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Summary

This paper presents a control technique for output tracking of reference signals in

continuous-time dynamical systems. The technique is comprised of the following

three elements: (i) a fluid-flow version of the Newton-Raphson method for solving

algebraic equations, (ii) a system-output prediction which has to track the future ref-

erence signal, and (iii) a speedup of the control action for enhancing the tracker’s

accuracy and, in some cases, stabilizing the closed-loop system. The technique can

be suitable for linear and nonlinear systems, implementable by simple algorithms,

and can track reference points as well as time-dependent reference signals. Though

inherently local, the tracking controller is proven to have a global convergence for a

class of linear systems. The derived theoretical results of the paper include conver-

gence of the tracking controller and error analysis, and are supported by illustrative

simulation and laboratory experiments.
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1 INTRODUCTION

The subject of this paper is a reference-tracking control technique for dynamical systems modelled by ordinary differential

equations. The technique is founded on real-time implementations of a fluid-flow variant of the Newton-Raphson method for

solving algebraic equations. The relevance of the Newton-Raphson method is due to the observation, argued for in the sequel,

that tracking can be viewed as a dynamic process of attempting to solve a time-dependent suite of nonlinear algebraic equations.

Existing nonlinear regulation techniques such as the Byrnes-Isidori regulator [1], Khalil’s high-gain observers for output reg-

ulation [2], and Model Predictive Control (MPC) [3] are more general and perhaps more powerful than the technique presented

here. However, their effectiveness is partly due to significant computational sophistication like nonlinear inversions, the appro-

priate nonlinear normal form, or real-time algorithms for optimal control. The control technique described in this paper, defined

by a dynamic-feedback law, is simple and requires low computing efforts. It has some elements of MPC, but also intrinsic dif-

ferences from it which will be highlighted in the sequel. It is not based on linearization, but rather on a differential equation

which may be nonlinear. Having its foundations in the Newton-Raphson flow it is essentially a local method, but may have a

fast convergence. Also, in some cases it may be globally convergent. This will be proved for linear systems, while simulations

will demonstrate the efficacy of the controller on various examples of nonlinear systems.
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Controller Plant

FIGURE 1 Basic control system

The system-diagram that we consider is depicted in Figure 1, where the reference signal r(t), control input u(t), and system

output y(t) are all in m for a given m ∈ {1, 2,… , }. The condition that the reference, control, and output have the same

dimension is essential for the present discussion, and although ad-hoc ways to circumvent the effects of its absence have begun

to emerge [4], we defer their general exposition to a future publication.

The plant subsystem in Figure 1 is a dynamical system based on an ordinary differential equation, whose input, state, and

output variables are denoted by u(t) ∈ m, x(t) ∈ n for some n ∈ {1, 2,…}, and y(t) ∈ m, respectively. Given a fixed

prediction horizon T > 0, let ŷ(t + T ) denote a predicted value of y(t + T ). The tracking technique, implemented by the

controller, is underscored by a process aiming at solving the time (t)-dependent equation r(t+T ) − ŷ(t+T ) = 0.1 The predictor

ŷ(t+T ) is assumed to be a function of x(t) and u(t), and correspondingly, the tracking controller defines the time-derivative u̇(t)

by a differential equation in terms of (x(t), u(t)) as well. Under the ideal condition of perfect output prediction, this feedback

law can result in perfect asymptotic tracking under suitable assumptions. In the presence of prediction errors, the asymptotic

tracking error will be shown to be equal to the asymptotic prediction error. Furthermore, it will be proved that an increase

in the controller’s rate (defined below) can stabilize the closed-loop system and reduce tracking errors that are due to certain

disturbances and computational errors in the loop. All of this will be defined and described in detail in the later sections.

To explain the term “fluid-flow variant” of an iterative algorithm in m, and place the forthcoming results in the context of

the established literature, consider an algorithm of the form

uk+1 = uk + g(uk), (1)

k = 0, 1,…, where uk ∈ m, and g ∶ m
→ m is a function assumed to be locally Lipschitz continuous. Placing the algorithm

in a temporal framework, suppose that an iteration according to (1) is computed once every Δt seconds for a given Δt > 0, and

scale the step size in the Right-Hand Side (RHS) of (1) by Δt. Defining u(kΔt) ∶= uk and taking the limit Δt → 0 we obtain

the following equation,

u̇(t) = g(u(t)). (2)

The process defined by Eq. (2) is said to be the fluid-flow version of the algorithm defined by Eq. (1). Fluid-flow processes

can be useful in investigating asymptotic properties of their associated discrete algorithms with small step sizes, such as con-

vergence and rate of convergence, optimality and stability of limit points, etc. They have been applied mainly to the design of

gradient-descent algorithms for problems in optimization and linear algebra, including sorting, eigenvalue decomposition, and

linear programming; see [5, 6, 7] for early works. Ref. [6] recognized their potential applications in massively-parallel com-

puting platforms such as neural nets, slated to solve very-large scale problems. Recent applications to learning and distributed

optimization can be found in [8] and [9], respectively, and references therein.

Fluid-flow variants of the Newton-Raphson method have been considered as well due to their superlinear convergence rates.

Refs. [10, 11] consider first- and second-order algorithms for convex (or concave) constrained programs with time-varying cost

functions. Ref. [10] is concerned with applications to traffic engineering in telecommunication networks, and Ref. [11] considers

distributed optimization over multi-agent networks with consensus constraints. Both references derive general theoretical results

in abstract settings of the Newton-Raphson flow beyond their motivating problem-classes, including convergence under weak

smoothness assumptions and convergence in a general network setting, respectively. Ref. [12] derives a continuous-flow, primal-

dual technique for convex optimization without assuming differentiability of the cost function. Combining results from the

theory of convex, nondifferentiable optimization with fluid-flow techniques, it defines the flow by differential inclusions, and

1r(t + T ) refers to the target point of tracking by ŷ(t + T ). We do not specify how it is defined or computed; it includes situations where r(t + T ) is a future point of

an exogenous process or a predicted value of an endogenous process. More about that will be said in the sequel.
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derives convergence results, including global asymptotic stability of the minimum and superlinear/quadratic (depending on the

assumptions) convergence under the weakest-to-date smoothness assumptions on the cost function.

This paper applies a fluid-flow variant of the Newton-Raphson method to finding roots of algebraic equations rather than

optimization. In contrast to the aforementioned references, the resulting control-derivative u̇(t) cannot be defined or described

by an equation like (2). However, it can be defined in terms of a predicted output ŷ(t+T ), which in turn is taken to be a function

of (x(t), u(t)). This is the reason we use an output predictor to define the tracking controller.

Regarding the third element of the proposed technique mentioned in the Abstract, the idea that a high controller’s rate can

enhance stability-robustness and speed up tracking-convergence is implicit in [13] and explicit in [14]. This paper, as mentioned,

explores it in conjunction with the Newton-Raphson flow and output prediction, in the aforementioned setting of tracking-control.

The rest of the paper is structured as follows. Section 2 presents the problem and recounts the past developments of our

tracking-control technique. Section 3 carries out analyses of tracking-convergence and how it is impacted by disturbances and

other errors in the loop. Section 4 derives a verifiable sufficient condition for stability of linear systems at high controller rates.

Section 5 presents simulation results and Section 6 describes a laboratory experiment. Finally, Section 7 concludes the paper.

Preliminary results concerning the material in this paper can be found in the following four conference papers, [15, 16, 17, 4].

This paper extends them in the following ways: 1). It presents a new version of the controller which can yield perfect asymptotic

tracking, in contrast with the above-mentioned references where only approximate tracking is obtained. 2). Its main results,

concerning asymptotic convergence and error analysis in a general setting, and contained in Sections 3 and 4, are new. 3). The

simulation and laboratory examples, contained in Sections 5 and 6, are new.

An arxiv version of the paper [18] contains some expanded discussions as well as straightforward proofs of lemmas which

are stated but unproved in the sequel.

2 PROBLEM FORMULATION AND EARLIER RESULTS

This section provides a background material on the specific problem considered in the paper, including its early formulation and

the fundamental approach to it taken by the authors. Much of the surveyed material can be found in [15].

Consider first the simple case where the plant system in Figure 1 is a memoryless nonlinearity of the form

y(t) = g(u(t)), (3)

where the function g ∶ m
→ m is continuously differentiable. The tracking problem can be viewed as an attempt to solve the

time-dependent system of equations

r(t) − g(u) = 0 (4)

in the variable u ∈ m, and the controller has to be designed to ensure that

lim
t→∞

(
r(t) − g(u(t))

)
= 0. (5)

To solve this problem we define the controller subsystem in Figure 1 so as to implement the fluid-flow version of the Newton-

Raphson method. It has the following form,

u̇(t) =
(
)g

)u
(u(t))

)−1(
r(t) − g(u(t))

)
, (6)

assuming that the Jacobian
)g

)u
(u(t)) is nonsingular for all t ≥ 0. This assumption suggests that the tracking controller cannot be

expected to have a global convergence but only a local domain of attraction, which is a common feature of the Newton-Raphson

method.

