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Abstract—This paper develops a data-driven framework to
synthesize local Volt/Var control strategies for distributed energy
resources (DERs) in power distribution grids (DGs). Aiming to
improve DG operational efficiency, as quantified by a generic
optimal reactive power flow (ORPF) problem, we propose a two-
stage approach. The first stage involves learning the manifold
of optimal operating points determined by an ORPF instance.
To synthesize local Volt/Var controllers, the learning task is
partitioned into learning local surrogates (one per DER) of the
optimal manifold with voltage input and reactive power output.
Since these surrogates characterize efficient DG operating points,
in the second stage, we develop local control schemes that steer
the DG to these operating points. We identify the conditions on
the surrogates and control parameters to ensure that the locally
acting controllers collectively converge, in a global asymptotic
sense, to a DG operating point agreeing with the local surrogates.
We use neural networks to model the surrogates and enforce
the identified conditions in the training phase. AC power flow
simulations on the IEEE 37-bus network empirically bolster the
theoretical stability guarantees obtained under linearized power
flow assumptions. The tests further highlight the optimality
improvement compared to prevalent benchmark methods.

Index Terms—Distributed energy resources, global stability,
local control, Volt/Var control.

I. INTRODUCTION

The deployment of a massive number of distributed energy
resources (DERs) in power distribution grids (DGs) is dramati-
cally changing the electric power grid. Primarily driven by sus-
tainability and economic incentives, DERs present additional
opportunities including reduction of the power generation
cost and of greenhouse gas emissions. Nevertheless, DERs’
uncoordinated power injections or sudden generation changes
could pose challenges to system operations and stability, e.g.,
induce undesirable voltage deviations in distribution grids. To
facilitate their integration in power grids, DERs are being
provided with sensing and computation capabilities, hence
becoming smart agents. DERs can exploit the flexibility of
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their power electronic interface to perform, among other
ancillary services, reactive power control. They can also take
advantage of the widespread availability of data from DGs
and the increased capabilities for storing and processing it to
learn effective control policies. This paper aims to leverage
learning in the synthesis of local Volt/Var controllers for
voltage regulation incorporating optimality considerations and
rigorous performance guarantees.

Literature Review: The main goal of Volt/Var control
strategies is to keep voltages within safe preassigned limits
by commanding DERs’ reactive power injections. Classically,
DER reactive power outputs are computed, in an open-loop
fashion, by the system operator solving optimal power flow
(OPF) problems. Efficient and advanced solvers for OPF prob-
lems are available, see e.g. [1]–[3]. However, high penetration
of renewable generation and increased variability of DGs
require solving numerous instances of OPF problems within a
limited timeframe. Aiming at tackling this challenge, several
learning-based approaches have been proposed to predict OPF
solutions, see e.g. [4]–[9], to mention a few. Once trained, the
inference time for these approaches when presented with a new
input is minimal. Nevertheless, the solution of OPF problems
requires information from all the buses. Specifically, power de-
mands from loads, and generation limits from generators have
to be precisely known. Such requirements are prohibitive for
practical DGs since, in general, not all the buses are monitored
in real time, individual loads are unlikely to announce their
demand profiles in advance, and the availability of small size
generators is hard to predict.

This has motivated the development of closed-loop strate-
gies, which compensate for the lack of information with mea-
surements retrieved from the field. Given the massive number
of controllable devices envisioned to be hosted in future DGs,
decentralized approaches are often advocated for practical
applications. There are two notable classes of decentralized al-
gorithms. The first consists of distributed algorithms in which
agents cooperate and share information with peers. Distributed
algorithms can achieve optimal performance, in the sense that
they can be designed to exactly solve a given OPF instance,
see e.g. [10]. Optimization-based feedback controllers that
steer the network towards solutions to OPF problems based
on the cyclical alternation of sensing, communication, and ac-
tuation have become recently popular [11]–[13]. Nevertheless,
distributed strategies are suitable for systems endowed with
a reliable real-time communication network meeting precise
and strict requirements which are rarely satisfied in practice
for DGs. For instance, in many works, each generator is
required to share information with all its neighbors in the
power network before every power output update [11]. The



2

second class of decentralized algorithms consists of local
approaches, in which each agent makes decision based only
on information available locally. In local schemes, reactive
power compensations are adjusted based merely on measure-
ments taken locally. Even though pertinent standards allow
DERs to provide reactive power compensations following
static Volt/Var control rules, see IEEE standard 1547 [14],
the literature has provided a variety of options for local
voltage regulation [11], [15]–[17]. However, local schemes
have intrinsic performance limitations, e.g., they might fail
to regulate voltages even if the overall generation resources
are enough [18].

Recent advances in data-driven and learning-based control
seek to leverage data from the plant to learn optimal con-
trollers. Though impressive results have been demonstrated,
it has not yet been widely used in engineering practice
due to the lack of closed-loop stability guarantees. Various
results have been developed to tackle this problem, see e.g.,
a comprehensive review [19]. While most of these works
achieve the stability of neural network control by using penalty
functions to integrate stability requirement as soft constraints,
recent work in power systems, primarily on frequency control,
seek to explicitly engineer the neural network structure to
integrate the stability requirement as hard constraints, see
e.g. [20], [21]. In the context of Volt/Var control, the goal
is to leverage learning techniques to enhance the performance
of local control schemes and reduce its gap with distributed
and/or optimal controllers, while retaining closed-loop system
stability. Related works include [22] and [23], where rein-
forcement learning is used to learn stability-guaranteed local
Volt/Var control schemes. However, the former enforces strin-
gent derivative constraints on the policies to be searched, while
the latter only guarantees the voltages converge to a region,
instead of an equilibrium point, and both of them require the
control policy to be continuously differentiable. Furthermore,
neither of them takes into account the reactive power capac-
ity limitations, which are critical when dealing with small-
size generators. Other works provide interesting insights on
learning Volt/Var rules, but do not assess the stability of the
overall system and hence are not straightforwardly suitable
for practical applications: [24], [25] leverage segmented linear
regression techniques to learn local surrogates that predict OPF
solutions, [26] proposes to learn local controller taking as
an input both voltages and active power setpoints, and [27]
proposes a framework for tuning the parameters of standard
piecewise linear local voltage regulators.

Statement of Contributions: We propose a framework for
designing local Volt/Var scheme whose goal is to not only
regulate voltages but also act as local surrogates of optimal
reactive power flow (ORPF) problem solvers. ORPF problems
are particular instances of OPF problem in which the goal is to
optimize the generator’s reactive power injections. We base our
work on the distinction between the control function and the
equilibrium function. The first represents the reactive power
update rule, while the latter describes the possible system
equilibrium points. In many works the equilibrium functions
coincide with the control functions, but this is not the case
for our framework. We advocate for a two-stage strategy. In
the first stage, for each controllable node, the equilibrium

function providing ORPF solution surrogates is learned from
historical data. Precisely, such a function receives as input
the local voltage and gives as an output an approximation of
the optimal reactive power set point. In the second stage, we
devise a control function whose equilibrium points are exactly
the ORPF approximated solutions provided by the equilibrium
functions. The novelties of our paper with respect to the recent
literature can be summarized as:
• The equilibrium functions are not forced to be (piecewise)

linear and are not subject to slope limitations [11],
[15], [16]. This relaxes several restrictive constraints on
equilibrium functions, which leads to an enlarged search
space of potential candidates of desired OPRF surrogates,
thus reducing the optimality gap.

