
Data-Driven Control of Linear-Threshold Network Dynamics

Xuan Wang Jorge Cortés

Abstract— This paper studies the data-driven stabilization of
linear-threshold network models. Our goal is to design a linear
state feedback controller to stabilize the system to the origin
purely based on data samples, instead of a parametric model.
To achieve this, we first establish a data-based representation
for the linear-threshold network in an open-loop form. This
is done by introducing a map that represents the state-input
pair as a transformation of data matrices. We then employ
a linear feedback controller in the formulation of the map
and obtain a closed-loop data-based representation for the
system. To facilitate the design of the feedback gain matrix,
we rewrite the dynamics as a switched linear system relying on
the special structure of linear thresholding. The design problem
then becomes equivalent to solving a system of linear matrix
inequalities (LMIs). We analyze the associated computational
complexity and, to reduce it, we introduce a different set of
LMIs that act as a sufficient condition to obtain the linear
control design. Simulations demonstrate the effectiveness of the
proposed approach.

I. INTRODUCTION

Linear-threshold network models are widely used in com-
putational neuroscience [1]–[3], social sciences [4], [5], and
artificial neural network for deep learning [6], [7]. Driven
by the increasing interest in these applications, an emerging
research area aims to regulate the dynamical behavior of
linear-threshold networks by means of control. Towards
this end, traditional system approaches are heavily model-
based [8] and rely on precise model parameters to design
appropriate control schemes. However, since the application
scenarios of linear-threshold models are usually associated
with large-scale networks, obtaining their model parameters
is challenging. Motivated by this, this paper focuses on
developing an approach to control linear-threshold networks
that, instead of using the system parametric model, is solely
based on data samples.

Literature review: Linear-threshold network models have
diverse application backgrounds. In computational neuro-
science, they have a long story as descriptors of the
mesoscale dynamics of brain networks [1]. Each node of
the network represents a population of neurons; the state of
the node represents the average firing rate of the population,
which is regulated by a linear-threshold activation function to
characterize the saturation of firing rates; and the edges are
defined by the different neuron populations whose firing rates
are interactive. In social sciences, linear-threshold networks
have been used to build influence propagation models [4],

This work was supported by ONR N00014-18-1-2828.
X. Wang is with the Department of Electrical and Computer Engineering,

George Mason University, Fairfax, xwang64@gmu.edu. J. Cortés is with
the Department of Mechanical and Aerospace Engineering, University of
California, San Diego, cortes@ucsd.edu

[5], where the nodes and their associated states represent in-
dividuals and their opinions, respectively; a linear-threshold
is introduced to each node to gauge the condition when
individuals’ opinions change; and the edges of the network
characterize the relation closeness between individuals. In
deep learning, linear-threshold models are also known as
modified rectified linear units (RELU with max-limits) [7].
RELUs are generally used within the hidden nodes in the
deep neural networks [9], which allows good robustness and
versatility for function approximation [10]. Compared with
the sigmoid and tanh activation functions, RELU networks
have low computational complexity [11] because its gradient
is either a constant or zero. By the same reason, ReLU
networks do not suffer vanishing gradient problems [12].

Given a linear threshold network model, one can resort
to the available characterizations of its stability properties,
see e.g., [3] to develop model-based control schemes to
stabilize it. However, such approaches require an accurate
identification of the model parameters, i.e., the edge weights
that characterize the strength of nodal interactions [13]. For
large-scale neural or social network systems, such parameters
are usually difficult to determine, either from first principles
(due to limited knowledge about the system) or through
system identification techniques (due to the non-linearity in
the model, cf. [14]). This motivates our research here on
data-driven control techniques for linear-threshold networks,
which are based on synthesizing controllers directly from
the system input-output data instead of using parametric
models. Along this direction, the results in behavioral the-
ory [15] provide effective tools for the data-driven control
of linear systems [16]. The key idea is to use sampled
system trajectories to construct a data-based representation
that characterizes the dynamic behavior. Based on this, [17]
studies the stabilization and optimal control of the system,
by associating the gains of linear feedback controllers with
the solutions of a linear matrix inequality (LMI) and a
semidefinite program (SDP), respectively. This data-driven
approach has also been employed in model predictive con-
trol [18], [19], including the use of data available across a
network [20]. Other works [17], [18], [21] have explored
the generalization of data-driven approaches to nonlinear
systems using the low-rank approximation technique.