To illustrate the argument underscoring the local tracking of the controller defined by Eq. (6), suppose for a moment that

r(t) ≡ r ∈ m, a constant reference assumed to lie in the range of the function g(⋅). Fix û ∈ m such that g(û) = r, and suppose

that
)g

)u
(û) is nonsingular. Let Ω ⊂ m be an open set containing û such that its image under g(⋅) is an open ball in m centered

at r with radius � > 0, denoted by B(r, �). Furthermore, assume that the function g ∶ Ω → B(r, �) is bijective, and both it

and its inverse have bounded first derivatives (Jacobians) on Ω and B(r, �), respectively. The existence of sets satisfying these

assumptions is ensured by the inverse-function theorem.

Consider an application of the controller, defined by (6), on Ω. Define the Lyapunov function

V (u(t)) ∶=
1

2
‖r(t) − g(u(t))‖2, (7)
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with r(t) ≡ r. It follows from (6) and some algebra that V̇ (t) = −‖r−g(u(t))‖2 = −2V (t) thereby guaranteeing local convergence

in the sense of Eq. (5). However, if r is not in the range of the function g(⋅), the computed control-trajectory {u(t) ∶ t ∈ [0,∞)}

may be unbounded. For example, consider the one-dimensional system where g(u) = arctan(u), rendering (6) with r(t) ≡ r as

u̇(t) =
(
u(t)2 + 1

)
(r − arctan(u(t))) .

If r ∈ (−
�

2
,
�

2
), then Eq. (7) guarantees that g(u(t)) → r as t → ∞, with a global domain of attraction. If r =

�

2
, the limit

g(u(t)) → r still holds but u(t) → ∞; in a sense we have tracking but not stability. Finally, if |r| > �

2
, the above differential

equation has a finite escape time where u(t) → ∞. Thus, tracking and stability, in the sense of Eq. (5) and the boundedness

of the control trajectory {u(t) ∶ t ∈ [0,∞)}, depend on a proper choice of the target reference. We point out that for systems

whose plant is a continuously-differentiable memoryless nonlinearity as in (3), with a controller defined by (6) for a constant

reference, global tracking and stability are assured as long as the function V (⋅), defined by Eq. (7), is proper in the sense that it

has bounded level sets, and the Jacobian
)g

)u
(u) is nonsingular for all u ∈ m. These are strong assumptions, made more difficult

to prove when the plant is a dynamical system. Therefore we later will focus a part of the discussion on a suitable notion of local

stability and tracking. However, we will prove a global stability for a class of linear systems.

Next, let us return the discussion to the case where the target reference is a function of time, r(t), and suppose that it is

bounded, continuous, and piecewise-continuously differentiable. The system is defined by Eq. (3), and the control is defined

by Eq. (6). Even if the control trajectory {u(t) ∶ t ∈ [0,∞)} is well defined, bounded, continuous and piecewise-continuously

differentiable, and the inverse-Jacobian
(
)g

)u
(u(t))

)−1

along it is bounded, the convergence defined by Eq. (5) is not guaranteed.

Instead, we have

limsupt→∞
‖‖‖r(t) − y(t)

‖‖‖ ≤ �, (8)

where � ∶= limsupt→∞‖ṙ(t)‖ (see [16]). To tighten the upper bound in (8), we can speed up the action of the controller. One

way to do it is to multiply the Right-Hand Side (RHS) of Eq. (6) by a constant � > 1, which results in the following equation,

u̇(t) = �

(
)g

)u
(u(t))

)−1(
r(t) − g(u(t))

)
. (9)

This gives the following bound,

limsupt→∞
‖‖‖r(t) − y(t)

‖‖‖ ≤
�

�
, (10)

under suitable stability assumptions as defined in the sequel.

This paper considers the plant subsystem to be a dynamical system defined by an ordinary differential equation. Accordingly,

let x(t) ∈ n denote its state variable modelled by the equation

ẋ(t) = f (x(t), u(t)), (11)

where u(t) ∈ m is the control input, f ∶ n ×m
→ n is a suitable function, t ∈ [0,∞), and a given x(0) ∶= x0 ∈ n is

the initial state. The output function is

y(t) = ℎ(x(t)), (12)

where y(t) ∈ m, for a function ℎ ∶ n
→ m. We make the following assumptions on the functions f and ℎ:

Assumption 1. 1). The function f ∶ n ×m
→ n is continuously differentiable, and for every compact set Γ ⊂ m there

exists K > 0 such that, for every (x, u) ∈ n × Γ,

‖f (x, u)‖ ≤ K
(‖x‖ + 1

)
. (13)

2). The function ℎ ∶ n
→ m is continuously differentiable.

Assumption 1 guarantees the existence of a unique continuous, piecewise-differentiable solution for Eq. (11) on the time-

horizon {t ∶ t ≥ 0}, as long as the input u(t) is piecewise continuous and bounded.

Extensions of the controller defined in (9) from the case of memoryless plants to that of dynamic plants raises a few challenges.

To start with, the input-to-output relation cannot be expressed in an algebraic-functional form like in Eq. (3), because x(t), hence

y(t) are not functions of u(t) but of {u(�) ∶ � < t}. Therefore the controller cannot be defined by an equation like (9). We resolve

this issue with the use of an output predictor ŷ(t + T ), assumed to have the functional form

ŷ(t + T ) ∶= g(x(t), u(t)), (14)
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for a suitable function g ∶ n ×m
→ m and a fixed prediction horizon T > 0. The predictor that we use will be presented

below, and evidently it has the format of Eq. (14).

Assumption 2. The function g(⋅, ⋅) is continuously differentiable in (x, u), and its partial Jacobian,
)g

)u
(x, u) is locally Lipschitz

continuous in (x, u) ∈ n+m.

Recall that r(t+T ) is the target of tracking by ŷ(t+T ) = g(x(t), u(t)). To this end, we extend the Newton-Raphson flow from

Eq. (9) to the following equation,

u̇(t) = = �

(
)g

)u
(x(t), u(t))

)−1(
r(t + T ) − g(x(t), u(t))

)
, (15)

which we use to define the tracking controller. Putting together the state equation (11) with the control equation (15), we obtain

the joint equation
{
ẋ(t) = f (x(t), u(t)),

u̇(t) = �

(
)g

)u
(x(t), u(t))

)−1(
r(t + T ) − g(x(t), u(t))

)
,

(16)

which has been viewed in [18] as the state equation of an n + m-dimensional dynamical system with the augmented state

z(t) ∶= (x(t)⊤, u(t)⊤)⊤ ∈ n+m and the input r(t + T ) ∈ m. We remark that, given an initial condition z0 ∶= (x⊤
0
, u⊤

0
)⊤ for

(16) such that
)g

)u
(x0, u0) is nonsingular, Assumption 1 and Assumption 2 imply the existence of a unique continuous, piecewise-

differentiable solution to Eq. (16) on some time-interval [0, t1). Furthermore, denoting by [0, t̂1) the maximal interval of such

a solution, t̂1 = ∞ unless the trajectory {(x(t)⊤, u(t)⊤)⊤ ∶ t ∈ [0, t̂1)} is unbounded, or its closure contains a point where
)g

)u
(x(t), u(t)) is singular.

The controller defined by (15) was presented in [15] with the particular predictor defined as follows: At time t, given x(t) and

u(t), let
{
�(�) ∶ � ∈ [t, t + T ]

}
be defined by the differential equation

�̇(�) = f (�(�), u(t)) (17)

with the boundary condition �(t) = x(t); then define

ŷ(t + T ) ∶= g(x(t), u(t)) = ℎ(�(t + T )). (18)

Observe that Eq. (17) is essentially the state equation (11) except that it is defined only on the interval � ∈ [t, t + T ] with the

constant input u(�) ≡ u(t) and the initial condition �(t) = x(t). We typically solved Eq. (17) by the forward Euler method.

Ref. [15] examined the Bounded-Input-Bounded-State (BIBS) stability of the system defined by (16), with the predictor

defined by (17)-(18), on a number of examples of second-order systems. It was shown that, for a fixed � > 0, the systems are

BIBS stable for a large T but unstable for a small T . Now a small T may be desirable since it results in a smaller prediction

error than larger T . To circumvent this conundrum, it was demonstrated for the above examples that for every fixed T > 0, the

closed-loop system can be stabilized by increasing �. Moreover, simulation results suggest that the following extension of Eq.