• The control rule is globally asymptotically stable, as
opposed to algorithms that are locally asymptotically
stable [17], [22] or whose stability is not analytically
characterized. Our design provably steers the system to
the desirable configuration described by equilibrium func-
tions irrespective of the initial reactive power injection.

• We introduce the idea of pseudo data points to enhance
the voltage regulation capability of learned controllers
when voltages are not within desired limits.

With respect to its preliminary version [28], this work differs
as follows: relaxing the differentiability requirement on the
control rule; establishing global, rather than local, stability
guarantees for the control scheme; providing a more general
design of neural networks in the learning process; and the use
of pseudo data points.

Outline: The paper is organized as follows. In Section II,
we model a power distribution network and define the problem
of interest. Section III introduces the control scheme, states
its stability properties, and identifies conditions on the equi-
librium functions needed for the system stability. Sections IV
describes the learning process: precisely, it reports how we
construct the dataset used for learning and how we parame-
terize the equilibrium function with a neural network to meet
the required conditions by design. Numerical simulations in
Section V validate the proposed approach and show significant
improvements with respect to prevalent benchmark methods.
Finally, Section VI concludes this work.

Notation: Throughout the paper, R and C denote the set
of real and complex numbers, respectively. Upper and lower
case boldface letters denote matrices and column vectors,
respectively. Sets are represented by calligraphic symbols.
Given a vector a (a diagonal matrix A), its n-th (diagonal)
entry is denoted by an (An). A � (�)0 denotes that matrix A
is positive (semi-) definite, and A ≺ (�)0 denotes that matrix
A is negative (semi-) definite. The symbol (·)> stands for
transposition, and 1,0, I denote vectors of all ones and zeros
and identity matrix with appropriate dimensions, respectively.
Operators <(·) and =(·) extract the real and imaginary parts
of a complex-valued argument, and act element-wise. With a
slight abuse of notation, we use |·| to denote the absolute value
for real-valued arguments, the magnitude for complex-valued
arguments, and the cardinality when the argument is a set.
‖ ·‖ represents the Euclidean norm. Given a symmetric matrix
A, λmax(A) and λmin(A) represent its largest and smallest
eigenvalue, respectively. For any matrix B, it holds that
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‖B‖ =
√
λmax(B>B). The graph of a function φ : R→ R is

the set of all points of the form (x, φ(x)), whereas the range
of φ is the set of its possible output values.

II. GRID MODELING AND PROBLEM FORMULATION

Consider a balanced three-phase power distribution net-
work1 with N + 1 buses represented by its single-phase
equivalent and modeled as an undirected graph G = (N , E),
where N = {0, 1, . . . , N} are associated with the electrical
buses and E represents the set of the electrical lines between
these buses. We label the substation node as 0, and assume
that it behaves as an ideal voltage source imposing the nominal
voltage of 1 p.u. Define the following quantities:
• un ∈ C is the voltage phasor at bus n ∈ N ;
• vn ∈ R is the voltage magnitude at bus n ∈ N ;
• in ∈ C is the injected current phasor at bus n ∈ N ;
• sn = pn + iqn ∈ C is the nodal complex power

injection at bus n ∈ N , where pn, qn ∈ R are the active
and reactive powers, respectively. Powers take positive
(negative) values, i.e., pn, qn ≥ 0 (pn, qn ≤ 0), when
they are injected into (absorbed from) the grid.

We use vectors u, i, s ∈ CN to collect the complex voltages,
currents, and complex powers of buses 1, 2, . . . , N , and vec-
tors v,p,q ∈ RN to collect their voltage magnitudes, active
and reactive power injections. Denote by ze ∈ C and by
ye = z−1

e ∈ C respectively the impedance and the admittance
of line e = (m,n) ∈ E . The network bus admittance matrix
Y ∈ C(N+1)×(N+1) is a symmetric matrix that can be
expressed as Y = YL + diag(yT ), where

(YL)mn =





−y(m,n) if (m,n) ∈ E ,m 6= n,

0 if (m,n) /∈ E ,m 6= n,∑
k 6=n y(k,n) if m = n,

and the vector yT collects the shunt components of each bus.
The matrix YL is a complex Laplacian matrix, and hence
satisfies YL1 = 0. We partition the bus admittance matrix by
separating the components associated with the substation and
the ones associated with the other nodes, obtaining

Y =

[
y0 y>0
y0 Ỹ

]
,

with y0 ∈ C, y0 ∈ CN , and Ỹ ∈ CN×N . If the network is
connected, then Ỹ is invertible [31]. Let Z̃ := Ỹ−1, the power
flow equations are

u = Z̃i + û, (1a)
u0 = 1, (1b)

i0 = 1>i, (1c)
unīn = pn + jqn, n 6= 0, (1d)
vn = |un| (1e)

where īn denotes the complex conjugate of in and û := Z̃y0.
Eq. (1a) represents the Kirchoff equations and provides the

1While the analysis and algorithms developed in this work consider bal-
anced grids, contemporary research has demonstrated applicability of related
approaches to unbalanced multiphase networks [29], [30]. A rigorous and
elaborate extension of our findings to encompass unbalanced grids constitutes
our future research.

relation between voltages and currents. Eqs. (1b) and (1c) hold
because the substation is modeled as the slack bus. Eq. (1d)
comes from the fact that all the nodes, except the substation,
are modeled to be constant power buses.

Assume a subset C ⊆ N of buses host DERs, with |C| = C.
Every DER corresponds to a smart agent provided with some
computational sensing capability, i.e., it measures its voltage
magnitude. The remaining nodes constitute the set L = N \C
and are referred to as loads. For convenience, we partition
reactive powers and voltage magnitudes by grouping together
the nodes belonging to the load and generation sets

q =
[
q>C q>L

]>
, v =

[
v>C v>L

]>
.

Motivated by practical considerations, We assume that the
grid is not endowed with a communication network that can
be used by agents, loads, and the system operator to share
information in real-time. As a notable consequence, load
demands are not known to the system operator or to agents
in real time, preventing the use of open-loop strategies for
computing the power outputs. The (averaged) demands may
however be reported on a hourly/daily basis for slow timescale
applications such as billing.