Statement of Contributions: We study the data-driven
stabilization of linear-threshold network models via linear
feedback controllers. Assuming input-output data of the
system is available, we first describe the open-loop system
dynamics via a purely data-based representation. This is
done by introducing a map that represents the state-input
pair as a transformation of data matrices. We build on this

formulation to obtain a data-based representation in closed-
loop form for a linear feedback controller. We show how
the computation of this representation can be conveniently
set up in a way that is amenable to our ultimate objective,
which is the design itself of the feedback gain matrix. To
do this, our idea is to view the system as a switched system
and find a common controller that stabilizes all modes. This
allows us to associate the stabilizing gain with the solution
to a set of LMIs. Finally, we validate the effectiveness
of the proposed algorithm by simulations. We introduce
measurement noise to the data samples and show that the
proposed approach outperforms the model-based approach
in terms of convergence. For reasons of space, the proofs
are omitted and will appear elsewhere.

Notation: Let R denote the set of real numbers. Let 1r

denote the vector in Rr with all entries equal to 1. Let Ir de-
note the rˆr identity matrix. We let col tA1, A2, ¨ ¨ ¨ , Aru “
“

AJ1 AJ2 ¨ ¨ ¨ AJr
‰J

be a vertical stack of matrices
A1, ¨ ¨ ¨ , Ar possessing the same number of columns. Let
diag tA1, A2, ¨ ¨ ¨ , Aru be a diagonal stack of matrices
A1, ¨ ¨ ¨ , Ar. Let xris P R be the ith entry of vector x;
correspondingly, let M ri, js P R be the entry of matrix M on
its ith row and jth column. We denote by MJ the transpose
of M . For s ą 0 and x P R, the threshold function rxss0 is
defined as

rxss0 “

$

’

&

’

%

s for x ą s

x for 0 ď x ď s

0 for x ă 0

For a vector x P Rr, rxss0 denotes the component-wise
application of this definition.

II. LINEAR THRESHOLD MODEL

We are interested in a linear-threshold network governed
by the following dynamics.

xpt` 1q “ αxptq ` rWxptq `Buptqs
s
0 , t P N. (1)

Here x P Rn
ě0 is the network state, W P Rnˆn is the

network connectivity matrix, characterizing the interactions
between different nodes, uptq P Rm and B P Rnˆm are the
external inputs and the associated input matrix, respectively.
For each node, its state evolves according to an intrinsic
decay rate α P p0, 1q, and a linear-threshold activation
function denoted by r¨ss0. The input of the linear-threshold
function is co-generated by the node’s neighbors and external
inputs. Network dynamics like (1) arise in the modeling
of the dynamical behavior of the firing rates of neuronal
populations [1]; the opinion propagation of individuals in
social networks [5]; and the use of artificial neural networks
to approximate nonlinear dynamics for learning and control
tasks [7], [10].

We assume the parameters α and s are known, but the
matrices W and B are unknown. Instead, system inputs
and states can be sampled from experiments. Let Td be
the total number of available data points, and let x`d pkq,
xdpkq udpkq, k P t1, . . . , Tdu denote the data samples
(corresponding to xpt ` 1q, xptq and uptq, respectively).

We employ the index k as an indicator that distinguishes
one data sample from another. It is possible that all the
sampling instances of the data are chosen consecutively from
a system trajectory, where all the data samples are head-tail
connected, i.e., x`d pkq of the former data can be used as the
xdpkq of the latter one. In general, we allow data samples
to be collected at independent time instances, and even from
various trajectories of the same system.

