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Abstract— Declines in cost and concerns about the environ-
mental impact of traditional generation have boosted the pene-
tration of renewables and non-conventional distributed energy
resources into the power grid. The intermittent availability
of these resources causes the inertia of the power system to
vary over time. As a result, there is a need to go beyond
traditional controllers designed to regulate frequency under
the assumption of invariant dynamics. This paper presents a
learning-based framework for the design of stable controllers
based on imitating datasets obtained from linear-quadratic
regulator (LQR) formulations for different switching sequences
of inertia modes. The proposed controller is linear with a
constant feedback-gain, thereby interpretable, does not require
the knowledge of the current operating mode, and is guaranteed
to stabilize the switching power dynamics. We show that it
is always possible to stabilize the switched system using a
communication-free local controller whose implementation only
requires each node to use its own state. We illustrate our results
on a 12-bus 3-region network.

I. INTRODUCTION

In power networks, any mismatch between electricity
generation and consumption leads to the deviation of the
frequency from its nominal value. The increasing pene-
tration of renewable energy resources (RES), along with
their intermittent availability, has made ensuring frequency
regulation more relevant than ever. The presence of RES
reduces the inertia of the system and makes it time-varying.
As such, traditional controllers designed for invariant systems
are no longer guaranteed to be stabilizing. Motivated by
these considerations, this paper addresses the problem of
optimally stabilizing the frequency of power networks with
time-varying inertia.

Literature Review: In the traditional paradigm of power
systems, there exists a number of mechanisms to prevent
frequency excursions, cf. [1], [2]. Inertial response is the
first (automatic) response when any power imbalances occur.
It originates from the kinetic energy stored in synchronous
generators and determines the instantaneous frequency when
power imbalances arise. More inertia in the system translates
into a slower rate of change of frequency. As the frequency
starts deviating, some generators respond proportionally to
this deviation through the governor response or droop con-
trol [3]. After droop control starts actuating, slower mech-
anisms (e.g., spinning reserves) participate to restore the
frequency. RES, such as wind and solar, are usually con-
nected through inverters, decoupling their rotational inertia
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(if existing) from the grid. As a result, the system inertia
is an inverse function of the number of RES. In fact, since
different distributed energy resources make autonomous de-
cisions when connecting to the grid, the inertia of the system
becomes time-varying [4]. This can provoke abrupt variation
in the grid frequency under mismatches of generation and
demand. Without appropriate measures, this can make the
standard frequency control schemes too slow to mitigate
arising contingencies. The impact of low inertia in the future
grid is captured by system operators in [5]–[7].

A growing body of work addresses this need by analyzing
the effect of inertia variations on frequency [8], designing
robust controllers [9], and identifying conditions on the
power supply dynamics and rate of change of inertia that
ensure stability [10]. The work [11] uses a switched affine
hybrid system framework to model inertia variations and
proposes a learning-based constant-gain feedback controller
stabilizing each inertia mode of the closed-loop dynamics.
This formulation is extended in [12] to enhance sparsity,
albeit each node needs to communicate with a certain mini-
mum threshold number of nodes, and take into account the
stability of the switched system, albeit there is no guarantee
that a feasible solution exists. Both [11], [12] assume that
all the nodes have equal inertia in each mode and stability is
considered a posteriori once the training is complete. Ideally,
as pointed out in [13], stability guarantees should be encoded
in the training phase itself. In fact, the lack of guarantees
on stability is a shortcoming in many works employing
machine learning techniques for power systems, cf. [14]–
[17]. For example, the work in [17] presents an overview on
reinforcement learning (RL) techniques for power systems,
but does not touch upon the stability aspects. The work [18]
discusses the importance of stability when using RL in power
systems and how key RL assumptions may not hold in
some power systems applications. Recently, [19], [20] have
developed RL approaches for frequency control with stability
guarantees, but the designed controllers do not consider time-
varying frequency dynamics due to the changing inertia.