(10),

limsupt→∞‖r(t) − ŷ(t)‖ < �

�
, (19)

is satisfied under general assumptions. Thus, a controller’s speedup by choosing a large � in Eq. (15) may serve the dual purpose

of stabilizing the closed-loop system if need be, and reducing the asymptotic tracking error. We point out that stabilizability

by increasing �, though observed in the aforementioned examples, generally is not guaranteed. The derivation of sufficient

conditions for it in general is quite challenging since the function g(x, u) lacks a closed form, but some results will be presented

for linear systems in Section 4.

Finally, a word must be said about the differences between the proposed technique and Model-Predictive Control. MPC uses

optimal control over rolling horizons to compute a future target trajectory as well as the control input to track it. Our technique

is not concerned with the computation of the reference trajectory but only with its tracking, for which it uses a Newton-Raphson

flow, not optimal control. If the reference trajectory has to be computed in real time then various numerical techniques can be

used including interpolation as in Section 5, below, or learning methods based on neural nets as in ([19, 4]).
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3 CONVERGENCE ANALYSIS

Consider a system defined by Eqs. (11) and (12) under Assumption 1, and suppose that the predictor, defined by (14), satisfies

Assumption 2. This section derives theoretical results concerning asymptotic convergence of the tracking-control algorithm

defined by Eq. (15) and variations thereof. We generalize Eq. (15) to the following form,

u̇(t) =
(
)g

)u
(x(t), u(t))

)−1(
�
(
r(t + T ) − g(x(t), u(t))

)
+ E(x(t), u(t), t)

)
, (20)

where the functionE ∶ n×m×+
→ m is locally Lipschitz continuous in (x⊤, u⊤)⊤ ∈ n×m and piecewise continuous

in t ∈ +. Note that the difference between (15) and (20) is in the inclusion of the term E(x(t), u(t), t) in the RHS of (20),

and this term is not multiplied by �. Various controllers will be defined according to specific forms of E(x(t), u(t), t), and their

related asymptotic tracking errors will be analyzed. We first propose a particular feed-forward term that gives zero asymptotic

tracking error. Next, we carry out an error analysis with the objective of identifying the kinds of additive errors whose effects can

be reduced by increasing � vs. those which might not be directly affected by �. Lastly, we explore general relationships between

stability and asymptotic tracking. We point out that most of the proofs in this section, though perhaps technically involved, are

based on fairly straightforward arguments from the theory of Lyapunov’s direct method; this is due to the particular dynamics

of the Newton-Raphson flow for solving algebraic equations.

Central to the analysis is a suitable notion of a system’s stability, which must include the requirement that state trajectories

preclude points (x⊤, u⊤)⊤ ∈ n+m where the partial-Jacobian matrix
)g

)u
(x(t), u(t)) is singular. Another source of a system’s

instability is due to the dynamics of Eq. (16) in the variable (x⊤, u⊤)⊤ ∈ n+m. Regarding the latter, as mentioned in the last

section, increasing the controller’s rate � may stabilize the closed-loop system and reduce the tracking error. Therefore, we will

focus the analysis on tracking at large � and define the stability concept, called �-stability, to aid in this regard. We will derive

a verifiable sufficient condition for �-stability of linear systems in Section 4. However, for general nonlinear systems we doubt

that a single practically-verifiable sufficient condition can be derived, and instead, �-stability may have to be proved for classes

of systems having special properties. Even then the derivation of proofs may be quite challenging, especially if the prediction

function g(x, u) does not have a closed form. Therefore the concept of �-stability will be defined in a way that can represent

local stability, which may be easier to analyze, as well as global stability, as for linear systems. In this section (and paper) we

do not attempt to prove �-stability for nonlinear systems; we define and discuss the concept, use it to derive results concerning

tracking, and demonstrate it (and the related tracking) via simulation and in the lab on various examples in Sections 5 and 6.

Proofs for particular systems will be presented in subsequent publications.

To introduce the notion of stability we first establish some notation. Consider the closed-loop system defined by Eqs. (11),

(12), and (20). As indicated following Eq. (16), it can be viewed as a dynamical system with the augmented-state variable

z(t) ∶= (x(t)⊤, u(t)⊤)⊤ ∈ n+m, input r(t) ∈ m, and output y(t) ∈ m. Denote byC the space of bounded, continuous functions

r ∶ [0,∞) → m having a piecewise-continuous, bounded derivative ṙ(t). We henceforth assume that the target-reference

function {r(t) ∶ t ∈ [0,∞)} is contained in C . Denote byL∞(m) the space of essentially-bounded functions p ∶ [0,∞) → m,

and by ||p||∞, the L∞ norm of p ∈ L∞(m). Fix � > 0. We say that, for a given initial condition z0 ∈ n+m, the state trajectory

{z(t) ∶ t ∈ [0,∞)} is well-defined if it comprises the unique continuous, piecewise-continuously differentiable solution of

Eqs. (11) and (20) (jointly) over t ∈ [0,∞), with the initial condition z(0) = z0. A well-defined state trajectory is said to be

nonsingular if for every z(t) ∶= (x(t)⊤, u(t)⊤)⊤ contained in it, the partial Jacobian
)g

)u
(x(t), u(t)) is nonsingular. Finally, we use

the shorthand notation {z(t)} for a state trajectory {z(t) ∶ t ∈ [0,∞)} that is well defined, and similarly for the trajectories

{x(t)}, {u(t)}, {y(t)} and {r(t)}.

�-stability is defined with respect to given open set Ω ⊂ L∞(m) and closed set Γ ⊂ n+m, as follows.

Definition 1. Given an open set Ω ⊂ L∞(m) and a closed set Γ ⊂ n+m, the system defined by (11), (20) and (12) is �-

stable with respect to Ω and Γ if there exist �̄ > 0, and two continuous, monotone-nondecreasing functions 
 ∶ +
→ + and

� ∶ +
→ +, such that for every � > �̄, and for every reference input {r(t)} ∈ Ω∩C and an initial condition z0 ∶= z(0) ∈ Γ,

the trajectory {z(t)} is well defined and nonsingular, and the following equation is satisfied,

‖z‖∞ ≤ 
(‖r‖∞) + �(‖z0‖). (21)

Note that the state trajectory {z(t)} in (21) depends on {r(t)} and z0 as well as � > 0, but the latter dependence is suppressed

in the used notation for the sake of simplicity of presentation. Moreover, the right-hand side of (21) is independent on � as long

as the target-reference process {r(t)} is exogenous, but may be �-dependent if {r(t)} is endogenous; more on that will be said

later.



AUTHOR ONE ET AL 7

We remark that if Ω = L∞(m) and Γ = m then �-stability can be thought of as a global concept. On the other hand, if

Ω is a sleeve around a target reference {r̂(t)}, namely Ω = {r ∈ L∞ ∶ ||r − r̂||∞ < �} for a given � > 0, and Γ is a closed

ball centered at a point ẑ0 ∈ n+m, then �-stability has a local meaning. A practical scenario may arise when it is known that

a given target trajectory {r̂(t)} ∈ C gives a well-defined, nonsigular, bounded trajectory {ẑ(t)}, and it is desirable to prove that

these properties also are satisfied in a sleeve around {r̂(t)} and a compact set of possible initial conditions including ẑ(0).

We start the analysis in this section by considering a modification of the controller defined by (15) which gives zero asymptotic

tracking error at fixed values of �. We then investigate the effects of additive errors in the loop on the asymptotic tracking. Lastly,

we prove asymptotic tracking from �-stability in a general setting. The �-stability assumption is not required for the first two

parts of the analysis, where we use a weaker assumption. It is, however, needed in the last part where the setting for the analysis

is more general.

3.1 Enhanced Controller

Consider the closed-loop system defined by Eqs. (11), (12) and the following controller equation,

u̇(t) =
(
)g

)u
(x(t), u(t))

)−1(
�
(
r(t + T ) − ŷ(t + T )

)
+ ṙ(t + T ) −

)g

)x
(x(t), u(t))f (x(t), u(t))

)
, (22)

where it is assumed that {r(t)} ∈ C . Note that (22) is a special case of (20) with

E(x(t), u(t), t) = ṙ(t + T ) −
)g

)x
(x(t), u(t))f (x(t), u(t)). (23)

Fix a predictor’s horizon T > 0, a controller’s rate � > 0, and an initial condition z0 = z(0) ∈ n+m.