The massive deployment of DERs in DGs might induce
voltage quality issues. For example, sudden generation drops
could lead the voltages of a network with high penetration of
renewables below desired operational limits and even close to
collapse. Since DERs are able to provide ancillary services,
reactive power compensation can be used to regulate voltage
profiles. Ideally, one would like the DER reactive power
setpoints to be the solution of an optimal reactive power flow
(ORPF) problem of the form2

q?C(p,qL) := arg min
qC

f(qC) (2a)

s.t. (1a)− (1e)
vmin ≤ v(qC) ≤ vmax (2b)
qmin ≤ qC ≤ qmax (2c)

where qmin,qmax ∈ RC are the minimum and maximum
DERs’ reactive power injections, vmin,vmax ∈ RN are
desired voltage lower and upper bounds on all the network
buses, and f : RC → R is the cost function of interest.
The minimizer depends on the uncontrolled variables p and
qL, which appear implicitly in the constraint (2b) via equa-
tion (1e). Also, notice that for given (re)active loads and active
generation, the voltage at node n and the vector of voltage
magnitudes become functions exclusively of qC , i.e.,

vn = vn(qC), v = v(qC).

The complexity of solving (2) depends on the choice of the
cost function f(·) and the non-convexity of (1). Tremendous
advancements have been made to overcome the computational
limitations via convex relaxations [1], linearized power-flow

2More comprehensive OPRF problems could in principle be of interest in
practical applications, e.g., considering line flows limitations as well. Although
in this paper we focus on OPRF problems of the type (2), our approach can
be readily applied to other ORPF formulations. Also, we restrict our attention
to the case in which problem (2) admits a unique solution. When that is not
the case q?

C(p,qL) can be chosen among the set of minimizers.
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equations [12], distributed optimization [10] and learning-
based approaches [7]. However, solving (2) inevitably requires
the knowledge of network-wide quantities (p,qL), centrally or
via peer-to-peer communication. Since the needed supporting
real-time communication infrastructure is not prevalent for
most distribution systems, the optimal q?C cannot be directly
computed. Rather, inspired by the ongoing efforts towards
designing local communication-free control rules for DERs
and the recently reported success of neural-network-based
surrogates for OPF, this work proposes a two-stage approach.
In the first stage, termed the learning stage, historical data
are used to learn functions that map voltages to (approximate)
solutions of the ORPF problem (2). Specifically, for each agent
n ∈ C, we learn a function φn

φn : R→ R, vn 7→ φn(vn)

that takes as an input the local voltage vn, and provides as an
output the approximated ORPF solution. Given any voltage
vn, φn(vn) represents an approximation of the reactive power
that the DER at node n would inject if its voltage is vn and
the network is operating at a solution of (2). The graph of
φn, namely, points of the form (vn, φn(vn)), consists then of
ORPF solutions’ surrogates and describes desirable network
configurations. The second stage, termed the control stage,
aims to design local control rules that steer the network to
the aforesaid desirable configurations. That is, the controller
equilibrium points are determined by the φn’s and, for this
reason, the φn’s are called hereafter equilibrium functions.
We introduce first in Section III the local control scheme and
derive conditions ensuring system stability. We build on these
conditions in Section IV to guide the learning of {φn}n∈C to
promote the efficient operation of the DG.

III. PROVABLY STABLE LOCAL VOLT/VAR CONTROL

Here, we propose a local Volt/Var controller and analyze
its stability properties. For each n ∈ C, given the equilibrium
function φn, consider the reactive power update

qn(t+ 1) = qn(t) + ε(φn(vn(t))− qn(t)). (3)

In (3), the new reactive power setpoint is chosen as a convex
combination between the previous one and the equilibrium
function evaluated at the current voltage. Rules like (3) are
referred to as incremental, since the updated reactive power
setpoint is obtained by adding to the previous one an increment
weighted by the stepsize parameter ε ∈ [0, 1]. An equilibrium
point of (3), denoted q]C , satisfies for n ∈ C

q]n = φn(vn) (4a)

v]n = vn(q]C). (4b)

That is, (φn(v]n), v]n) belongs to the graph of φn and hence
is a desirable configuration. It remains now to establish under
what conditions the algorithm (3) converges to an equilibrium.
The following convergence analysis assumes that uncontrolled
variables, namely, p and qL, assume arbitrary, but fixed in
time, values.

As customary in the literature of reactive power control
for DGs, e.g., see [12], [13], [16], we rely on the following
linearization of the power flow equations to study the stability

properties of (3). In general, voltage magnitudes are nonlinear
functions of the nodal power injections. Define R̃ := <(Z̃)
and X̃ := =(Z̃) ∈ CN×N , using a first-order Taylor expan-
sion, the power flow equation can be linearized to obtain [11]

v = R̃p + X̃q + |û|. (5)

Also, the matrices R̃ and X̃ can be decomposed according to
the former partition, yielding

R̃ =

[
R RL

R>L RLL

]
, X̃ =

[
X XL

X>L XLL

]
,

with R,X � 0 [16]. From (5), voltage magnitudes become
functions exclusively of qC :

v(qC) =

[
X

X>L

]
qC + v̂, (6)

where

v̂ :=

[
v̂C
v̂L

]
=

[
XL
XLL

]
qL + R̃p + |û|. (7)

Collecting the {φn}n∈C in the vector-valued function φ, and
adopting the linearization (6), the system dynamics can be
described in compact form as

qC(t+ 1) = qC(t) + ε(φ(vC(t))− qC(t)), (8a)
vC(t+ 1) = XqC(t+ 1) + v̂C , (8b)

where it is tacitly assumed that, at the timescale of the above
iterates, the exogenous variables (p,qL) remain constant,
resulting in a constant term v̂C from (7). Let (q]C ,v

]
C) an

equilibrium point of (8). By definition, it must satisfy

q]C = φ(v]C), (9a)

v]C = Xq]C + v̂C . (9b)

In particular, it holds that q]n = φn(v]n) for each n ∈ C, see (4),
showing that the functions {φn}n∈C describe all the possible
equilibrium points of (8a).

Define the reactive power injections feasible set Q :=
×n∈CQn, with Qn = {qn : qmin,n ≤ qn ≤ qmax,n}. To ensure
the stability of the proposed local algorithm, we require each
φn to meet the following properties

C1) φn is Lipschitz, i.e., there exists Ln < ∞ such that
|φn(v)− φn(v′)| ≤ Ln|v − v′|, for all v, v′ ∈ R;

C2) φn is non-increasing in vn;
C3) range(φn) ⊆ Qn, i.e., φn : R→ Qn.

The role of conditions C1) – C3) will be clear from the
following formal results proved in the Appendix. The first one
characterizes the equilibrium points of (8).

Proposition III.1. (Feasibility of the reactive power update
and uniqueness of the equilibrium): Let {φn}n∈C satisfy the
conditions C1) – C3), and assume qC(0) ∈ Q. The reactive
power update (3) is feasible, i.e., qC(t) ∈ Q, t ≥ 0. Moreover,
the system (8) has an unique equilibrium point (q]C ,v

]
C).