Statement of Contributions: We consider the problem of
designing a constant-gain feedback controller to stabilize the
frequency of a power network with time-varying inertia. The
fact that the controller gain is constant makes it oblivious to
changes in inertia, hence facilitating its implementability by
power system operators. Our starting point is a formulation of
the frequency dynamics of the power network as a switched
affine system, where each mode corresponds to a different
value of the inertia. To address the fact that changes in
the operating mode are not known a priori, we consider a
candidate set of switching sequences and, for each of them,



solve a finite-horizon LQR problem to generate optimal state-
input trajectories to be used as data. We then formulate
the controller design problem as a constrained least-squares
optimization, where the objective function measures the fit of
the trajectories generated with the controller to the data, and
the constraints encode the stabilization requirement for the
switched system. Our first result considers the formulation
where constraints correspond to the stabilization of the
individual modes and its proof is constructive, providing an
explicit stabilizing controller which is distributed over the
power network. Our second result generalizes our treatment
to guarantee the system stability under arbitrary switching,
and establishes that regardless of the inertia of the operating
mode, stabilization is always possible using a constant-gain
controller. Our last result shows that there always exists
a stabilizing controller which is local, meaning that its
implementation only requires each node to use its own state.
Simulations on a 12-bus 3-region network demonstrate the
stabilizing performance of the learned controllers with and
without the sparsity constraint.

II. PROBLEM FORMULATION

Consider1 a power network with n ∈ Z>0 nodes, whose
interconnection is described by an undirected graph G. Fol-
lowing [22], we assume that the control input at each node
i ∈ {1, . . . , n} can be modeled as power injection with no
dynamics and consider a DC approximation of the power
flow. The frequency and phase angle dynamics for each node
i ∈ {1, . . . , n} are approximated as follows

miθ̈i + diθ̇i = ui −
∑
N i

bij(θi − θj),

where ui is the power input at node i and bij ∈ R≥0 is the
susceptance between lines i and j. If node i is a synchronous
generator, then θi ∈ R denotes the rotor angle, mi ∈ R>0

the rotational inertia of the generator i and di ∈ R>0 the
primary speed droop control at node i. If node i corresponds
to a renewable or battery interfaced via a power electronics
converter, then θi is the voltage phase angle, mi is the power
measurement time constant or the virtual inertia through a
controlled device, and di is the droop control coefficient. The

1Let R,R≥0,R>0,Z,Z>0 denote the set of reals, non-negative reals,
positive reals, integers, and positive integers, resp. We denote by | X | the
cardinality of X . The symbol 0 represents the matrix of all zeros and
I denotes the identity matrix, with appropriate dimensions. For a matrix
A, Aij denotes its ijth element, A> denotes its transpose, and A−1

its inverse. A � 0 (� 0) and A ≺ 0 (� 0) denote, resp., that A is
positive definite (semidefinite) and negative definite (semidefinite). A⊗ B
denotes the Kronecker product of A and B. diag(ai) is the matrix with
entries {ai}mi=1 in its main diagonal. We let (x; y) ∈ Rm+n denote the
concatenated vector formed with the entries of x ∈ Rm and y ∈ Rn.
We employ basic concepts from graph theory following [21]. We denote a
weighted undirected graph by G = (V, E,A), with V as the set of nodes
and E ⊆ V ×V as the set of edges. An edge from node i to j is equivalently
represented as (i, j) ∈ E or (j, i) ∈ E . A node j ∈ V is a neighbor of i
if (i, j) ∈ E . The set of neighbors of node i is N i. With | V | = n, the
adjacency matrix A ∈ Rn×n of G is such that Aij > 0 if (i, j) ∈ E and
Aij = 0, otherwise. The weighted degree of node i is d(i) =

∑
N i

Aij .
The Laplacian matrix L ∈ Rn×n is L = diag(d(i))− A.

joint state-space representation of the network is[
θ̇
ω̇

]
=

[
0 I

−M−1 L −M−1D

]
︸ ︷︷ ︸

A

[
θ
ω

]
+

[
0

M−1

]
︸ ︷︷ ︸

B

u, (1)

where x = (θ;ω) ∈ R2n corresponds to the stacked
vector of angle and frequency deviations at each node,
M = diag(mi) ∈ Rn×n is the diagonal matrix with inertia
coefficients, D = diag(di) ∈ Rn×n is the diagonal matrix
with droop control coefficients, and L is the Laplacian of the
weighted version of G whose adjacency matrix is Aij = bij ,
i, j ∈ {1, . . . , n}. One can verify that (A,B) is stabilizable.