Problem 1: In system (1), suppose α and s are known.
Given data samples xdpkq, x`d pkq and udpkq, k P

t1, . . . , Tdu, design a linear feedback controller

uptq “ Kxptq, (2)

which asymptotically stabilizes the system to the origin.
The focus of Problem 1 on the data-driven stabilization to

the origin is motivated by the following considerations. In
neuroscience, for instance, driving the firing rate of a neu-
ronal population to zero means inhibiting its activity, which
is something the brain does continuously, while at the same
time driving the activity of other neuronal populations to spe-
cific patterns of activity. In social science, this happens when
the authorities want to shape public opinion by depressing
the disagreement from a certain group of people. In control
applications where a linear-threshold artificial neural network
approximates certain nonlinear dynamics, the stabilization of
the latter can be achieved by stabilizing the neural network
model. To stabilize the network dynamics (1), the controller
we employ has a simple linear feedback form, which can sta-
bilize the system regardless the operating mode of the linear-
threshold model. Here, we see solving Problem 1 as a first
step towards developing advanced techniques for the network
dynamics (1). These includes more sophisticated controller
design, such as data-driven model predictive control [22];
and more complex control objectives, such as stabilizing the
system to other equilibria (not necessarily the origin) and
track various classes of dynamic trajectories.

We assume Problem 1 is solvable. This means that (i) the
matrices W and B are such that a controller stabilizing the
system of the form (2) exists, see [3] for classes of systems
for which this holds, and (ii) the data samples available are
sufficiently rich to allow us to determine K without knowing
the matrices W and B. In the following, we develop a direct
data-driven approach to solve Problem 1. An alternative
indirect route would first identify the system and then resort
to a model-based controller design (e.g., making the closed-
loop system matrix xW “ W ` BK satisfy the sufficient
stability condition described in [3]). We pursue the direct
route over the indirect one because the performance of the
latter is subject to errors from both the model identification
phase and the controller design phase.

III. DATA-BASED REPRESENTATIONS OF LINEAR
THRESHOLD MODELS

In this section, we provide data-based reformulations of
the system (1) which describe the system update by means of
the available data samples, instead of the unknown matrices
W and B.

A. Open-loop data-based representation
Let us start by defining zptq “ xpt`1q´αxptq and pptq “

col txptq,uptqu. Then, the update (1) can be rewritten as

zptq “ rHpptqs
s
0 (3)

where

H “
“

W B
‰

“

»

—

—

—

—

–

hJ1
hJ2
...

hJn

fi

ffi

ffi

ffi

ffi

fl

P Rnˆpn`mq.

Let h “ col th1, h2, . . . , hnu P Rnpn`mq be a vectorized
system parameter encoding the matrices W and B. Then,

Hpptq “

»

—

—

—

—

–

hJ1 pptq

hJ2 pptq
...

hJnpptq

fi

ffi

ffi

ffi

ffi

fl

“

»

—

—

—

—

–

pptq
J
h1

pptq
J
h2

...
pptq

J
hn

fi

ffi

ffi

ffi

ffi

fl

“
`

In b pptqJ
˘

h.

Thus, equation (3) reads

zptq “
“`

In b pptqJ
˘

h
‰s

0
. (4)

In order to obtain a data-based representation for the sys-
tem, a key step is to represent h with the data samples
tx`d pkq,xdpkq,udpkqu

Td

k“1. Towards this end, let

Zd “

»

—

—

—

—

–

x`d p1q ´ αxdp1q

x`d p2q ´ αxdp2q
...

x`d pTdq ´ αxdpTdq

fi

ffi

ffi

ffi

ffi

fl

, Pd “

»

—

—

—

—

–

`

In b pJd p1q
˘

`

In b pJd p2q
˘

...
`

In b pJd pTdq
˘

fi

ffi

ffi

ffi

ffi

fl

,

with pdpkq “ col txdpkq,udptqu, Zd P RnTd and Pd P

RnTdˆnpn`mq. According to (4), we have

Zd “ rPdhs
s
0 . (5)