The next result characterizes the stability properties of the
equilibrium point identified in Proposition III.1.
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Proposition III.2. (Global asymptotic stability of the control
rule (3)): Let {φn}n∈C satisfy the conditions C1) – C3), and
assume qC(0) ∈ Q. Define L = maxn∈C Ln. If ε is such that

0 < ε < min
{

1,
2

(‖X‖L+ 1)2

}
(10)

then the equilibrium of (8) is globally asymptotically stable.

Proposition III.2 indicates that, as long as {φn}n∈C meet
the conditions C1) – C3), one can always find ε > 0 so that
(qC ,vC) converges to the unique equilibrium point (q]C ,v

]
C)

under the reactive power update rule (3). Since qL and p
are fixed, the convergence of qC leads, cf. (6), also to the
global asymptotic convergence of v. Finally, we note that
the proposed reactive power update rule (3) is a generalized
version of the local control scheme proposed in [11] which
only consider linear functions (instead of arbitrary nonlinear
{φn}n∈C satisfying C1) – C3)).

Remark III.3. (Global vs. local asymptotic stability of the
equilibrium): In our previous work [28], the equilibrium point
of (8) under the reactive power update rule (3) was shown to be
locally asymptotically stable if 0 < ε < min{1, 2

‖X‖L+1}. The
previous claim roughly implies that if qC(0) is close enough
to q]C , then it converges to q]C . Our result here extends the
stability properties from local to global, at the cost of reducing
the selection range of ε, as 2

‖X‖L+1 >
2

(‖X‖L+1)2 . •
Remark III.4. (Non-incremental vs. incremental reactive
power update rules): Many works in the literature consider
local Volt/Var control schemes of the form [14]–[16]

qn(t+ 1) = ϕn(vn(t)). (11)

Reactive power update rules like (11), where the new reactive
power setpoints are determined based on the local voltage
without explicitly exploiting a memory of past setpoints, are
referred to as non-incremental [32]. The equilibrium points
of (11) satisfies

qn = ϕn(vn),

vn = vn(qC),

i.e., ϕn(vn) plays the double role of control function and
equilibrium function. Thus, even the control rule

qn(t+ 1) = φn(vn(t)). (12)

looks appealing for our framework since its equilibria are
determined by φn. Recall the proof of Proposition III.2, one
can show that the algorithm (12) is globally asymptotically
stable if the equilibrium functions meet not only C1) – C3)
but also

‖X‖L <
√

2− 1. (13)

The former condition bounds the slope of the φn’s and appears
often in the literature [11], [17], [28]. This means that, to
ensure the stability of (11), we need to restrict the search space
of potential candidates of {φn}n∈C , thus risking a degradation
in system performance in terms of the optimality gap at the
equilibrium. The aforementioned restriction motivates adopt-
ing an incremental control like (3). •

IV. LEARNING EQUILIBRIUM FUNCTIONS FOR EFFICIENT
NETWORK OPERATION

Having established the conditions on equilibrium functions
for system stability, here we lay out a data-driven approach
to synthesize the functions {φn}n∈C improving operational
efficiency of the DG. Specifically, our goal is to learn lo-
cal equilibrium functions {φn}n∈C under which the system
equilibrium q]C(p,qL) is as close as possible to the ORPF
problem solution q?C(p,qL). The learning process consists
of the following steps. First, given that the solution of (2)
depends on (p,qL), we build a set {(pk,qkL)}Kk=1 of K
load-generation scenarios. One can obtain the aforementioned
scenarios via random sampling from assumed probability dis-
tributions, historical data, or from forecasted conditions for a
look-ahead period. Second, we solve the ORPF problem (2) for
these K scenarios to obtain a labeled dataset of corresponding
minimizers D = {(q?C,k,v?C,k)}Kk=1, where the parametric
dependencies are omitted for notational ease. Third, the entries
for these minimizers are then separated for each n ∈ C to
obtain datasets of the form Dn = {(v?n,k, q?n,k)}Kk=1, and each
equilibrium function φn is then trained by solving

min
φn

K∑

k=1

|q?n,k − φn(v?n,k)|2 (14)

s.t. φn meets the conditions C1) – C3).

Typical approaches to solve (14) involves restricting the
search space for function φn via convenient parameteriza-
tion leading to approaches such as polynomial regression
and neural network-based methods. Here we adopt the lat-
ter. Enforcing the properties C1) – C3) is in general not
trivial and depends on many aspects, e.g., the number of
considered layers and the used activation functions. In par-
ticular, designing monotone neural network may require ad-
ditional considerations. Approaches to do so include, for
instance, structure-based [33], gradient-constrained [34], and
verification-based [35] methods. In the following, we provide
a single hidden layer neural network design framework that
achieves C1) – C3) and uses the ReLU activation function

ReLU(x) = max(0, x).

Note however that, in principle, any continuous and monotonic
activation function could be used in our framework, e.g., the
Sigmoid or the Tanh3.

Each equilibrium function φn is then modeled using a single
hidden layer neural network N(x) as

φn(x) = qmax,n − ReLU(qmax,n − N(x))

+ ReLU(qmin,n − N(x)), (15)

where

N(x) =

H∑

h=1

whReLU(x− bh) + β, (16)

with wh and bh being the weight and bias of h-th neuron
unit, respectively, β being an additional bias term applied in
the output layer, and H is the number of neuron units in the

3Sigmoid(x) = 1
1+e−x , Tanh(x) = ex−e−x

ex+e−x .
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C(p,qL) := arg min

qC
f(qC)

s.t. (1a) − (1e)

vmin ≤ v(qC) ≤ vmax

qmin ≤ qC ≤ qmax

n ∈ C
Dn = {v!

n,k, q!
n,k}K

k=1

min
φn

K∑

k=1

|q"
n,k − φn(v"

n,k)|2

n ∈ C

φn

qn(t + 1) = qn(t) + ε(φn(vn(t)) − qn(t))︸ ︷︷ ︸

n ∈ C

0 < ε < min{1, 2
(‖X‖L+1)2 }

ε φn

{Dn}n∈C

Condition on Conditions on

{φn}n∈C , L = max
n∈C

Ln

Reactive
Power
Control

Fig. 1. Flowchart of the proposed data-driven control framework.

hidden layer. Note that conditions C1) and C3) for φn are
automatically met because of the Lipschitzness of the ReLU
function and the fact that the output of the neural network φn
is constrained to the set Qn, cf. (15). Condition C2) is instead
encoded by the next result.

Proposition IV.1. (Universal approximation of Lipschitz non-
increasing function using ReLU activation function): Consider
the single hidden layer neural network (16), and reorder the
neuron units such that b1 ≤ b2 ≤ · · · ≤ bH . N is non-
increasing if and only if

J∑

j=1

wj ≤ 0, ∀J ∈ {1, 2, . . . ,H}. (17)

Furthermore, for any Lipschitz non-increasing function g :
R → R and given any compact domain X ∈ R and η > 0,
there exist H , wh, bh, and β such that |N(x)− g(x)| ≤ η for
all x ∈ X .