The formulation (1) assumes that the inertia of the system
remains constant and makes sense in the traditional paradigm
of power systems. However, in scenarios with increasing
penetration of renewables, the inertia of the network may
change over time. Hence, it is reasonable to incorporate
the time dependence in the inertia at each node. Since
the resources do not connect or disconnect with the grid
continuously, rather only at discrete time instances, we do
this by considering a switched-affine system representation
as in [23], where each mode corresponds to a different value
of the inertia. If m ∈ Z>0 is the number of modes, the
frequency dynamics are then given by[

θ̇
ω̇

]
=

[
0 I

−M−1q(t) L −M−1q(t)D

]
︸ ︷︷ ︸

Aq(t)

[
θ
ω

]
+

[
0

M−1q(t)

]
︸ ︷︷ ︸

Bq(t)

u. (2)

Here, at time t, the system is in mode q(t) ∈ {1, . . . ,m} and
Mq(t) denotes the inertia of the network in mode q(t). The
inertia at time t depends on the online generators and the
connected power electronics converters at that time. When
convenient, we drop the argument t and refer to q(t) as q.

Our goal is to design an optimal controller that brings the
system (2) to the origin from any initialization. Since we
might not have knowledge of the current operating mode at
all times, our aim is to design a time-invariant controller
of the form u = Kx, that stabilizes (2), minimizes the
state deviation, and optimizes the control input required. For
a fixed linear system, this is achievable using the solution
to the linear-quadratic control (LQR) problem. However,
for the switched system, this cannot be done unless the
switching sequence is known beforehand. Optimizing in-
stead for all possible switching sequences quickly becomes
computationally intractable. Therefore, we follow an offline,
data-driven, imitation-based approach that balances the goals
of optimality and stability: the basic idea is to consider a
set of candidate switching sequences, solve a finite-horizon
LQR problem for each of them, and finally use the resulting
trajectories as a training set to design a stabilizing controller
imitating the observed behavior. We assume each node can
inject the power required of it by the controller.

III. DATA-DRIVEN CONTROLLER DESIGN

In this section, we carry out our approach to design a
common stabilizing time-invariant controller using training
data generated for system (2) for a variety of scenarios.



We describe in Section III-A how the data is generated
via a finite-horizon LQR formulation. Then we provide
in Section III-B a least-squares formulation to learn the
controller while guaranteeing the stability of each mode q ∈
{1, . . . ,m}. Since the stability of all the modes is not suf-
ficient to guarantee the stability of the switched system, we
generalize in Section III-C our treatment to the stabilization
of the switched system via a common Lyapunov function.

A. Training Data from Optimal Input Trajectories

In order to generate the training data which would later
be used to learn the controller gain K, we solve S ∈ Z>0

instances of the finite-horizon LQR problem

min
x,u

T∫
0

(
x(t)>Qx(t) + u(t)>Ru(t)

)
dt (3)

s.t. x(0) = x0

ẋ(t) = Aq(t)x(t) +Bq(t)u(t), t ∈ [0, T ],

where Q � 0 ∈ R2n×2n penalizes state deviations, R �
0 ∈ Rn×n represents a cost associated to the control action,
T > 0 is the time horizon, x0 ∈ R2n is the initial state, and
x(t) ∈ R2n and u(t) ∈ Rn are the variables describing the
optimal state and input trajectories, resp.

