-
cycle coasting strategies and the application of the results to
the training of recurrent neural networks.
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Master’s thesis, Linköping University, Vehicular Systems, 2016.

[20] T. Kailath. Linear Systems. Prentice-Hall, 1980.
[21] E. Nozari and J. Cortés. Oscillations and coupling in interconnections

of two-dimensional brain networks. In 2019 American Control
Conference (ACC), pages 193–198, Philadelphia, PA, 2019.

[22] E. Ghazizadeh and S. Ching. Slow manifolds within network dynamics
encode working memory efficiently and robustly. PLOS Computa-
tional Biology, 17(9):1–20, 09 2021.


	Introduction
	Problem setup and preliminary notions
	Reachability analysis of neural populations with rectified linear activation function
	Control strategies for pairs of rectified linear units
	Control of I-I pairs
	Control of E-E pairs
	Control of E-I pairs
	Push-and-coast
	Coast-and-push


	Conclusions
	References