Its proof can be found in the Appendix, and note that
monotonicity of N remains after the projection (15). The
above design poses weight constraints (17) and output con-
straints (15) to a single hidden layer neural network (16)
so that it meets the conditions C1) – C3) by construction.
Leveraging the universal approximation property, the opti-
mization problem (14) is then equivalent to the parameterized
formulation

min
w,b,β

K∑

k=1

|q?n,k − φn(v?n,k)|2 (18)

s.t. (15), (16), (17)

which can be solved to local optima using suitable renditions
of (stochastic) gradient descent prevalent for neural network
training. Also, exploiting the fact that the ReLU function is
used as activation function, the Lipschitz constant Ln of each
φn can be easily computed, see (17), as

Ln = max
J∈{1,..,H}

∣∣∣
J∑

j=1

wj

∣∣∣.

The two stages of the proposed framework are summarized
in Algorithm 1. Fig. 1 provides a flowchart to illustrate the
overall scheme.

Remark IV.2. (Enhancing the capability to regulate volt-
ages when they are not within desired limits through pseudo
data points): In the above exposition, the dataset points are
solutions to the ORPF problem (2), which are subject to
the constraint (2b). This is to say, for each n ∈ C, the
equilibrium function φn is trained only using data points such
that vmin,n ≤ v?n,k ≤ vmax,n, i.e., not when the voltages
exceed the limits. Nevertheless, in practical implementation, a
DG might experience load-generation scenarios in which (2)
is infeasible and the voltages do not meet the desired con-
straints. Engineering considerations suggest that in such cases
the available reactive power capability should be maximally
utilized to alleviate as much as possible the voltage violations.
Namely, for each n ∈ C, if vn < vmin,n (vn > vmax,n), then
qn = qmax,n (qn = qmin,n), see [11], [15]. To ensure that the
learned function φn meets this condition, we can add a certain
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Algorithm 1 Local Volt/Var Control Framework
Learning Stage (Off-Line)
Input: Historical data in the form of K load-generation

scenarios {(pk,qkL)}Kk=1

1: Solve the ORPF problem (2) for each load-generation
scenario, obtain the optimal reactive powers {q?,kC }Kk=1

2: Compute the optimal voltages {v?,k}Kk=1 by solving
the power flow equations (1) with the power injections
{(pk,qkL,q?,kC )}Kk=1

3: Build the dataset of optimal reactive powers and voltages
D = {(q?,kC ,v?,kC )}Kk=1

4: Separate the entries of these minimizers to obtain, for each
n ∈ C, datasets of the form Dn = {(v?,kn , q?,kn )}Kk=1

5: Learn the equilibrium functions {φn}n∈C by solving (18)
Control Stage (On-Line)
Input: Learned equilibrium functions {φn}n∈C , network pa-

rameter X, constant L = maxn∈C Ln, stepsize parameter
ε selected according to (10)

Each agent n ∈ C, for t ≥ 0, cyclically repeats:
1: Measuring its local voltage magnitude vn(t)
2: Updating the reactive power as per (3)

number of additional pseudo data points to the dataset, e.g., K
points of the form {(vn,k, qmax,n)}Kk=1, and K points of the
form {(vn,k, qmin,n)}Kk=1, with vn,k ≤ vmin,n, vn,k ≥ vmax,n.
These points could be uniformly spaced or randomly sampled.
Here we adopt the former method, illustrated in Fig. 2. •

v!"#,%v!&%,%

q!"#,%

q!&%,%

v%⋆

q%⋆

(a) Without pseudo data points

v!"#,%v!&%,%

q!"#,%

q!&%,%

q%⋆

v%⋆

(b) With pseudo data points

Fig. 2. An illustration of the role of the pseudo data points for DER at node
n. Blue and orange points respectively represent true and pseudo data points,
while the dark red curves are instances of learned equilibrium functions.
Adding pseudo data points helps the equilibrium functions reach maximum
reactive power compensation capability when voltage exceeds the limits.

Remark IV.3. (Deep neural network parameterization of non-
increasing function via gradient penalization): Though the
single hidden layer neural network parameterization of (16)
achieves universal approximation, it requires the “width” of
the neural networks, i.e., H to be sufficiently large. Instead,
in certain situations, deeper neural networks could achieve
better approximations than the shallower ones even if they
are much narrower [36]. On the other hand, the structure-
based restrictions enforced on the neural networks to guarantee
monotonicity may in some cases restrict expressibility and
lead to unsatisfactory approximation results [35]. To over-
come the aforementioned challenges, we describe here a deep
neural network parameterization approach by incorporating
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Fig. 3. The IEEE 37-bus feeder.

the monotonicity requirement as a penalization in the cost
function of learning process. Suppose for each n ∈ C, φn
is parameterized by a deep neural network, and denote by
dφn(vn) ∈ R the (sub)gradient of φn with respect to vn. The
cost function in (14) is then replaced by

K∑

k=1

|q?n,k − φn(v?n,k)|2 + γn max(0, dφn(v?n,k)),

where γn > 0 is a tuning parameter. During implementation,
one can gradually increase γn until φn is verified to be non-
increasing. •
Remark IV.4. (On the comparison with existing reinforcement
learning-based approaches): Recent literature has also investi-
gated reinforcement learning approaches for learning stability
guaranteed local Volt/Var controllers, e.g., [22], [23]. However,
due to the lack of communication in the training phase, the
cost function that the whole system seeks to minimize in such
settings can only be separable, i.e., the summation of all the
local cost functions at each node. Therefore, these approaches
generally can not cope with cost functions like power losses
which shows coupling among nodes. In contrast, since our
approach only uses off-line collected data, any type of cost
function could in principle be considered when solving the
ORPF problem (2). •

V. NUMERICAL TESTS

We conduct case studies on the IEEE 37-bus feeder. We
omit regulators, incorporate five solar generators, and convert
it to its single-phase equivalent, see Fig. 3. The feeder has 25
buses with non-zero load, and the five solar generators are the
DERs participating in reactive power compensation.

For our experiments, we use minute-based load and solar
generation data retrieved from the Pecan Street dataset (June 1,
2018) [37]. The first 75 non-zero load buses from the dataset
are aggregated every 3 loads and normalized to obtain 25
load profiles. Similarly, we obtain 5 solar generation profiles
for the active power of DERs. The normalized load profiles
for the 24-hour period are scaled so that the demand peak
is 1.65 times the nominal load. We synthesize reactive loads
by scaling active demand to match the power factors of the
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Fig. 4. Minute-based data for the total (feeder-wise) solar power generation
and active power demand.

IEEE 37-bus feeder. Fig. 4 shows the total demand and solar
generation across the feeder.