Define the function V (x(t), u(t)) by

V (x(t), u(t)) ∶=
1

2
‖r(t + T ) − ŷ(t + T )‖2. (24)

Proposition 1. Suppose that Assumption 1 and Assumption 2 are satisfied. If the trajectory {z(t)} is well-defined, nonsingular

and bounded, then V (x(t), u(t)) satisfies the following equation,

V̇ (x(t), u(t)) = −2�V (x(t), u(t)), (25)

and consequently,

lim
t→∞

(
r(t) − ŷ(t)

)
= 0. (26)

Proof. Taking derivatives with respect to t in (24), and considering the fact that ŷ(t + T ) = g(x(t), u(t)),

V̇ (x(t), u(t)) =
⟨
r(t + T ) − ŷ(t + T ), ṙ(t + T ) −

d

dt
g(x(t), u(t))

⟩
. (27)

Next, by Eqs. (11) and (22),

d

dt
g(x(t), u(t)) =

)g

)x
(x(t), u(t))f (x(t), u(t))

+
)g

)u
(x(t), u(t))

(
)g

)u
(x(t), u(t))

)−1(
�
(
r(t + T ) − g(x(t), u(t))

)
+ ṙ(t + T ) −

)g

)x
(x(t), u(t))f (x(t), u(t))

)
. (28)

Lastly, simplifying and applying Eq. (28) to (27), Eq. (25) is obtained, whence Eq. (26) follows. □

We remark that Proposition 3.2 holds true and its proof is valid regardless of whether the process {r(t + T )} is exogenous or

functionally dependent on {z(t)} via feedback. In the latter case this dependence must be reflected in the computation of ṙ(t+T )

required by Eq. (22).

3.2 Error Analysis

This subsection considers three types of potential additive errors in the loop, added to various terms in the RHS of Eq. (22), and

evaluates their effects on the tracking performance.

3.2.1 Prediction error.

Fix � > 0. Consider the prediction error defined as 1(t) ∶= ŷ(t + T ) − y(t + T ), and define the asymptotic prediction error by

�1 ∶= limsupt→∞‖1(t)‖. (29)
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�1 may depend on �, but we suppress this dependence in the notation used. Under the assumptions made for Proposition 1, Eq.

(26) implies that

limsupt→∞‖r(t) − y(t)‖ = �1. (30)

Defining the asymptotic tracking error by the Left-hand Side (LHS) of (30), we see that the asymptotic prediction error is

translated to the asymptotic tracking error regardless of the value of � > 0.

3.2.2 Error in ṙ(t + T ) −
)g

)x
(x(t), u(t))f (x(t), u(t)).

Fix � > 0. Let 2(t) denote an error added to the term ṙ(t + T ) −
)g

)x
(x(t), u(t))f (x(t), u(t)) in the RHS of Eq. (22). Due to this

error, the controller equation is modified from (22) to the following equation,

u̇(t) =
(
)g

)u
(x(t), u(t))

)−1(
�
(
r(t + T ) − ŷ(t + T )

)
+ ṙ(t + T ) −

)g

)x
(x(t), u(t))f (x(t), u(t)) + 2(t)

)
. (31)

Define

�2 ∶= limsupt→∞‖2(t)‖. (32)

2(t) may depend on �, but this dependence is suppressed in the notation used.

Proposition 2. Suppose that Assumption 1 and Assumption 2 are satisfied. Consider the closed-loop system defined by Eqs.

(11), (12), and (31) with a fixed � > 0, with a given initial condition z0 ∈ n+m. Suppose that the resulting trajectory {z(t)} is

well defined, nonsingular and bounded over all t ∈ [0,∞). Then,

limsupt→∞‖r(t) − ŷ(t)‖ ≤
�2

�
. (33)

Proof. If �2 = ∞ then (33) is obvious. Consider the case where �2 < ∞. Define the function V (x(t), u(t)) by Eq. (24). Taking

derivatives with respect to t, and recalling that ŷ(t + T ) = g(x(t), u(t)), we have that

V̇ (x(t), u(t)) =
⟨
r(t + T ) − ŷ(t + T ), ṙ(t + T ) −

d

dt
g(x(t), u(t))

⟩
. (34)

By Eqs. (11) and (31), after some algebra we obtain that

d

dt
g(x(t), u(t)) =

)g

)x
(x(t), u(t))f (x(t), u(t))

+ �
(
r(t + T ) − ŷ(t + T )

)
+ ṙ(t + T ) −

)g

)x
(x(t), u(t))f (x(t), u(t)) + 2(t). (35)

Using Eq. (35) in Eq. (34) we obtain,

V̇ (x(t), u(t) ) =
⟨
r(t + T ) − ŷ(t + T ),−�

(
r(t + T ) − ŷ(t + T )

)
− 2(t)

⟩
. (36)

Consequently, for given � > 0 and t ≥ 0, if �‖r(t+ T ) − ŷ(t+ T )‖ > ‖2(t)‖+ �, then (36) and the Cauchy-Schwarz inequality

imply that V̇ (x(t), u(t)) ≤ −�||r(t + T ) − ŷ(t + T )||. By (24), ||r(t + T ) − ŷ(t + T )|| = (
2V (x(t), u(t))

)1∕2
. Therefore, some

algebra and the latest inequality mean that if �
(
2V (x(t), u(t))

)1∕2
> ||2(t)|| + �, then

d

dt

((
2V (x(t), u(t))

)1∕2)
≤ −�. (37)

This implies that � lim supt→∞ ||r(t) − ŷ(t)|| ≤ ||�2|| + �, and since � > 0 was arbitrary, Eq. (33) follows. □

We point out that Proposition 2 holds true and its proof is valid regardless of whether either process {r(t + T )} or {2(t)}

is exogenous or functionally dependent on {z(t)} via feedback. Of course, in the latter case it may be difficult to prove the

assumptions underscoring the proposition.

Recall the definition of the asymptotic prediction error, �1, by Eq. (29).

Corollary 1. Under the assumptions of Proposition 2,

limsupt→∞‖r(t) − y(t)‖ ≤ �1 +
�2

�
. (38)

Proof. It follows directly from Proposition 2 and the definition of �1. □

The enhanced controller, defined by Eq. (22), seems to have better convergence than the more-basic controller defined by Eq.

(15). However, the latter controller still has a place since it is simpler, and also can be more practical in situations where r(t+T )
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is computed in real time (at time t) but ṙ(t + T ) cannot be computed at that time. An intermediate control algorithm between

(15) and (22), defined by Eq. (39), is also possible.

u̇(t) =
(
)g

)u
(x(t), u(t))

)−1(
�
(
r(t + T ) − ŷ(t + T )

)
−
)g

)x
(x(t), u(t))f (x(t), u(t))

)
. (39)

For the purpose of analysis, the controllers based on Eqs. (15), (22) and (39) can be viewed as special cases of the controller

defined by (31) by setting 2(t) ∶= −ṙ(t + T ) +
)g

)x
(x(t), u(t)), 2(t) ∶= 0, and 2(t) = −ṙ(t + T ), respectively.

3.2.3 Error in
(
)g

)u
(x(t), u(t))

)−1

.

Convergence of the standard Newton-Raphson method for solving nonlinear equations is known to be robust to errors in the

computation of the inverse-Jacobian (see, e.g., [20], Section 1.4.3). A similar robustness holds for convergence of the controller

defined by Eq. (31) with respect to errors in the term
(
)g

)u
(x(t), u(t))

)−1

, and Eq. (33) still holds if such errors are small enough.

Therefore we henceforth implicitly assume that the inverse-Jacobian in Eq. (31) is exact.

3.3 Stability as a Sufficient Condition for Tracking

This subsection explores a relationship between the �-stability of a system and its asymptotic tracking as � → ∞. The analysis is

carried out under the assumption that the target-reference signal {r(t)} is exogenous and hence independent of �, but comments

will be offered on its possible extensions to the case where {r(t)} depends on {z(�)} via feedback.

Proposition 3. Consider the closed-loop system defined by Eqs. (11)-(12) with the controller defined by either equation (15),

(22), or (39). Suppose that Assumption 1 and Assumption 2 are satisfied. Given an open set Ω ⊂ L∞(m) and a closed set

Γ ⊂ n+m, suppose that the system is �-stable with respect to Ω and Γ. Then for every exogenous reference input {r(t)} ∈ Ω∩C ,

and for every z0 ∈ Γ,

lim
�→∞

limsupt→∞‖r(t) − ŷ(t)‖ = 0. (40)

Proof. Consider first the case where the controller is defined by Eq. (22). By Definition 1, there exists �̄ > 0 such that for

every � > �̄, for every {r(t)} ∈ Ω ∩ C and for every z0 ∈ Γ, the closed-loop state trajectory {z(t)} is well defined, nonsingular

and bounded. By Proposition 1, Eq. (26) is in force, hence (40) is satisfied as well.

Next, consider the controller defined by Eq. (15). It is equivalent to Eq. (31) with 2(t) = −ṙ(t+T )+
)g

)x
(x(t), u(t))f (x(t), u(t)).

Suppose that the closed-loop system is �-stable with respect to an open set Ω ⊂ L∞(m) and a closed set Γ ⊂ n+m. By

Definition 1, there exist �̄ > 0, and two continuous, monotone-nondecreasing functions 
 ∶ +
→ + and � ∶ +

→ +,

such that, for every {r(t)} ∈ Ω∩C , z0 ∈ Γ, and � > �̄, Eq. (21) is satisfied. Now consider an exogenous process {r(t)} ∈ Ω∩C

and z0 ∈ Γ. Since {r(t)} is exogenous it is independent of �, hence the RHS of (21) is also independent of �; and by (32), �2 is

independent of � as well. Therefore, and by Proposition 2, Eq. (40) follows.