Define fpZdq “ Pdh ´ rPdhs
s
0, where fp¨q represents the

part of Pdh truncated by the linear threshold r¨ss0. Clearly,
fpZdqris ‰ 0 only if Zdris “ s or Zdris “ 0. Thus, we
define a diagonal matrix Ed P RnTdˆnTd such that for all
i P t1, . . . , nTdu,

Edri, is “

#

1 if Zdris “ s or Zdris “ 0

0 otherwise.
(6)

Then, there exists a vector v P RnTd such that

fpZdq “ Edv, (7)

which, together with (5), yields Pdh “ Zd`Edv. Using the
property that pI ´ EdqEd “ Ed ´ Ed “ 0, one has

pI ´ EdqPdh “ pI ´ EdqZd. (8)

This equation describes the vectorized system parameter h
in the form of a data-based equality constraint. We make the
following assumption on the data samples.

Assumption 1: (Data richness): Given data samples

tx`d pkq,xdpkq,udpkqu
Td

k“1, the matrix pI ´ EdqPd, has full
column rank.

Assumption 1 can be directly verified by computation.
Note that Assumption 1 becomes easier to satisfy as the
number of data samples grows. Based on this assumption,
we can combine equations (4) and (8) to obtain a data-based
representation of the system dynamics.

Lemma 3.1: (Open-loop data-based representation): Un-
der Assumption 1, let F : Rm`n Ñ RnˆnTd be such that

F ppq ¨ pI ´ EdqPd “ In b pJ, (9)

for any state-input pair p “ col tx,uu. Then the dynamics
(1) has the following data-based representation,

xpt` 1q “ αxptq ` rF ppptqq ¨ pI ´ EdqZds
s
0 . (10)

For each p in (9), F ppq transforms the data matrix pI ´
EdqPd into the augmented state-input pair In b pJ used by
(4). Based on this transformation, we obtain (10). We refer to
it as a data-based representation of system (1) because it does
not involve the matrices W and B (or their vectorized version
h), and instead allows, based on the data, to determine the
state at the next timestep based on the current state and the
control input. We refer to it as open-loop because the state-
input pair is arbitrary and does not take into account feedback
coupling of the form (2). We address this point next.

B. Closed-loop data-based representation

Given a feedback controller of the form (2), we have the
following result.

Lemma 3.2: (Closed-loop data-based representation):
Consider the feedback controller uptq “ Kxptq. Let As-
sumption 1 hold. Then the closed-loop form of system (1)
with controller (2) has the data-based representation,

xpt` 1q “ αxptq ` rGpxptqq ¨ pI ´ EdqZds
s
0 (11)

where G : Rn Ñ RnˆnTd satisfies

Gpxq ¨ pI ´ EdqPd “ In b
`

xJ
“

In KJ
‰˘

. (12)

Equation (11) provides a closed-loop data-based descrip-
tion of system (1), with the existence of G following directly
from the existence of F . Note that constraint (12) defines the
map G in an implicit way. In the following, we provide an
explicit construction of this map.

From the right-hand side of (12), we observe a blocked
diagonal matrix resulting from the Kronecker product. We
make use of such special pattern as follows. Define

Pd “ In b

»

—

—

—

—

–

pJd p1q

pJd p2q
...

pJd pTdq

fi

ffi

ffi

ffi

ffi

fl

and let TF P RnTdˆnTd be the elementary matrix that
switches the rows of Pd to obtain Pd, i.e.,

Pd “ TFPd. (13)

Since Ed is a diagonal matrix, Ed “ TFEdT
´1
F P RnTdˆnTd

is also a diagonal matrix, which we write as

Ed “ diag tE1, ¨ ¨ ¨ , Enu,

with Ei P RTdˆTd . Now, let
»

—

—

–

z1
...
zn

fi

ffi

ffi

fl

“ TFZd,

with zi P RTd , i P t1, . . . , nu, and define Z “

diag tZ1, ¨ ¨ ¨ , Znu by

Zi “ zJi pI ´ Eiq P R1ˆTd . (14a)

Further define Q “ diag tQ1, ¨ ¨ ¨ , Qnu by

Qi “
`

I ´ Ei
˘

»