To evaluate the effectiveness of our control framework, it
is compared with the standard linear droop control from [11],
[15] which dictates

qn(t+ 1) = %n(vn(t))

%n(vn) :=





qmax,n vn(t) ≤ vmin,n,

qmin,n vn(t) ≥ vmax,n,

−cn(vn(t)−vmin,n)+qmax,n otherwise,

where cn =
qmax,n−qmin,n

vmax,n−vmin,n
, and with the the optimized droop

control design4 from [27]

qn(t+ 1) = ρn(vn(t))

ρn(vn) :=





qmax,n vn ≤ vmin,n,
v̄min,n−vn

v̄min,n−vmin,n
qmax,n vmin,n < vn < v̄min,n,

0 v̄min,n ≤ vn ≤ v̄max,n,
vn−v̄max,n

v̄max,n−v̄max,n
qmin,n v̄max,n < vn < vmax,n,

qmin,n vn ≥ vmax,n

where v̄min,n and v̄max,n are parameters satisfying vmin,n <
v̄min,n ≤ v̄max,n < vmax,n that are optimized given the dataset
prescribing a day-ahead forecast.

A. The Learning Stage

We considered an optimization problem of the form (2)
where the cost is set to

f(qC) = α ‖v(qC)− 1‖︸ ︷︷ ︸
¬

+(1− α) (q>R̃q + p>R̃p)︸ ︷︷ ︸


,

where ¬ and  aims to minimize the voltage deviations and
power losses [11], respectively, and the parameter α trades-off
those two objectives. We assume the 5 DERs have uniform
generation capabilities, precisely, qmax = 0.4× 1 MVAR and

4In [27], the voltage limits for maximum reactive power provision and
absorption are selected as vmin,n = 0.9 p.u. and vmin,n = 1.1 p.u, respec-
tively. To make sure the DERs reach maximum reactive power compensation
capability when voltage exceeds the limits, as discussed in Remark IV.2, here
they are set to vmin,n = 0.95 p.u. and vmin,n = 1.05

qmin = −qmax. The voltage limit vectors are set to vmax =
1.05× 1 p.u. and vmin = 0.95× 1 p.u.

The dataset for the learning process is built using the
aforesaid power demands and generations obtained from the
Pecan Street data, which are intended as day-ahead forecasts.
We use the CVX toolbox [38] to solve the ORPF problem (2)
with linearized power flow (5). Note however that, one can use
any other power flow models to solve the ORPF problem. We
add the pseudo data points to the obtained dataset as described
in Remark IV.2 with K = K = 700, which results in a
total of 2840 data points for each DER. We implement the
neural network approach according to Proposition IV.1 using
TensorFlow 2.7.0 and conduct the training process in Google
Colab with a single TPU with 32 GB memory. The number
of episodes and the number of neurons H are 2000 and 1000,
respectively, and the neural networks are trained using the
Adam optimizer [39] with the learning rate initialized at 0.01
and decays every 500 steps with a base of 0.5.

Fig. 5 plots the solutions to the ORPF problem (2) for all
data profiles, the equilibrium function φ32 learned with and
without pseudo points, the standard droop function %32, and
the optimized droop function ρ32 for the DER at node 32 with
α = 1

3 . In contrast to the case in which no pseudo points
are added in the learning process, the learned equilibrium
function with pseudo points reaches maximum reactive power
compensation capability when voltage exceeds the limits. We
further summarize in Table I the average loss for the whole
training dataset using the learned equilibrium functions and
optimized/standard droop control functions, i.e.,

∑K
k=1 ‖q?C,k −�(v?C,k)‖2

K · C , (19)

where � is φ for the data-based method, ρ for the optimized
droop control, and % for the standard droop control. The
results illustrate the enhanced optimality of the learned equi-
librium functions in approximating ORPF solutions compared
to benchmarks.

TABLE I
AVERAGE LOSS VALUES FOR ALL DATA PROFILES

α Learned equil. func. Opt. droop func. Std. droop func.
0 0.0090 0.0305 0.0438

1/3 0.0060 0.0171 0.0395
1/2 0.0071 0.0429 0.0662
2/3 0.0175 0.0724 0.0852
1 0.0377 0.0878 0.0965

We next illustrate the advantage of using incremental al-
gorithm. Recall that to guarantee the convergence of the non-
incremental algorithm, i.e., ε = 1, one needs to further enforce
an additional slope constraint (13) on the learned equilibrium
functions, cf. Remark III.4. Fig. 6 shows that this additional
slope constraint leads to larger approximation errors of the
learned equilibrium functions in fitting the dataset (we do not
consider the pseudo points during learning here for fairness),
and thus degrades the optimality of system performance.

B. The Control Stage
We run the following simulations using the learned equi-

librium functions for the case α = 1
3 with pseudo data points
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Fig. 5. The orange solid and red dashed curves are respectively learned
equilibrium functions with and without considering pseudo data points for
the DER at node 32, while the blue dashdotted and green dotted curves
are respectively optimized linear droop control function [27] and standard
linear droop function [11], [15]. The comparison between orange solid and red
dashed curves illustrates the role of pseudo data points in learning equilibrium
functions. The former reaches the maximum reactive power compensation
capability when voltage exceeds the limits, while the latter does not.

Fig. 6. Comparison of average training losses (MSE) for all DERs with and
and without the additional slope constraint (13) on the equilibrium functions
as described in Remark III.4. The mean and standard deviations are evaluated
based on 5 random seeds. This additional slope constraint leads to larger
approximation error of the learned equilibrium functions in fitting the data
points.

considered and assume that qC(0) = 0. Note that we use
MATPOWER [40] to solve the power flow equation for all
the tests below. We first verify the convergence properties
of the proposed reactive power update rule (3) stated in
Proposition III.2. Consider the scenario where load-generation
profiles are fixed, Fig. 7 reports the evolution of the DERs’
reactive power setpoints using load-generation profiles of
the 695-th minute and consider 120 iterations of (3). For
ε = 0.369, the reactive power setpoint trajectories converge to
their final values, cf. Fig. 7(a), while the case that ε = 1 fails,

cf. Fig. 7(b). This is consistent with the sufficient condition

0 < ε < min
{

1,
2

(‖X‖L+ 1)2

}
= 0.3691

derived in Proposition III.2.
Next, we test the proposed data-based control method in

a scenario where load-generation profiles are time-varying.
Specifically, we obtain load-generation profiles by randomly
perturbing (5%) the consumption data used to learn the equi-
librium functions. This can be interpreted as having the data
from the dataset prescribing a day-ahead forecast, whereas
their random perturbation act as the true realization of the
load-generation scenarios. These loads and generations are
minute-based and we consider 120 iterations of (3) per minute
with ε = 0.369. Fig. 8 compares the evolution of maxi-
mum/minimum voltages under the proposed data-based control
method, optimized droop control method, ORPF solutions, and
the case where no control action is taken. One can observe that,
in contrast to the proposed data-based method, the optimized
droop control method induces instability issues during 12:00
and 16:00 causing voltages to oscillate. We further compare
in Fig. 9 the distances between the actual reactive power
setpoints and ORPF solutions, i.e., ‖qC − q?C‖. Compared to
the benchmarks, the reactive power setpoints during evolution
under the proposed data-based method remains much closer
to the ORPF solutions, thus leading to significantly improved
optimality. To further illustrate the effectiveness and advan-
tages of the proposed data-based control method, Table II
summarizes the comparison results of the proposed data-based
control method against the standard and optimized linear droop
control methods, as well as the case where no control action is
taken for different values of α. We quantify the performance
by the average of distances of actual and optimal reactive
power setpoints, i.e., average of ‖qC(t)−q?C(t)‖ for the entire
day. It can be observed that the proposed data-based control
method outperforms the benchmark methods in all cases.