We generate S scenarios by selecting different initial
conditions x0 and switching sequences q(t), with the pair
(xk(t),uk(t)) denoting the training data for scenario k ∈
{1, . . . ,S}. The scenarios provide data in the form of desir-
able trajectories for the controller to imitate. The amount of
information available to capture optimality grows with the
number of scenarios considered, at the cost of an increasing
computational effort to handle them. Also, the number of
trajectories by itself does not guarantee that the resulting
controller is stable. Instead, in our design formulations below,
we make sure the stability of the controller is guaranteed
independently of the number of scenarios considered. Re-
garding the selection of initial conditions for the scenarios,
since the frequency deviation is usually bounded for real
systems, from a practical viewpoint, rather than taking them
to be uniformly distributed throughout the state space, it
makes sense to consider initial conditions close to the origin.

B. Simultaneous Stabilization of All Switching Modes

Here, we design a learned time-invariant controller which
guarantees stability for each mode q ∈ {1, . . . ,m}. Let H
denote the set of Hurwitz matrices. The controller design
problem described above can be cast as the optimization

min
K

S∑
k=1

T∫
0

‖uk(t)−K xk(t)‖22 dt (4)

s.t. Aq +BqK ∈ H, ∀q.

Since the set of Hurwitz matrices is not convex, (4) is
non-convex. In fact, finding a feasible solution of (4), also
referred to as the simultaneous stabilization problem, is
NP-hard for general system and input matrices, cf. [24].
However, the matrices {Aq}mq=1 and {Bq}mq=1 in our setup

are not arbitrary, and indeed have a well-defined structure.
Specifically, the only quantity that specifies the operating
mode q ∈ {1, . . . ,m} is the inertia matrix Mq . Building
on this insight, we prove that the simultaneous stabilization
problem (4) is always feasible. Our proof is constructive and
relies on identifying a controller that stabilizes all the modes.

Proposition 3.1: (Feasibility of the simultaneous stabi-
lization data-driven problem for individual modes): Prob-
lem (4) is always feasible.

Proof: Let K = [K1 K2], where K1,K2 ∈ Rn×n.
Then from equation (2), the closed-loop system matrix for
mode q ∈ {1, . . . ,m} is given by

Aq +BqK =

[
0 I

−M−1q L −M−1q D

]
+

[
0

M−1q

] [
K1 K2

]
=

[
0 I

−M−1q (L−K1) −M−1q (D −K2)

]
. (5)

Let us first consider the case when, in a given mode q, the
inertia coefficient of all the nodes is the same, and is given
by mq ∈ R>0. Then we have Mq = mqI . Choosing

K1 = L−I and K2 = D − I, (6)

the closed-loop system matrix (5) becomes

Aq +BqK=

[
0 I

−1/mqI −1/mqI

]
=

[
0 1

−1/mq −1/mq

]
︸ ︷︷ ︸

Sq

⊗I.

The eigenvalues of the 2 × 2 matrix Sq are negative for all
mq > 0. Hence, Aq +BqK ∈ H for all q ∈ {1, . . . ,m}.

Next we consider the general case where each node i ∈
{1, . . . , n} might have a different inertia coefficient. Once
again, choose K1 and K2 according to (6). The closed-loop
system matrix (5) now takes the form

Aq +BqK =

[
0 I

−M−1q −M−1q

]
. (7)

For each mode q ∈ {1, . . . ,m}, consider the Lyapunov
function candidate Vq : R2n → R

Vq = x>
[
I 0
0 Mq

]
︸ ︷︷ ︸

Pq

x.

The Lie derivative of Vq is given by

Lf Vq(x) = x>
(
(Aq +BqK)>Pq + Pq(Aq +BqK)

)
x

= x>
[
0 0
0 −2I

]
x ≤ 0.

This means that each mode q ∈ {1, . . . ,m} is stable. To
conclude asymptotic stability, note that Lf Vq(x) = 0 implies
ω = 0. Furthermore, for ω to remain at zero under (7),
one needs θ = 0. Therefore, by LaSalle’s Invariance Princi-
ple [25], the origin is asymptotically stable.