—

—

—

—

–

pJd p1q

pJd p2q
...

pJd pTdq

fi

ffi

ffi

ffi

ffi

fl

P RTdˆpm`nq. (14b)

By definition, we have Q “ pI ´ EdqPd.
Lemma 3.3: (Modified closed-loop data-based represen-

tation): Consider the feedback controller uptq “ Kxptq.
Given data matrices Z and Q in (14), let Assumption 1 hold.
Then, the system (1) under the feedback controller can be
represented by

xpt` 1q “ αxptq ` rZpMxptqqs
s
0 . (15)

where M P RnTdˆn is a matrix satisfying

QJM “ 1n b

„

In
K

. (16)

Comparing the statements in Lemmas 3.2 and 3.3, we
see that finding G : Rn Ñ RnˆnTd satisfying (12) can be
accomplished by finding the matrix M P RnTdˆn satisfy-
ing (16). Regarding the solution of this latter equation, we
note that when K is given, M can be readily computed.
However, since our ultimate goal is to design a stabilizing
controller gain matrix K itself, the solution in M and K
of equation (16) poses the challenge of jointly solving for
n coupled systems of linear equations. The following result
provides a reformulation of the equation showing that K can
be expressed as a function of M .

Lemma 3.4: (Decoupling constraints for closed-loop
data-based representation): Define matrices L P Rnˆn,
C1 P Rnˆnpn`mq and C2 P Rnˆnpn`mq as

Lri, js “

#

n if i “ j

´1 otherwise
,

C1 “
“

In 0nˆnpn`mq´n

‰

, C2 “
“

0mˆn Im 0mˆpn´1qpn`mq

‰

, and L “ L b In`m.
Then, the constraint (16) can be equivalently written as

LQJM “ 0, (17a)

C1Q
JM “ In, (17b)

C2Q
JM “ K. (17c)

The advantage of the constraint formulation (17) over (16)
is that, in the former, K can be expressed as a function of M .
In fact, as we vary M among all possible solutions of (17a)-
(17b), K in (17c) takes every possible value in Rnˆn. This
means that we can use (15) and (17a)-(17b) to design the
closed-loop behavior of the system, with M as the only
variable. Then, to implement the desired closed-loop system,
one can compute K using (17c) and apply it to the controller
(2) of the closed-loop system. In the above equations, L,
C1, C2 are constant matrices; and Z, Q are known matrices
constructed from the data samples.

IV. DATA-DRIVEN CONTROL OF LINEAR THRESHOLD
MODELS

In this section, we introduce an approach to design a
feedback gain matrix to stabilize system (1). Note that the
system is nonlinear due to the presence of the threshold
function. Our idea is to view the system as a switched
system and design a common linear feedback controller that
stabilizes all modes.

A. LMI-based design of feedback gain matrix

We start by rewriting the system (15) into the following
equivalent form

xpt` 1q “ αxptq ` rZMxptqs
s
0

“ αxptq `RpxptqqZMxptq, (18)

where Rpxq P Rnˆn is a diagonal matrix with:

Rpxqri, is fi

$

’

&

’

%

prZMxss0qris

pZMxqris if pZMxqris ą s

or pZMxqris ă 0

1 otherwise

For any x, one has 0 ď Rpxqri, is ď 1, i P t1, . . . , nu.
The representation (18) describes the dynamics as a switched
system. Therefore, we find it convenient to define Ri P

Rnˆn, i P t1, . . . , 2nu as the vertices of the unit hypercube
r0, 1sn, such that Rirjs P t0, 1u, j P t1, . . . , nu.

Theorem 4.1: (Data-driven synthesis via LMIs): If there
exist matrices P P Rnˆn and S P RnTdˆn satisfying the
following conditions

«

P
`

αP `RiZS
˘J

αP `RiZS P

ff

ą 0 (19a)

LQJS “ 0 (19b)

C1Q
JS “ P (19c)

for all Ri, i P t1, . . . , 2nu, then system (1) can be stabilized
by the controller xptq “ Kuptq, where

K “ C2Q
JSP

´1
. (20)

Note that Theorem 4.1 only provides a sufficient condition
for stabilizing system (1). The conservativeness is caused
by the relaxation from the vector Rpxptqq in (18) to the

hypercube defined by the Ri, i P t1, . . . , 2nu in (19a), where
coupling between Rpxq and x is ignored.