TABLE II
AVERAGE DISTANCES BETWEEN ACTUAL REACTIVE POWER SETPOINTS

AND ORPF SOLUTIONS FOR ENTIRE DAY

α 0 1/3 1/2 2/3 1
Data-based 0.1185 0.0985 0.0784 0.1115 0.1645
Opt. Droop 0.2786 0.2474 0.3728 0.4410 0.4854
Std. Droop 0.2886 0.3311 0.4076 0.4699 0.5047
No Control 0.3160 0.5081 0.6842 0.8029 0.8358

C. Robustness to Voltage Measurement Noise

Here, we test the robustness of the proposed data-based
method against voltage measurement noise. Similar to Sec-
tion V-B, we use the learned equilibrium functions to run
simulations, but additionally add random perturbations to the
measurement of local voltages. Table III summarizes the
distances between actual reactive power setpoints and ORPF
solutions under different voltage measurement noise levels.
Specifically, 0.5% perturbation to the voltage measurement
corresponds to a common level of precision among smart
meters in the U.S. [41], while the case of 1% perturbation
represents the biggest error allowed in power systems. Table III
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(a) ε = 0.369

(b) ε = 1

Fig. 7. Evolution of reactive power setpoints under the proposed reactive
power update rule (3) with (a) ε = 0.369 and (b) ε = 1, where we use the
power data profiles of the 695-th minute and consider 120 iterations. This
verifies the sufficient condition 0 < ε < min{1, 2

(‖X‖L+1)2
} = 0.3691 in

Proposition III.2 to ensure global asymptotic stability.

TABLE III
AVERAGE DISTANCES UNDER MEASUREMENT NOISE

Noise
α 0 1/3 1/2 2/3 1

0.2% 0.1210 0.1017 0.0936 0.1291 0.1739
0.5% 0.1317 0.1176 0.1378 0.1862 0.2237
1.0% 0.1571 0.1553 0.2127 0.2762 0.3129

indicates that, even in the latter case, the proposed data-based
method still significantly outperforms the benchmark methods
without measurement noise.

D. Discussion
Our simulation results above validate the improved per-

formance of the proposed data-based method compared to
the linear droop control method for different control goals.
In fact, apart from considering the minimization of voltage
deviations and power losses, our framework allows the users
to consider any other type of cost functions, depending on

(a) Maximum Voltage

(b) Minimum Voltage

Fig. 8. Evolution of the maximum (top) and minimum (bottom) voltages
of the IEEE 37-bus network under the proposed data-based, ORPF solutions,
optimized linear droop, standard linear droop, and no control methods. For all
minute-based data profiles, the ORPF problem is feasible and thus q?

C always
exists. The optimized droop control induces voltage instability issues, causing
voltages oscillations during 12:00 and 16:00, while the proposed data-based
method guarantees the convergence of voltages for every minute-based data
profile.

specific control goals, to learn purely local controllers that
steer system operating points to approximated ORPF solutions.
However, as one can observe in Table I, different cost functions
may result in different optimality gaps between the proposed
data-based method and the ORPF approach. Since the dataset
we construct only maps the local voltage to the local optimal
reactive power setpoint, it is possible that one fixed voltage
corresponds to multiple optimal reactive power setpoints. On
the other hand, it is also possible that the optimal solution
pairs are not so close to the non-increasing shape as we require
the equilibrium functions to be. We refer to these phenomena
as data inconsistency. We note that different selections of
cost function significantly influence the data inconsistency,
and thus leads to very different optimality gaps. For example,
as Table I suggests, the data becomes significantly more
inconsistent when the minimization of voltage deviations takes
a more important role in the cost function. As part of our
follow-up work, we plan to include other available local
information to alleviate the data inconsistency challenge, e.g.,
prevailing (re)active power injections as additional inputs of
the equilibrium function. Another important observation is
that, although the ORPF approach strictly guarantees that the
voltages are within limits, our approach does not. For instance,
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Fig. 9. Evolution of the distance between actual reactive power setpoints and
ORPF solutions of the IEEE 37-bus network under the proposed data-based,
optimized linear droop, standard linear droop, and no control methods.

in Fig. 8, the voltage nadir during evolution under the proposed
data-based method slightly violates the voltage limits. The
reason is that when α is relatively small, many of the optimal
solutions given by the ORPF problem lie on the boundary of
the voltages limits. Since the local surrogates only provide
approximations of the optimal solutions, the actual converged
voltages can easily go out of limits in such situations. On
the other hand, as pointed out in [18], purely local control
strategies generally have no guarantee on desired regulation,
in the sense that the equilibrium q]C of (8) could result in a
v(q]C) /∈ [vmin,vmax], even if there indeed exists qC such that
v(qC) ∈ [vmin,vmax].

VI. CONCLUSIONS

We have presented a data-driven framework to design local
Volt/Var controllers capable of steering a power distribution
network towards efficient network configurations. Building on
the idea of learning local surrogates that map local voltages to
reactive power setpoints that approximate the ORPF solution,
we have proposed a local control update scheme and identified
conditions on surrogates and control parameters so that the
reactive power point converges in a global asymptotic sense.
By constructing a labeled dataset of ORPF solutions with
different load and generation profiles, we have trained neural
networks whose resulting parameterized functions meet the
conditions on surrogates by design to fit the dataset. We have
shown in AC power flow simulation tests that the proposed
framework guarantees the voltage stability and significantly
reduces operation cost compared to prevalent local control
approaches. Future research directions include considering the
regulation of legacy devices, enhancing data consistency by
making use of other local information in building the dataset,
reducing the optimality gap during the learning process, and
extending the proposed framework to more general scenario
where we take advantage of communication among neighbor-
ing agents.

APPENDIX A
TECHNICAL LEMMAS

Lemma A.1. (Bauer and Fike Theorem [42, Corollary 6.3.4]):
Let A,E ∈ Rn×n with A normal. If λ̂ is an eigenvalue of
A + E, then there exists an eigenvalue λ of A such that |λ̂−
λ| ≤ ‖E‖.
Lemma A.2. (Positive semidefiniteness of XM and upper
bound of ‖XM‖): The matrix XM is positive semidefinite.
Moreover, it holds

‖XM‖ ≤ ‖X‖L.
Proof. Let (λi, ξi) be a left eigenpair for XM. Then,
(λi, ξiX

1
2 ) is a left eigenpair for the symmetric matrix

X
1
2 MX

1
2 � 0. Indeed,

ξiX
1
2 X

1
2 MX

1
2 = ξiXMX

1
2 = λiξiX

1
2 .