The proof of Proposition 3.1 considers first the case of
equal inertia at each node, and then generalizes the argument
to the case of different inertia at the nodes. Although
establishing the feasibility of the simultaneous stabilization



problem (4) in the former case is a special case of the latter,
it is interesting to consider it separately as the eigenvalues
of the closed-loop system can be explicitly characterized.

Remark 1: (Distributed controller stabilizing all the
modes): The proof of Proposition 3.1 is constructive and
relies on identifying a (not necessarily optimal) controller
stabilizing all the modes. Note that the controller identified
in (6) is distributed over G, meaning that to implement it,
each node needs to know just its angle and frequency, and
the angle of the nodes to which it is electrically connected.•

C. Simultaneous Stabilization of the Switched System

The controller resulting from the simultaneous stabiliza-
tion problem (4) in Section III-B guarantees the stability of
each individual mode, but does not guarantee the stability
of the overall switched system (2) in general, cf. [26]. To
address this, here we reformulate the synthesis of the learned
time-invariant controller by specifying a common Lyapunov
function as a certificate of its correctness. Formally, the
controller design problem takes now the form

min
K,P

S∑
k=1

T∫
0

‖uk(t)−K xk(t)‖22 dt (8)

s.t. (Aq +BqK)>P+P (Aq +BqK) ≺ 0, ∀q
P � 0 .

In this formulation, we aim to find a common quadratic
Lyapunov function given by V (x) = x>Px. The first con-
straint in (8) ensures that the Lie derivative of the Lyapunov
function along the evolution of (2) remains negative for each
mode q ∈ {1, . . . ,m}, thereby guaranteeing the stability of
the switched system. Note that the problem (8) is bilinear in
the decision variables K and P and, hence, nonconvex. The
next result establishes the feasibility of problem (8).

Theorem 3.2: (Feasibility of the simultaneous stabiliza-
tion data-driven problem for the switched system): Prob-
lem (8) is always feasible.

Proof: Defining X = P−1 and Y = KX , cf. [27,
Chapter 7], the constraints in (8) can be equivalently written,

AqX+XA>q +BqY +Y >B>q ≺ 0, ∀q (9a)

X � 0 . (9b)

With X1, X2, X3, Y1, Y2 ∈ Rn×n, let X =

[
X1 X2

X>2 X3

]
and

Y =
[
Y1 Y2

]
. Then using the structure of {Aq}mq=1 and

{Bq}mq=1, constraint (9a) can be rewritten as[
0 I

−M−1q L −M−1q D

] [
X1 X2

X>2 X3

]
+

[
0

M−1q

] [
Y1 Y2

]
+[

X1 X2

X>2 X3

] [
0 − LM−1q

I −DM−1q

]
+

[
Y >1
Y >2

] [
0 M−1q

]
≺ 0,

for all q ∈ {1, . . . ,m}. Using the abbreviated notation

Zq = −M−1q LX1 −M−1q DX>2 +M−1q Y1

Wq =M−1q LX2 +M−1q DX3,

and performing the matrix multiplications, the inequality can
be further rewritten as[
X>2 X3

Zq −Wq +M−1q Y2

]
+

[
X2 Z>q
X>3 −W>q + Y >2 M

−1
q

]
≺ 0,

for all q ∈ {1, . . . ,m}. Hence, (9a) is satisfied if the matrix[
−X2 −X>2 −X3 − Z>q
−X>3 − Zq Wq +W>q −M−1q Y2 − Y >2 M−1q

]
is positive definite for all q ∈ {1, . . . ,m}. Using the Schur
complement, cf. [28], the positive definiteness condition (and
hence (9a)) is equivalent to

−X2 −X>2 �0, (10a)

Wq +W>q −M−1q Y2 − Y >2 M−1q +

(X>3 + Zq)(X2 +X>2 )−1(X3 + Z>q ) �0, (10b)

for all q ∈ {1, . . . ,m}. Now, choose X � 0 satisfying (10a).
Then, since Wq and Zq are independent of Y2, there exists
a diagonal matrix N ≺ 0 ∈ Rn×n, independent of Y2 too,
such that for all q ∈ {1, . . . ,m},