Remark 4.2: (Computational complexity of solving
LMIs): LMIs with linear constraints can be efficiently solved
using existing algorithms, cf. [23]. The computational com-
plexity of solving a single (19a) is polynomial in Td, which
is the number of data samples and determines the sizes of
matrices Z and Q. ˝

V. SIMULATION

In this section, we present an example from computa-
tional neuroscience [24] to validate the effectiveness of the
proposed results. We simulate a brain neural network with
n “ 8 nodes, with each state representing the firing rate
of a population of neurons. The dimension of the input
u is chosen as m “ 8. Given the state/input dimensions
of the system, we first create matrices W P R8ˆ8 and
B P R8ˆ8. We make sure the entries of the matrices
are consistent with Dale’s law [25], i.e., each column of
W is either non-negative or non-positive depending on the
excitatory or inhibitory properties of the nodes. The values
of these entries are randomly chosen from r0 0.15s or
r´0.1 0s, with uniform distributions. For B P R8ˆ8, all its
entries are randomly chosen from r´0.1 0.15s with uniform
distributions. We set α “ 0.9 and s “ 2. The unforced
system has the origin as an unstable equilibrium point.

Based on W , B, α and s, we create data samples, for
k P t1, . . . , Tdu and Td “ 250. In the simulation, we inten-
tionally introduce measurement noise. For different k, system
states rxdpkq and inputs rudpkq are chosen independently, i.e.,
the entries of rxdpkq are randomly chosen from r0 10s; the
entries of rudpkq are randomly chosen from r0 5s, with
uniform distributions. For each pair of rxdpkq and rudpkq, we
compute rx`d pkq based on the following discrete-time system
model

rx`d pkq “ αprxdpkqq ` rW prxdpkqq `Bprudpkqqs
s
0

in accordance with (1). To simulate the effect of measure-
ment noise, we assume rudpkq, rxdpkq and rx`d pkq are the
real inputs/states of a system in experiments, while udpkq “
rudpkq ` µupkq, xdpkq “ rxdpkq ` µxpkq and x`d pkq “
rx`d pkq ` µx`pkq are the collected data samples. Here, all
µp¨qpkq’s are randomly generated with }µp¨qpkq}8 ď 0.01, for
all k P t1, . . . , Tdu. By validation, the data samples satisfy
Assumption 1.

Given data samples tudpkq,xdpkq,x
`
d pkqu

250
k“1, we em-

ploy two approaches to design the state feedback controller
uptq “ Kxptq. One is the data-driven approach proposed in
Theorem 4.1; the other one is the indirect approach which
first identifies the system model parameters, then utilizes a
model-based method to design the controller.

In order to make comparisons with the indirect method,
we consider the following semi-definite programming (SDP)

minimize }ZS}F (21a)

„

In pαIn ` nRiZSq
J

αIn ` nRiZS In

ą 0 (21b)

LQJS “ 0 (21c)

C1Q
JS “ In (21d)

for all Ri, r P t1, . . . , 2nu, where }ZS}F is the Frobenius
norm. The motivation for problem (21) is as follows. From
system update (15), due to the non-negative property of the
linear threshold, the fastest way that the system can converge
to zero is when rZpMxptqqs

s
0 “ 0. This observation leads

us to seek the minimization of }ZM}F “ }ZSP
´1
}F.

Clearly, this objective function is not convex. Therefore, we
fix P “ In, which yields (21a). Accordingly, (19) leads
to (21b)-(21d). We validate that problem (21) is solvable,
and compute the controller gain K according to (20). Given
a random initial state xp0q, we show in Figure 1 the system
trajectory of the closed-loop system. One can observe that
all the system states are stabilized.