Finally, the case where the controller is defined by Eq. (39) follows the same argument, in a simpler form since it corresponds

to (31) with 2(t) = −ṙ(t + T ). □

We remark that Proposition 3 perhaps may be extendable from the case where the reference target {r(t)} is exogenous to the

case where it is controlled and hence dependent on �. This requires that �2, defined by (32), though dependent on �, be upper-

bounded by a constant that is independent of �. The validity of this property and its proof are expected to depend on specific

properties of a system under study.

We conclude this section by summarizing the scope of the results derived therein. Broadly, they analyze the asymptotic

tracking errors for various controllers based on the Newton-Raphson flow, and assert that tracking can be a consequence of �-

stability. The proofs are based on variants of Lyapunov’s direct method. The next section provides a verifiable sufficient condition

for �-stability, hence tracking convergence for a class of linear systems.

4 LINEAR SYSTEMS

Consider the special case where the plant is a linear, time-invariant system of the form

ẋ(t) = Ax(t) + Bu(t), y(t) = Cx(t), (41)
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where A ∈ n×n, B ∈ n×m, and C ∈ m×n are given matrices. Suppose that ŷ(t+ T ) is defined by Eqs. (17)-(18), and that the

controller is defined by either Eq. (15), (22) or (39). The respective analyses of these controllers are almost identical, hence we

perform a detailed analysis only for the case of (15) and point out in context the required modifications for the two other cases.

Furthermore, to simplify the exposition we assume that A is nonsingular which makes possible the term A−1(eAT − I) in Eq.

(42), below; we will comment in the sequel on the case where A is singular.

Fix T > 0. By Eqs. (17)-(18), we have that

g(x(t), u(t)) = CeATx(t) + CA−1(eAT − I)Bu(t), (42)

where I denotes the identity matrix. Therefore,

)g

)x
(x(t), u(t)) = CeAT , (43)

and
)g

)u
(x(t), u(t)) = CA−1(eAT − I)B. (44)

Since
)g

)u
(x(t), u(t)) is a constant (independent of t) matrix, we conclude that the matrix CA−1(eAT − I)B is nonsingular if and

only if every trajectory of the system is nonsingular regardless of the target reference {r(t)} or the initial condition z0. Therefore,

we will assume that the matrix CA−1(eAT −I)B is nonsingular. Furthermore, Assumption 1 and Assumption 2 follow from Eqs.

(41) and (42), respectively. Consequently, by Proposition 3, tracking in the sense of (40) would follow from the �-stability of

the system, and we will derive a sufficient condition for �-stability with respect to Ω ∶= L∞(m) and Γ = n+m. We formalize

the above assumptions which are held to be implicit throughout the following analysis.

Assumption 3. The matrices A and CA−1(eAT − I)B are nonsingular.

With the controller defined by (15), the closed-loop system has the form of Eq. (16). By Eqs. (15) and (42)-(44) the controller

has the following form,

u̇(t) = �

(
CA−1(eAT − I)B

)−1

r(t + T ) − �
(
CA−1(eAT − I)B

)−1

CeATx(t) − �u(t). (45)

Therefore Eq. (16) assumes the form (
ẋ(t)

u̇(t)

)
= Φ�

(
x(t)

u(t)

)
+ Ψ�r(t + T ), (46)

where Φ� is an (n + m) × (n + m) matrix having the following block structure,

Φ� =

(
A B

−�
(
CA−1(eAT − I)B)

)−1

CeAT −�I

)
, (47)

and Ψ� is an (n + m) × n matrix of the form

Ψ� =

(
0

�

(
CA−1(eAT − I)B

)−1

)
, (48)

where the block of zeros is n × n.

We remark that in the event that the matrix A is singular, Eq. (44) is no-longer valid. In this case, as long as the matrix
)g

)u
(x, u) ∈ m×m is nonsingular, it can replace the term CA−1(eAT − I)B in both (47) and (48) to ensure that the rest of the

analysis in this section is applicable.
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Returning to Eq. (47), observe that � multiplies the last m rows of Φ� but none of its first n rows, and hence we can write Φ�

in the following way,

Φ� =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�1,1 �1,2 ⋅ ⋅ ⋅ �1,n+m

�2,1 �2,2 ⋅ ⋅ ⋅ �2,n+m

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

�n,1 �n,2 ⋅ ⋅ ⋅ �n,n+m
��n+1,1 ��n+1,2 ⋅ ⋅ ⋅ ��n+1,n+m

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

⋅ ⋅ ⋅ ⋅ ⋅ ⋅

��n+m,1 ��n+m,2 ⋅ ⋅ ⋅ ��n+m,n+m

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

(49)

for some scalars �j,i, j = 1,… , n +m; i = 1,… , n +m. The determinant of sI −Φ� is a two-dimensional polynomial in � and

s, which we denote by P (s; �). The standard formula for computing determinants reveals the following result, whose proof can

be found in ([18], Lemma 4.3).

Lemma 1. For every i = 1,… , m there exists a polynomial Pi(s) of degree no more than n + i, such that,

P (s; �) =

m∑
i=0

�iPm−i(s). (50)

Remark 1. For the cases where the controller is defined by either (22) or (39), the only resulting change toΦ� is that the entries of

its last m rows are first-order polynomials in � with possibly-nonzero free coefficients (currently they are first-order polynomials

whose free coefficients are 0). That would not affect the validity of Lemma 1 or the rest of the analysis in this section.

Since by assumption deg(Pi) ≤ n + i, we can write Pi(s) as

Pi(s) =

n+i∑
j=0

ai,js
j (51)

for some coefficients ai,j , j = 0,… , n+ i. We assume, for simplicity of presentation, that ai,n+i ≠ 0 to ensure that deg(Pi) = n+ i.

Then

P (s; �) =

m∑
i=0

�i
n+m−i∑
j=0

am−i,js
j . (52)

Since P (s; �) is the characteristic polynomial of a matrix, the coefficient of its highest order in s is 1. This coefficient,

corresponding to i = 0 and j = n + m in (52), is am,n+m; hence am,n+m = 1.

Define Ω = L∞(m), and let Γ ∶= n+m. The sufficient condition for �-stability with respect to Ω and Γ, derived below,

amounts to two polynomials, expressed in terms of the system’s parameters, having all of their roots in the Left-Half Plane

(LHP). One polynomial has degree n, the other has degree m, and both are independent of � hence the sufficient condition is

verifiable.

The first polynomial is P0(s), which by (50) is the polynomial-coefficient of �m, the leading term in P (s; �) in terms of the

power of �. Note (Eq. (51)) that deg(P0) = n.

The second polynomial, denoted byQ(s), is defined as follows. For every i = 0,… , m, consider the polynomial Pi(s), defined

in Eq. (51), whose degree is n + i. Define the polynomial P̃i(s) as the monomial consisting of the highest-order term of Pi(s),

namely,

P̃i(s) = ai,n+is
n+i. (53)

Next, in analogy to (50), define the family of polynomials parameterized by � > 0, {P̃ (s; �}, by

P̃ (s; �) =

m∑
i=0

�iP̃m−i(s). (54)

By (53),

P̃ (s; �) =

m∑
i=0

�iam−i,n+m−is
n+m−i. (55)
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Observe that for every � > 0, P̃ (s; �) is evenly divisible by sn. Dividing it by sn, we define

Q̃(s; �) ∶=

m∑
i=0

�iam−i,n+m−is
m−i, (56)

and we note that

P̃ (s; �) = snQ̃(s; �). (57)

We make the observation that P̃ (s; �) has the degree (in s) of n + m hence it has n + m roots; by (57), n of those roots are at

s = 0, and the remaining m roots are the roots of Q̃(s; �). Finally, we define the mtℎ-degree polynomial Q(s) by setting � = 1

in Q̃(s; �) (Eq. (56)); namely,

Q(s) ∶= Q̃(s; 1) =

m∑
i=0

am−i,n+m−is
m−i. (58)

Observe that Q(s) is independent of �, and its degree is m.

The following result establishes the �-stability of the system. Recall that Assumption 3 is implicit throughout the discussion.

Theorem 1. Consider the closed-loop system defined by Eq. (46). If the polynomials P0(s) and Q(s) have all of their roots in

the open Left-Half Plane (LHP), then the system is �-stable with respect to Ω ∶= L∞(m) and Γ ∶= n+m.

Before providing a proof, we offer a few comments on the theorem’s statement and the system to which it pertains. The fact

that the system is linear and time invariant ensures that g(x, u) has a closed-form solution, as provided by Eq. (42). Consequently,

a solution of the equation

r(t + T ) = g(x(t), u(t))

is provided by the following formula,

u(t) =
(
CA−1(eAT − I)B

)−1(
r(t + T ) − CeATx(t)

)
. (59)

In fact, for a given bounded exogenous reference signal {r(t)}, Eq. (59) corresponds to the limiting scenario, as � → ∞, of Eq.