Wq +W>q + (X>3 + Zq)(X2 +X>2 )−1(X3 + Z>q )−N � 0 .
(11)

Finally, using (10b) and (11), it suffices to show that there
exists Y2 such that

N −M−1q Y2 − Y >2 M−1q � 0, ∀q. (12)

Let M denote the matrix obtained after taking the entrywise
maximum of the inertia coefficient matrix at all nodes. Then
since N ≺ 0, the inequality (12) is satisfied with a diagonal
matrix Y2 such that Y2 ≺ 1

2NM , completing the proof.
Proposition 3.1 can be considered as a special case of The-

orem 3.2, although they differ in their proof methodologies.
The proof of Proposition 3.1 provides an explicit expression
for a feasible controller, which in addition is distributed
over G. This, however, does not mean that the optimizer
of (4) is distributed (although it does imply that one can look
for solutions of (4) among controllers that are distributed
over G). Instead, the proof of Theorem 3.2 identifies an
ordered sequence of steps that lead to the identification of
a controller stabilizing the switched system. In principle,
there is no guarantee that the resulting controller will be
distributed. The next result shows that a distributed controller
does in fact exist. More precisely, there exists a controller
that does not need communication even with neighboring
nodes (we term this special form as local).

Corollary 3.3: (Local controller stabilizing the switched
system): There exists a controller of the form u = D1θ +
D2ω, where D1, D2 ∈ Rn×n are diagonal matrices, satisfy-
ing the constraints in problem (8).

Proof: Following the proof of Theorem 3.2, we want
to identify X and Y satisfying (9). Pick X1 = I, X2 = −I ,
Y1 = 0. Then, using the Schur complement, (9b) holds iff

X3 − I � 0 . (13)

To satisfy (9a), once again, one can choose N and Y2
following the same steps as in the proof of Theorem 3.2. We



then have K =
[
0 Y2

] [ I −I
−I X3

]−1
. Using the formula

for the inverse of a partitioned matrix [29, Section 0.7.3],

K =
[
0 Y2

] [(I −X−13 )−1 (X3 − I)−1
(X3 − I)−1 (X3 − I)−1

]
=
[
Y2(X3 − I)−1 Y2(X3 − I)−1

]
.

Now if one chooses X3 to be a diagonal matrix satisfy-
ing (13), and subsequently Y2 as in the proof of Theorem 3.2,
then the resulting controller stabilizes the switched system
and is local due to the structure of X3 and Y2.

Although this result guarantees the existence of a local
stabilizing controller, restricting the feasible set of (8) to
controllers of that form could significantly affect the optimal
value of the objective function. Motivated by Corollary 3.3
and this observation, we propose a middle ground that
reformulates the optimization problem to promote sparsity
in the learned controller. Formally, following [30], let β >
0 be a design parameter that specifies the importance of
promoting sparsity as compared to the original objective
function of matching the data provided by the sampled
optimal trajectories. Let Ec = {(i, j) | (i, j) /∈ E}, denote the
set of indices whose corresponding vertices are not neighbors
in G. The sparse-promotion controller design problem is

min
K,P

S∑
k=1

T∫
0

‖uk(t)−K xk(t)‖22 dt+ β
∑

(i,j)∈Ec
|Kij |

(14)

s.t. (Aq +BqK)>P+P (Aq +BqK) ≺ 0, ∀q
P � 0 .

Since (8) is feasible by Theorem 3.2, problem (14) is
feasible. To find a local controller, one could consider a
modified version of (14) where all non-diagonal entries of
K are penalized.