0 50 100 150

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 1. Data-driven stabilization of an 8-node network. The synthesis of the
feedback gain matrix is based on solving the LMIs specified in Theorem 4.1.

For the indirect model-based approach, we first identify
the system parameters. This is done by solving equation
(8), where h is the vectorized system parameter encoding
matrices W and B. We denote the identified parameters as
WI and BI , which are different from the true parameters due
to measurement noise. To design the feedback controller, we
employ the following SDP

minimize }WI `BIK}F (22a)
„

In ‹

αIn ` n rRkpWI `BIKq In

ą 0 (22b)

for all rRk, k P t1, . . . , nu, where ‹ denotes the symmetric
block of the matrix. Here (22a)-(22b) are the same objec-
tive function and LMIs as (21a)-(21b), but arise from the
following model-based representation

xpt` 1q “ αxptq ` rpW `BKqxptqs
s
0 .

Since in this case K is the direct variable, no extra linear
constraints are required. We plot in Figure 2 the system
trajectory of the closed-loop system starting from the same
initial condition as in Figure 1, and observe that all the

system states are stabilized.

0 50 100 150

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

Fig. 2. Model-based stabilization of a 8-node network. The synthesis of
the feedback gain matrix is based on first identifying the system parameters,
then using this representation to formulate a similar set of LMIs to those
in Theorem 4.1.

Comparing Figures 1 and 2, one can see that in the
presence of measurement noise, the data-driven approach
results in a better convergence speed than the indirect model-
based approach. It is worth mentioning that, in the absence of
any noise measurement, both approaches result in the same
stabilizing feedback gain matrix.

VI. CONCLUSIONS AND FUTURE WORK

We have studied the data-driven stabilization of linear-
threshold network models. We have established both open-
loop and closed-loop data-based representations of the dy-
namics that rely on the availability of suitable maps that
transform the data matrices into a convenient form. Re-
garding the latter representation, such map can be easily
obtained when the feedback gain matrix is specified a priori.
We have also shown how the computation of this map can
be formulated in a way that is amenable to our ultimate
objective, which is the design itself of the feedback gain
matrix. We have built on this to identify a set of LMIs whose
solution provides a solution to the data-driven synthesis of
a linear stabilizing controller. Finally, we have validated the
effectiveness of the proposed approach in simulation. Future
work will investigate controller designs beyond purely linear
ones, the data-driven stabilization of equilibria other than the
origin, the trajectory tracking of desirable signal patterns,
and extend our results to scenarios where access to full-state
information is not available.

REFERENCES

[1] P. Dayan and L. F. Abbott, Theoretical Neuroscience: Computational
and Mathematical Modeling of Neural Systems, ser. Computational
Neuroscience. Cambridge, MA: MIT Press, 2001.

[2] C. Curto, J. Geneson, and K. Morrison, “Fixed points of competitive
threshold-linear networks,” arXiv preprint arXiv:1804.00794, 2018.

[3] E. Nozari and J. Cortés, “Hierarchical selective recruitment in linear-
threshold brain networks. Part I: Intra-layer dynamics and selective
inhibition,” IEEE Transactions on Automatic Control, vol. 66, no. 3,
pp. 949–964, 2021.

[4] W. Chen, Y. Yuan, and L. Zhang, “Scalable influence maximization in
social networks under the linear threshold model,” in IEEE Interna-
tional Conference on Data Mining, Sydney, Australia, Dec 2010, pp.
88–97.

[5] Y. D. Zhong, V. Srivastava, and N. E. Leonard, “On the linear threshold
model for diffusion of innovations in multiplex social networks,” in
IEEE Conf. on Decision and Control, Melbourne, Australia, Dec.
2017, pp. 2593–2598.

[6] H. Zhang, Z. Wang, and D. Liu, “A comprehensive review of stability
analysis of continuous-time recurrent neural networks,” IEEE Trans-
actions on Neural Networks and Learning Systems, vol. 25, no. 7, pp.
1229–1262, 2014.