(45) as long as the terms x(t) and u(t) therein are uniformly bounded in (t, �) for t ∈ [0,∞) and large-enough �. This condition

is closely related to, and follows from, the �-stability of the closed-loop system.

The first condition of Theorem 1, namely that all the roots of the polynomial P0(s) be in the open LHP, ensures the stability

of the closed-loop system under the static feedback defined by Eq. (59). The second condition of Theorem 1, namely that all the

roots of Q(s) be in the LHP, ensures that the trajectories of the �-dependent systems with the dynamic feedback defined by (45)

approach the trajectory of the system with the static feedback, as � → ∞. Now it may be practical to use the static feedback

(defined by (59)) as long as all the roots of P0(s) are in the LHP, regardless of whether all the roots of Q(s) also are in the LHP.

However, this can lead to a discontinuous control signal u(t) (see (59)) if {r(t)} is discontinuous, which may be undesirable.

The dynamic feedback defined by (45) may provide a suitable smooth approximation as long as both conditions of Theorem 1

are satisfied and hence the closed-loop system is �-stable.

The proof of Theorem 1 is based on the following two arguments: Under the assumptions stated in the theorem, for large-

enough �, (i) the matrix Φ� is Hurwitz, and (ii) {z(t)} is bounded despite the fact that � is a multiplicative factor of some of the

entries in the matrix Ψ� (see (48)).

To prove the first argument we employ a root-locus technique for the eigenvalues of Φ� as functions of � > 0, in a nonstandard

setting; accordingly, the functional dependence of P (s; �), whose roots are the eigenvalues of Φ� , on � and s is via a two-

dimensional polynomial. The proof proceeds as follows: First we show that bounded branches of the root locus must converge,

as � → ∞, to the zeros of P0(s), and this follows standard root-locus arguments. Then we prove that the angles (arguments) of

the unbounded branches of the root locus converge, as � → ∞, to angles of the roots of Q(s), hence be in the LHP for large-

enough � under the assumption that all of the roots of Q(s) are in the LHP. As for the boundedness of ||z(t)|| at large �, it will

follow from the specific structures of the matrices Φ� and Ψ� .

Throughout the forthcoming discussion we denote a generic branch of the root locus of P (s; �) by {s(�)}�≥0, or by {s(�)} for

a simpler notation.

Lemma 2. If {s(�)} is bounded over � ∈ [0,∞), then the limit lim�→∞ s(�) exists and it is a root of P0(s).

The proof is straightforward since P0(s) is the polynomial-coefficient of �m in (50); please see ([18], Lemma 4.6).



AUTHOR ONE ET AL 13

Consider next the case where {s(�)} is unbounded. Let A ⊂ [0,∞) be an unbounded set such that

lim
�→∞; �∈A

|s(�)| = ∞.

Lemma 3. There exist constants c > 0 and C > c such that, as � → ∞; � ∈ A,

c ≤ liminf
|s(�)|
�

, and limsup
|s(�)|
�

≤ C. (60)

Proof. Consider first the right inequality of Eq. (60). Let us argue by contradiction. If that inequality does not hold, there

exists an unbounded set A1 ⊂ A such that, as � → ∞, � ∈ A1,

|s(�)|
�

→ ∞. (61)

By Eq. (50), ∀� ∈ A1,
m∑
i=0

�iPm−i(s(�)) = 0.

Dividing this equation by s(�)m+n, we get that

m∑
i=0

(
�

s(�)

)iPm−i(s(�))
s(�)n+m−i

=

m∑
i=1

(
�

s(�)

)iPm−i(s(�))
s(�)n+m−i

+
Pm(s(�))

s(�)m+n
= 0. (62)

But deg(Pm−i) = n + m − i, hence, and by (51), as � → ∞; � ∈ A1,

Pm−i(s(�))

s(�)n+m−i
→ am−i,n+m−i

which is a finite-magnitude number. Therefore, and by (61),

m∑
i=1

(
�

s(�)

)i
×
Pm−i(s(�))

s(�)n+m−i
→ 0

as � → ∞; � ∈ A1. Furthermore, deg(Pm) = n + m, hence, and since the leading coefficient of Pm is 1,

Pm(s(�))

s(�)m+n
→ 1.

This contradicts (62) thereby ascertaining the right inequality of (60).

The left inequality of (60) is provable by similar arguments, hence a proof is omitted here but can be found in ([18], Lemma

4.7). □

Consider the polynomial P (s; �) as defined by (50), and let {s(�)} be a branch of its root locus. Let us examine the derivative

of s(�), for a given � > 0, with respect to the coefficients of Pm−i(s), for i = 0,… , m, as defined by Eq. (51). For this purpose

we consider all but the leading coefficients, namely am−i,j , j = 0,… , n + m − i − 1. We denote these derivatives by
)s(�)

)am−i,j
. For

apparent reasons of notation, we will use l and � instead of i and j in the following discussion.

Lemma 4. There exist r ≥ 0 andL > 0 such that, if |s(�)| ≥ r, then for every l = 0,… , m, and for every � = 0,… , n+m−l−1,

|||
)s(�)

)am−l,�

||| ≤ L. (63)

The proof is carried out by realizing that P (s(�); �) = 0, and taking derivatives with respect to am−l,� . The details can be

found in ([18], Lemma 4.8). We remark that the assertion of Lemma 4 may not hold true for the case where � = n + m − l,

namely for the leading coefficient of Pm−l(s).

Recall the definition of P̃ (s; �) which was made in Eq. (54). Similarly to the notation s(�) for a generic root of P (s; �), we

denote by {s̃(�)} a generic branch of the root locus of P̃ (s; �).

Lemma 5. There exist constants r > 0 and K > 0 such that, if |s(�)| ≥ r for some � > 0, then there exists s̃(�) such that

|s̃(�) − s(�)| < K. (64)

Proof. The polynomials Pm−l(s) and P̃m−l(s), l = 0,… , m, have the same respective leading coefficients, am−l,n+m−l . As for

the other coefficients, those of Pm−l(s) are am−l,� , � = 0,… , n + m − l − 1, and those of P̃m−l(s) are 0. Recall L > 0 in Eq.

(63), and define K ∶= L
∑m

i=0
(n + m − i); the statement now follows from Lemma 4 and the mean-value theorem. □
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Fix � > 0. It has been mentioned that, by Eq. (57), n of the roots of P̃ (s; �) are at 0, and its remaining m roots are the roots

of Q̃(s; �) as defined by (56). We next characterize the roots of Q̃(s; �).

Lemma 6. Let s be a root of the polynomial Q(⋅). Then for every � > 0, �s is a root of the polynomial Q̃(⋅ ; �).

Proof. By Eqs. (56) and (58), we see that for every complex variable s, and for every � > 0,

Q̃(�s; �) = �mQ(s). (65)

Therefore, if s is a root of Q(⋅), �s is a root of Q̃(⋅ ; �). □

Given a complex variable s, let ∠s denote the angle (argument) of s with respect to the positive side of the horizontal axis.

Thus, if s = |s|ej� according to its polar coordinates, then ∠s = �.

Lemma 7. Let si, i = 1,… , m, denote the roots of the polynomial Q(s). Suppose that none of these roots is 0. For every

unbounded branch of the root locus of P (s; �), denoted by {s(�)}, there exists i ∈ {1,… , m} such that,

lim
�→∞

∠s(�) = ∠si. (66)

Proof. By Lemma 6, m of the root-locus’ branches of Q̃(s; �) are straight lines {�si}
∞
�=0

, i = 1,… , m. By Eq. (57), these

are the unbounded root loci of P̃ (s; �). Therefore, and by Lemma 5, if {s(�)} is unbounded, there exist r > 0, K > 0 and

i ∈ {1,… , m} such that, if |s(�)| > r, then |s(�) − �si| < K . This implies Eq. (66) and completes the proof. □

Proof of Theorem 1. Suppose that all of the roots of the polynomials P0(s) and Q(s) are in the LHP. Then Lemma 2 and

Lemma 7 imply that there exist � < 0 and �̄ ≥ 0 such that ∀� ≥ �̄, all of the eigenvalues of the closed-loop system matrix

Φ� are to the left of the vertical line (� − j∞, � + j∞) in the complex plane. This argument would be sufficient to prove the

�-stability of the system were it not for the fact that the matrix Ψ� is not a bounded function of �; see (48). Nevertheless we next

show that for every reference signal {r(t)} ∈ Ω ∩ C and an initial condition z0 ∶= z(0) ∈ Γ, the state trajectory of Eq. (46) is

bounded in �. This will complete the proof.