Therefore, XM is positive semidefinite as well. Also,

‖XM‖ ≤ ‖X‖‖M‖ ≤ ‖X‖L,
which completes the proof.

APPENDIX B
PROOFS OF PROPOSITIONS

Proof of Proposition III.1. We first show by induction the
feasibility of the reactive power update (3). The initial power
injection qn(0) belongs to Qn by hypothesis. Assume now
that qn(t) ∈ Qn and C3) holds. Then qn(t+ 1) is the convex
combination of two elements of Qn. We next show that (8)
has an unique equilibrium point. From (9), the equilibrium
exists if qC = h(qC) has a solution, where h : Q → Q is a
continuous vector function with h(qC) = φ(XqC+v̂C). Since
Q is convex and compact, according to Brouwer’s Fixed Point
Theorem [43, Corollary 6.6], such solution exists. Finally, to
show uniqueness, we reason by contradiction. Assume both
(q]C ,v

]
C) and (q\C ,v

\
C) are equilibrium points for (8) with

q]C 6= q\C . From (9a),

q\C − q]C = φ(v\C)− φ(v]C) = D(v\C − v]C), (20)

where D ∈ RC×C is a diagonal matrix with

Dn =

{
φn(v\n)−φn(v]n)

v\n−v]n
v\n 6= v]n,

0 v\n = v]n.

From C2), φn is non-increasing in vn for all n ∈ C. Hence,
Dn ≤ 0,∀n ∈ C, and D � 0. On the other hand, (9b) yields

q\C − q]C = X−1(v\C − v]C).

Then, it follows that

(X−1 −D)(v\C − v]C) = 0.

Since X � 0, it holds that X−1 � 0, X−1 − D � 0. As a
consequence, v\C − v]C = 0 and q\C − q]C = 0, cf. (9a), which
is a contradiction. This completes the proof.

Proof of Proposition III.2. Consider the voltage evolution un-
der (8),

vC(t+ 1) = XqC(t+ 1) + v̂C
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= (1− ε)XqC(t) + εXφ(vC(t)) + (1− ε)v̂C + εv̂C
= (1− ε)vC(t) + ε(Xφ(vC(t)) + v̂C) := g(vC(t)).

We show that, for small enough values of ε, the operator g :
RC → RC is a contraction, i.e.,

‖g(vC)− g(v′C)‖
‖vC − v′C‖

< 1, (21)

for any vC ,v′C ∈ RC . Indeed, define a diagonal matrix M ∈
RC×C with the n-th diagonal entry being

Mn =

{ |φn(vn)−φ(v′n)|
|vn−v′n| vn 6= v′n,

0 vn = v′n.

Then, it follows that

‖g(vC)− g(v′C)‖
=
∥∥(1− ε)(vC − v′C) + εX

(
φ(vC)− φ(v′C)

)∥∥
=
∥∥(1− ε)sign(vC − v′C)|vC − v′C |

− εXsign(vC − v′C)|φ(vC)− φ(v′C)|
∥∥

=
∥∥(1− ε)|vC − v′C | − εX|φ(vC)− φ(v′C)|

∥∥
≤ ‖(1− ε)I− εXM‖‖vC − v′C‖,

where we have used in the second equality the fact that φn is
non-increasing in vn for each n ∈ C, and thus sign(φ(vC)−
φ(v′C)) = −sign(vC − v′C).

To prove (21), it is sufficient to show that there always exists
ε such that ‖(1 − ε)I − εXM‖ < 1, which is equivalent to
proving that λmax(Γ) < 1, where Γ � 0 is

Γ , [(1− ε)I− εXM]
>

[(1− ε)I− εXM]

=(1− ε)2I− ε(1− ε)(MX> + XM) + ε2MX>XM.

Rewrite Γ as

Γ = (1− 2ε)I− ε(MX> + XM)︸ ︷︷ ︸
:=A

+ ε2 (I + XM + MX> + MX>XM)︸ ︷︷ ︸
:=E

.

Note that A is symmetric. According to Lemma A.1, provided
in the Appendix, it holds that 0 ≤ λmax(Γ) ≤ λmax(A) +
ε2‖E‖. Now it remains to show that there always exists ε
such that

λmax(A) + ε2‖E‖ < 1.

Let λ = λmin(MX> + XM). According to Lemma A.2,
provided in the Appendix, MX>,XM � 0, and therefore
λ ≥ 0. The above condition is then equivalent to

1− ε(2 + λ) + ε2‖E‖ < 1,

which yields

0 < ε <
(2 + λ)

‖E‖ .

Finally, according to Lemma A.2, it holds

‖E‖ ≤ 1 + 2‖XM‖+ ‖XM‖2
≤ 1 + 2‖X‖L+ ‖X‖2L2 = (‖X‖L+ 1)2,

and hence
2 + λ

‖E‖ ≥
2

‖E‖ ≥
2

(‖X‖L+ 1)2
.

Considering that we require ε ∈ [0, 1], (10) follows, conclud-
ing the proof.

Proof of Proposition IV.1. To show the sufficiency of (17),
notice that, for any x ∈ R, if x < b1, then N(x) = β; and
for x ≥ b1, N(x) is divided into H segments with the slope
of the J-th segment being

∑J
j=1 wj for J ∈ {1, 2, . . . ,H}.

Given (17), it follows that N is non-increasing. To show the
necessity of (17), suppose N is non-increasing. Then, there
exists a segment of the equilibrium function, say the J-th,
J ∈ {1, 2, . . . ,H} which is increasing. Hence,

∑J
j=1 wj > 0

which is a contradiction.
We next show the universal approximation property. Given

a compact domain X of the form x ≤ x ≤ x, consider an
equispaced partition of X into H intervals, with the length of
each interval being s = x−x

H . Consider the function

N(x) =

H∑

h=1

whReLU(x− bh) + β,

whose parameters are defined as: β = g(x), bh = x + (h −
1)s, w1 = g(x+s)−g(x)

s , w2 = g(x+2s)−g(x+s)
s − w1,..., wh =

g(x+hs)−g(x+(h−1)s)
s −∑h−1

k=1 wk. Note that it holds that

h∑

k=1

wk =
g(x+ hs)− g(x+ (h− 1)s)

s
≤ 0

because g(x) is nonincreasing, for h ∈ {1, 2, . . . ,H}. Hence,
inequality (17) is satisfied. It can be observed that

|N(x)− g(x)| ≤ Lgs
where Lg is the Lipschitz constant of g. Hence, by setting
H ≥ Lg(x−x)

η = O(1/η), it holds that |N(x)−g(x)| ≤ Lgs ≤
η for all x ∈ X . This completes the proof.
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