IV. SIMULATIONS

We demonstrate the effectiveness of the proposed approach
via numerical experiments. We use the standard 12-bus 3-
region network, shown in Figure 1, that has also been used
in [1], [22], [23]. We take m = 10 and assume that at a given
time t, the rotational inertia for each node i ∈ {1, . . . , n}
is same. Hence, each mode q ∈ {1, . . . ,m} of the hybrid
system is given by one value of inertia in the set {0.2, 0.5, 1,
1.5, 2, 2.5, 3, 3.5, 5, 9}. To generate the training data-set, we

use Q =

[
I 0
0 105I

]
and R = 10I . To implement (3), we use

its discrete-time counterpart with a stepsize of 10−2 seconds,
and simulate 50 scenarios, each for 50 time steps, using
cvx [31]. The initial conditions for all the scenarios (for
both the angles and the frequencies) are different, and drawn
from a normal distribution with 0 mean and 0.1 variance.
Each scenario starts in mode 7 (3 seconds of inertia), and
from there, based on a uniform distribution draw, the inertia
of the system can remain the same, increase, or decrease
every 2 time steps.

We assume that each node design three sets of controllers:
(a) Optimal: To design the first optimal and stable learned
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Fig. 1: The 12-bus 3-region network used in simulations.

controller, we solve (8) using the BMI algorithm in [32].
Since the algorithm requires a feasible initialization, we
solve the feasibility problem associated with the LMI con-
straints (9) using cvx to find an initial point. (b) Distributed:
To design the second learned controller, which is stable and
sparse, we solve (14) for various values of β, again using the
algorithm in [32]. The controller turns out to be distributed
over G for β = 100. We observe that instead of using the
same initialization as in (a), taking the Optimal controller as
the initial point reduces the number of iterations to converge.
(c) Unconstrained: The third learned controller we design
optimizes the objective function of fitting the controller to
the sampled data without any consideration of stability.

To compare the performance of the designed controllers,
we display their dynamical response for the same switching
sequences. For each simulation, we assume the system starts
in mode 10 (9 seconds of inertia), with an initial frequency
deviation of 0.05 Hz at each node, and can switch to any
other mode every 0.01 seconds. In Figure 2, we plot the
frequency deviation at node 1 for different switching (inertia)
sequences. Frequency evolution with the unconstrained con-

Fig. 2: Frequency deviation at node 1 for different switching sequences using
the learned controllers. Dashed vertical lines represent switching instances
(every 10−2 sec). Line styles correspond to different switching sequences.

troller emphasizes the importance of including the stability
constraints for the switched system in (8) and (14). Note that
even though the Optimal controller has a higher overshoot
for all the switching sequences, convergence is also faster. To
further compare the Optimal and Distributed controllers, we
simulate the dynamics for 1 second in each mode, from an
initial frequency deviation of 0.15 Hz at every node. Table I



provides the total absolute value of the control input and the
total absolute value of frequency deviation for 3 fixed inertia
modes (q = 1, 5, 10).

TABLE I: Performance metrics for the stable learned controllers under
different inertia modes.

Mode Learned Controller
1∫
0

n∑
i=1
|ui(t)|dt

1∫
0

n∑
i=1
|ωi(t)|dt

1 Optimal 17.38 0.004
Distributed 73.14 0.027

5 Optimal 163.66 0.033
Distributed 627.97 0.204

10 Optimal 726.83 0.140
Distributed 1308.10 0.624

The Optimal controller, which requires state information
from all the nodes, outperforms the Distributed controller.
The mean of performance differences taken over the 10
nodes is 62% for the cumulative control action, and 79%
for the cumulative frequency deviation. This trade-off in
performance comes with a saving of 90% in communication
for the Distributed controller without compromising stability.

V. CONCLUSIONS AND FUTURE WORK

We presented a framework to synthesize data-driven con-
trollers to regulate the frequency of power networks under
time-varying inertia. The proposed learning-based design
seeks to imitate, under suitable stability constraints, optimal
trajectories for different scenarios of changes in inertia gen-
erated by finite-horizon LQR formulations. Regardless of the
inertia values, stabilizing learned controllers are guaranteed
to exist and are amenable to distributed implementation.
Future work will generalize our treatment to consider capac-
ity constraints and internal dynamics of generators, explore
the design of distributed algorithms to generate the training
data as well as identify efficient and distributed controllers
which take optimality with respect to the training data
into account, extend our approach to nonlinear AC power
dynamics, and involve case studies with real data to validate
our approach and identify areas of improvement for practical
implementation.
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