As a matter of notation, we say that a matrix is O(�k) for an integer k (possibly nonpositive) if the highest power of � among

all its entries is �k. Recall Eq. (49), and note, that the first n rows of Φ� do not contain �, and the last m rows contain � as a

multiplicative factor. Therefore, by Cramer’s rule, the first n columns of (sI−Φ�)
−1 areO(�0), and its lastm columns areO(�−1).

Denote by Φ1,�(s) and Φ2,�(s) the matrices comprised of the first n columns and last m columns of (sI − Φ�)
−1, respectively.

Then Φ1,�(s) is O(�0), and Φ2,�(s) is O(�−1). As for Ψ� , denote the matrix comprised of its last m rows by Ψ2,� . Then (by (48)),

Ψ2,� is O(�1). Now the r(t + T )-to-z(t) (input-to-state) transfer function of the system defined by (46) is

(sI − Φ�)
−1Ψ� =

(
Φ1,�(s) Φ2,�(s)

)( 0

Ψ2,�

)
= Φ2,�(s)Ψ2,� . (67)

Since Φ2,�(s) is O(�−1) and Ψ2,� is O(�1), (sI − Φ�)
−1Ψ2,� is O(�0), hence {z(t)} is bounded. Consequently, and since Φ� is

Hurwitz, there exist � < 0 and �̃ ≥ 0 such that, for every � ≥ �̃, the real parts all the poles of the r(t+T )-to-z(t) transfer-function

matrix are smaller than �. This, together with the fact that all of the eigenvalues of Φ� are to the left of the line (�−j∞, �+j∞),

imply the �-stability of the closed-loop system with respect to Ω = L∞(m) and any closed set Γ = n+m. □

Theorem 2. Consider the system defined by Eq. (41), with the controller defined by either (15), (22) or (39). Suppose that the

target-reference process is exogenous. If the polynomials P0(s) and Q(s) have all of their roots in the open LHP, then for every

{r(t)} ∈ C and z0 ∈ n+m,

lim
�→∞

limsupt→∞‖r(t) − ŷ(t)‖ = 0. (68)

Proof: Follows from Proposition 3 and Theorem 1. □

Remark 2. A few words must be said about the relationships between �-stability of linear systems and the controllability,

observability, and minimum phase of their plant subsystems. If the plant subsystem is not completely observable and all of its

unobservable modes correspond to LHP eigenvalues ofA, then x(t) in the control equations can be replaced by the state variable

of a suitable Luenberger observer without changing the result of Theorem 2. As for controllability, by Definition 1, �-stability

implies the boundedness of {x(t)}, and in that case unreachable modes of the plant cannot be associated with RHP eigenvalues

of A. Finally, �-stability of the closed-loop system does not require the plant to be a minimum-phase system, as the following

example demonstrates.
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Example. Let

A =

(
2 1

−1 −1

)
, B =

(
0

1

)
, C =

(
−10 1

)
,

and T = 0.25s. The plant transfer function is

G(s) =
s − 12

s2 − s − 1
,

which is neither stable nor of a minimum phase. Next, P (s; �) =
(
s3 − s2 − s

)
+ �

(
s2 + 16.19s + 97.18

)
. Therefore P0 =

s2 + 16.19s+ 97.18 and P1(s) = s3 − s2 − s, implying that Q(s) = s+ 1. Both Q(s) and P0(s) have all of their roots in the LHP,

hence the system is �-stable.

5 SIMULATION EXPERIMENTS

This section presents simulation results for two problems concerning, respectively, an inverted pendulum and a platoon of

autonomous vehicles. For the inverted pendulum we use the controller defined by Eq. (22). As for the platoon system, {r(t+T )}

is a controlled (endogenous) process, and to avoid a real-time computation of ṙ(t+T ) we choose the controller based on Eq. (15).

5.1 Inverted pendulum

Ref. [15] concerns the control of an inverted pendulum by the torque directly applied to the base of its pole. Here we consider

the more-challenging problem of a pole on a cart, controlled by the horizontal force on the cart.

The cart can move in the two directions of a given line, parameterized by z ∈ R. Let � denote the angle of the pendulum from

its pivot on the cart to the left of the upward-vertical direction. Thus, if the pendulum is pointed upwards then � = 0, and if it

points sideways along the z axis in the positive direction then � = −�∕2 rads. Let M and m denote the masses of the cart and

pendulum, respectively, and let l be the distance from the cart to the pendulum’s center of mass. Let F be the force applied to

the cart in the positive direction of the z axis.

Generally this system is four-dimensional with input F and state variable (z, ż, �, �̇). Our interest is in controlling � which

therefore is taken as the system’s output. A simpler, second-order representation of the pendulum’s motion can be obtained by

making the following two assumptions: 1). The pendulum consists of a weightless rod and a point mass at its end. 2). There is

no friction in the movement of the cart or the pendulum. In this case, the dynamic equation of the pendulum’s motion becomes

(Ml + ml sin2 �)�̈ + ml�̇2(sin �)(cos �) − (M + m)g sin � = F cos �; (69)

see [21]. This equation provides a state-space representation of the system where the state variable is x = (�, �̇)⊤, the input is

u = F , and the output is y = �. We chose the following parameters for the simulation: M = 1kg, m = 0.2kg, l = 2m, and

g = 9.81m∕s2. The simulation starts at the initial state x(0) = (
�

6
, 0)⊤, and it solves the state equation in a specified horizon

t ∈ [0, tf ] by the forward Euler method with the step-size dt = 0.01s. We apply the control algorithm defined by Eq. (22) with

the prediction horizon T = 0.2s, and it computes the predicted state trajectory (Eq. (17)) by the forward-Euler method with the

step-size Δt = 0.01T . The initial condition for the controller equation (22) is u(0) = 0.

The target trajectory for the tracking-control experiment is r(t) = −
�

6
+

�

3
sin t, which oscillates between the angles of 30o and

−90o. At −90o the pendulum points at the horizontal direction along the positive z-axis, and this can be problematic because it is

physically impossible to balance the pendulum at this angle. However, in the present experiment r(t) just touches the horizontal

direction and then immediately retreats therefrom. The time-horizon for the simulation is tf = 25s.

For the controller’s equation (22) we first took � = 1, and noted convergence of �(t) to r(t) in about 2 seconds. To speed up the

convergence we increased the controller’s gain to � = 35, and the results are depicted in Figures 2-3. Figure 2 shows the graphs

of �(t) in blue and the reference r(t) in red. The two graphs appear to coalesce for the first time at about t = 1s, and remain close

to each other thereafter except for slight differences when r(t) ∼ −
�

2
rads (about -1.57 in the graph). These slightly-larger errors

are not surprising because at such points the pendulum is horizontal. The maximum error, |r(t) − �(t)|, for t ≥ 1 was measured

from the graphs at 0.022 radians, or 1.2605 degrees. The graph of the control signal u(t) is depicted in Figure 3, and we notice

large peaks at the points where r(t) = −
�

2
. This is expected in light of the above remarks concerning a control of the pendulum

at the horizontal angle. To verify that the discrepancies between r(t) and �(t) and the large control input are largely due to the

proximity of �(t) to −
�

2
, we attenuated the sinusoidal part of r(t) by a factor of 0.8, corresponding to oscillations between the
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FIGURE 3 Inverted pendulum: u vs. t

angles of 18o and −78o. The results are not presented here but can be seen in ([18, 22]); they exhibit considerably-less distortion,

and a peak control input of about 60 which is roughly 10% of the peak control value (about 600) that is indicated in Figure 3.2

5.2 Platoon of autonomous vehicles

The simulation experiment described in this subsection concerns the planar motion of a platoon, controlled to follow a given path

in the (z1, z2) plane. The platoon consists of four agents (vehicles), denoted by Ai, i = 1, 2, 3, 4, in the order of their movement.

A1 is the leading vehicle, and Ai follows Ai−1, i = 2, 3, 4. A1 is provided with an exogenous reference trajectory (path) to track,

{r1(t)}, and for i = 2, 3, 4, Ai attempts to follow Ai−1 at a prescribed distance (arclength) of d m on the path. Whereas the target

reference for each agent remains on the path {r1(t)}, the agent itself can veer off the path while pursuing its target. In this way

the agents’ motions are two-dimensional and not confined to a prescribed one-dimensional curve. We assume that each agent

2Ref. [22] concerns a neural-network approximation of the output predictor thereby rendering the controller model-free. It failed to converge for the sinusoidal span

of the target reference considered here, probably due to its extreme values at −
�

2
. However, it worked well for the reduced span of the sinusoid by 80% as described above.
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controls its own motion: u1(t) depends of r1(t), while for i = 2, 3, 4, ui(t) is computed by the position and velocity ofAi−1, which

are assumed to be measured by Ai or transmitted to it by Ai−1.