[7] A. G. Howard, M. Zhu, B. Chen, D. Kalenichenko, W. Wang,
T. Weyand, M. Andreetto, and H. Adam, “Mobilenets: Efficient
convolutional neural networks for mobile vision applications,” arXiv
preprint arXiv:1704.04861, 2017.

[8] Z. Hou and Z. Wang, “From model-based control to data-driven
control: Survey, classification and perspective,” Information Sciences,
vol. 235, pp. 3–35, 2013.

[9] V. Nair and G. E. Hinton, “Rectified linear units improve restricted
boltzmann machines,” in Proceedings of ICML, Haifa, Israel, 2010,
pp. 807–814.

[10] D. Foster, T. Sarkar, and A. Rakhlin, “Learning nonlinear dynamical
systems from a single trajectory,” in Annual Conference on Learning
for Dynamics and Control. PMLR, 2020, pp. 851–861.

[11] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classifica-
tion with deep convolutional neural networks,” Advances in Neural
Information Processing Systems, vol. 25, pp. 1097–1105, 2012.

[12] M. M. Lau and K. H. Lim, “Investigation of activation functions in
deep belief network,” in International Conference on Control and
Robotics Engineering, Bangkok, Thailand, 2017, pp. 201–206.

[13] D. Ehrens, D. Sritharan, and S. V. Sarma, “Closed-loop control of a
fragile network: application to seizure-like dynamics of an epilepsy
model,” Frontiers in Neuroscience, vol. 9, p. 58, 2015.

[14] X. Wang and J. Cortés, “Data-driven reconstruction of firing rate
dynamics in brain networks,” in IEEE Conf. on Decision and Control,
Austin, Texas, Dec. 2021, pp. 6456–6461.

[15] J. C. Willems, P. Rapisarda, I. Markovsky, and B. L. M. De Moor, “A
note on persistency of excitation,” Systems & Control Letters, vol. 54,
no. 4, pp. 325–329, 2005.

[16] T. M. Maupong and P. Rapisarda, “Data-driven control: A behavioral
approach,” Systems & Control Letters, vol. 101, pp. 37–43, 2017.

[17] C. De Persis and P. Tesi, “Formulas for data-driven control: Stabi-
lization, optimality and robustness,” IEEE Transactions on Automatic
Control, vol. 65, no. 3, pp. 909–924, 2019.

[18] J. Coulson, J. Lygeros, and F. Dörfler, “Data-enabled predictive con-
trol: in the shallows of the DeePC,” in European Control Conference,
Naples, Italy, June 2019, pp. 307–312.

[19] J. Berberich, J. Köhler, A. M. Müller, and F. Allgöwer, “Data-driven
model predictive control with stability and robustness guarantees,”
arXiv preprint arXiv:1906.04679, 2019.

[20] A. Allibhoy and J. Cortés, “Data-based receding horizon control of
linear network systems,” IEEE Control Systems Letters, vol. 5, no. 4,
pp. 1207–1212, 2021.

[21] C. De Persis and P. Tesi, “Designing experiments for data-driven
control of nonlinear systems,” IFAC-PapersOnLine, vol. 54, no. 9, pp.
285–290, 2021.

[22] D. Piga, M. Forgione, S. Formentin, and A. Bemporad, “Performance-
oriented model learning for data-driven mpc design,” IEEE Control
Systems Letters, vol. 3, no. 3, pp. 577–582, 2019.

[23] M. Grant and S. Boyd, “CVX: Matlab software for disci-
plined convex programming, version 2.1,” Mar. 2014, available at
http://cvxr.com/cvx.

[24] E. Nozari and J. Cortés, “Hierarchical selective recruitment in linear-
threshold brain networks. Part II: Inter-layer dynamics and top-down
recruitment,” IEEE Transactions on Automatic Control, vol. 66, no. 3,
pp. 965–980, 2021.

[25] J. Eccles, “Chemical transmission and Dale’s principle,” in Progress
in Brain Research. Elsevier, 1986, vol. 68, pp. 3–13.