The motion-dynamics of the vehicles follow the bicycle model, a sixth-order nonlinear system that has been extensively

used in the design and analysis of motion control for autonomous vehicles; see, e.g., [23] and references therein. In [17] we

demonstrated the tracking technique on a single vehicle having such a model, while here we consider a platoon and apply the

tracking-control to a path with a higher curvature.

The state space of the considered bicycle model consists of the six-tuple x = (z1, z2, vl , vn,  ,  ̇)
⊤, where z1 and z2 are the

planer position-coordinates of the center of gravity of the vehicle, vl and vn are the longitudinal and lateral velocities,  is the

heading of the vehicle and  ̇ is its angular velocity. The input, u = (al , �f )
⊤, consists of the longitudinal acceleration and steering

angle of the front wheel, respectively, and the output is the position of the center of gravity of the vehicle, namely y = (z1, z2)
⊤.

The dynamic equations of the vehicles are given by the following equations (see [24]),

ż1 = vl cos − vn sin (70)

ż2 = vl sin + vn cos (71)

v̇l =  ̇vn + al (72)

v̇n = − ̇vl + 2
(
Fc,f cos �f + Fc,r

)
∕m (73)

 ̈ = 2
(
lfFc,f cos �f − lrFc,r

)
∕Iz, (74)

where m is the mass of the vehicle, lf and lr are the front and back axles’ distances from the vehicle’s center of mass, Iz is the

yaw moment of inertia, and Fc,f and Fc,r are the lateral forces on the front and rear wheels. These forces are approximated by

the following equations,

Fc,f = C�,f
(
�f − tan−1

(
(vn + lf  ̇)∕vl

))
(75)

Fc,r = −C�,r tan
−1

(
(vn − lr ̇)∕vl

)
, (76)

where C�,f and C�,r are the cornering stiffness of the front and rear tires, respectively.

In the simulation we used the following model-parameters as in [25], Volvo V70 model, except for Iz (not provided there)

which has been estimated by data from cars of similar weight and dimensions: m = 1, 700kg, lr = 1.5m, lf = 1.5m, Iz =

2, 500kg ⋅m2, and C�f = C�r = 29, 963.5N/rad. As for the problem, controller and simulation parameters, the desired inter-

agent distance is d = 10m, the simulation horizon is tf = 38s, and the discretization step size for the simulation is dt = 0.01

secs. The controller prediction horizon is set to T = 0.5s, and the discretization time step for the predictor is ΔT = 0.001T.

� = 100 for all the vehicles. The target trajectory {r1(t)} is indicated by the curve in Figure 4, and its acceleration along the path

is indicated by the blue graph in Figure 5. Its initial speed is ṙ1(0) = 0, and its largest speed, obtained at t ∈ [10, 15] and again

at t ∈ [25, 30], is 20m/s. At the point of largest curvature, when z2 attains its maximum (see Figure 4), its speed is 8.66m/s. The

four vehicles start at rest at the point r1(0), and the initial condition of their controller is u(0) = (2, 0)⊤.

Simulation results with the controller defined by Eq. (15) are shown in Figures 4-7. Figure 4 depicts the trajectories of the

reference target and vehicles’ motions from left to right in the (z1, z2) plane. It is hard to distinguish between the various

trajectories in the figure due to its large scale of the planer, (z1, z2) coordinates. Both coordinates are of the same scale, hence the

curvature can be seen to be quite large at the point of maximum z2. Figure 5 depicts the longitudinal accelerations of the target

reference and vehicles’ trajectories. While apparently making for an uncomfortable ride, they closely track the acceleration of

the target path {r1(t)} with a notable deviation corresponding to its region of largest curvature.

Figure 6 shows the graphs of the lateral (normal) errors of the vehicles’ centers of gravity from the target trajectory {r1(t)},

and we note that the relatively large error-spurts correspond to the higher accelerations and larger curvatures indicated in Figure

5 and Figure 4, respectively. Furthermore, as expected, the errors of later vehicles in the platoon tend to be larger than those of

earlier ones. The maximum lateral error, obtained for A4, is about 38 cm.

Graphs of a measure of the inter-agent distances are shown in Figure 7. The objective of the control law is to have the vehicles

approach the path {r1(t)} at the inter-agent distance of 10m, and since the distance is measured by the arclength, there is no

corresponding natural measure of distance when two vehicles are off the path. For this case we define the approximate-measure

of inter-agent distance as the arclength between the closest points to the vehicles on the curve {r1(t)} plus the Euclidean distances

between the vehicles’ centers of gravity and those points. It is this measure of distance that is depicted in Figure 7. Now Figure

6 and Figure 7 suggest that this measure is reasonable because it converges to the target level of 10m except in regions of large

lateral errors.
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6 EXPERIMENTAL RESULTS

This section describes results of laboratory experiments in which a platoon of four mobile robots (agents) attempts to maintain

a given inter-agent distance. Denote the agents by Ai, i = 1,… , 4, according to their order in the platoon. A1 is assigned its

target trajectory, {r1(t)}, by an exogenous source, and for every i = 2, 3, 4, Ai has to keep a given Euclidean distance from Ai−1.

The present system is different from the one considered in Subsection 5.2 in several ways including the following three: (i) The

experimental setting is a laboratory vs. simulation, (ii) the respective dynamic models are different, and (iii) Ai, i = 2, 3, 4, only

have to maintain the given inter-agent distance from Ai−1 but not follow its trajectory on a prescribed curve.
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The experiments were conducted in the Robotarium, a remotely-accessible testing facility for motion control of networks of

mobile robots located at the Georgia Tech campus ([26]). The robots in the Robotarium are differential-drive robots, approxi-

mately 15cm in diameter, which were designed and assembled in-house. Their motion is modelled by unicycle dynamics having

the following form,

⎛⎜⎜⎝

ż1(t)

ż2(t)

 ̇(t)

⎞⎟⎟⎠
=

⎛⎜⎜⎝

cos (t) 0

sin (t) 0

0 1

⎞⎟⎟⎠

(
v(t)

!(t)

)
, (77)

where z ∶= (z1, z2)
⊤ ∈ 2 is the center of gravity of a robot, and  is its heading. The control input is u ∶= (v, !)⊤, where

v is the longitudinal velocity and ! is the angular velocity. The output of the system is y(t) ∶= z(t) = (z1(t), z2(t))
⊤. The term

g(x(t), u(t)) has the following analytic form,

g(x(t), u(t)) =

(
z1(t)

z2(t)

)
+

v(t)

!(t)

(
sin

(
 (t) + !(t)T

)
− sin

(
 (t)

)
−cos

(
 (t) + !T

)
+ cos

(
 (t)

)
)
; (78)
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if !(t) = 0, L’Hopital’s rule yields

g(x(t), u(t)) = T v(t)

(
cos( (t))

sin( (t))

)
. (79)

We mention that in [17] we considered a transformation of the unicycle model in such a way that its motion dynamics consist

of a single two-dimensional integrator. In contrast, here we consider the fully-dynamical system defined by (77), and a different

tracking objective.

The predicted target-point ri(t + T ) is defined for the agent Ai according to the following heuristic. For i = 1, {r1(t)} is an

exogenous process assumed to be known in advance, and hence r1(t + T ) can be used in the computations for A1 at time t. For

i = 2, 3, 4, the definition and computation of ri(t + T ) are recursive, as follows. Let d > 0 be the target distance between the

agents. ri(t+ T ) is defined as the point on the line segment connecting the position of Ai at time t and the predicted position of

Ai−1 at time t + T , located d m from the predicted position of Ai−1. For a justification of this choice please see [18], including

the fact that if A1 moves in a straight line then subsequent agents will converge to that line behind each other.

We conducted experiments with the controller defined by Eqs. (15) and (39), respectively; � = 45 and T = 0.25s. The former

controller gave slightly better results, hence we present them below. The exogenous target curve, {r1(t)}, is an ellipse defined by

r1(t) =
(
1.1 sin(0.06t), 0.7 cos(0.06t)

)⊤
, and the target inter-robot distance is d = 0.25m. The results are depicted in Figures 8-9.

Figure 8 depicts the inter-robot distances vs. t, and we note convergence towards the target distance of 0.25m. Figure 9 depicts

the graph of the tracking error ‖yi(t)−ri(t)‖ versus time, and we discern rapid convergence towards 0 for all four robots. Explicit

views of the robots’ motion trajectories can be seen in the video clip contained in [27], and in the stills captured during the

experiment, depicted in ([18], Figure 10). All of this suggest a convergence of the tracking-control algorithm.
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FIGURE 8 Experiment: inter-robot distances vs. time
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7 CONCLUSIONS

This paper presents a tracking-control technique based on a fluid-flow version of the Newton-Raphson method, output prediction

and controller speedup. The controller can be simple to compute and may have fast tracking convergence. The paper defines a

suitable notion of local stability, and proves it to be sufficient for tracking. Furthermore, it proves a global stability for a class of

linear systems. Simulation and laboratory experiments are presented in support of the theoretical results.
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