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Data-Driven Optimal Control of Bilinear Systems
Zhenyi Yuan and Jorge Cortés

Abstract—This paper develops a method to learn optimal con-
trols from data for bilinear systems without a priori knowledge
of the system dynamics. Given an unknown bilinear system, we
first characterize when the available data is suitable to solve
the optimal control problem. This characterization leads us to
propose an online control experiment design procedure that
guarantees that any input/state trajectory can be represented
as a linear combination of collected input/state data matrices.
Leveraging this data-based representation, we transform the
original optimal control problem into an equivalent data-based
optimization problem with bilinear constraints. We solve the
latter by iteratively employing a convex-concave procedure to
convexify it and find a locally optimal control sequence. Simu-
lations show that the performance of the proposed data-based
approach is comparable with model-based methods.

I. INTRODUCTION

The widespread availability of data, together with increasing
computational capabilities to store, process, and manipulate it,
has supercharged the research activity in learning, modeling,
and control of dynamical phenomena across science and engi-
neering. Data-driven control has emerged as an appealing way
of leveraging this data surge by employing solid theoretical
principles to design controllers that do not require explicit
a priori knowledge of the plant to be controlled. This paper
contributes to this body of work by studying the data-driven
synthesis of optimal control laws for bilinear systems.

Literature Review. Data-driven control approaches include
indirect and direct methods [1]. Indirect methods identify
system models from data prior to proceeding to the synthesis
of model-based controllers, while direct approaches bypass the
intermediate modeling step and construct controllers directly
from data. A diverse range of factors, including the complexity
of the plant, the cost and practicality of performing system
identification, and the amount and quality of the available
data, play a key role in the suitability and performance
of each of these approaches, see e.g., [2], [3]. The direct
data-driven approach has been particularly fruitful for linear
systems, where tools from behavioral theory [4] have allowed
to express the system trajectories in terms of sufficiently-rich
data. This has resulted in the synthesis of feedback stabilizing
controllers [5], [6], optimal control laws [7]–[9], predictive
controllers [10], [11], network controllers [11], [12], control
experiment design [13], optimization-based controllers [14],
and recent extensions to nonlinear systems [15], [16]. Here
we focus on direct data-driven control of bilinear systems as
a building block for future work on more complex nonlinear
systems. These systems are often viewed as the bridge between
linear and nonlinear systems due to their special properties.
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Many processes in engineering, biology and ecology can be
modeled as bilinear systems [17]. Moreover, [18] shows that
control-affine nonlinear systems can be exactly bilinearized.
The recent work [15] proposes a local stabilizing data-driven
controller design for bilinear systems. Here, we focus on the
synthesis of optimal controllers. Model-based approaches to
optimal control of bilinear systems include [19]–[21], which
treat the bilinear system as a time-varying linear system and
solve the optimization problem by applying iteratively the
Pontryagin’s maximum principle, and [22], which gives a
lower bound on the minimum control energy required to steer
the bilinear system using the reachability Gramian.

Statement of Contributions. We consider1 discrete-time bi-
linear control systems and study the point-to-point optimal
control problem over a finite time horizon. We assume the
system matrices are unknown and seek to learn the optimal
control from input/state data. We introduce the notion of
suitable data to characterize when it is sufficiently informative
for reconstructing the optimal control. Under this hypothesis,
we show that any input/state trajectory can be represented
as a linear combination of the collected input/state data.
Owing to the nonlinear nature of bilinear systems, the problem
of ensuring that data is sufficiently informative for optimal
control requires us to introduce an online control experiment
design. We show our design is guaranteed to yield suitable
data in a finite number of steps. Building on this, we pose
the optimal control synthesis problem as a data-based op-
timization with bilinear constraints. We show that a local
solution to this nonconvex problem can be found by iteratively
solving the convexified problems that result from applying
a convex-concave approximation procedure. Throughout the
presentation, we draw inspiration from and make connections
with existing results on data-driven control of linear systems.
Simulations show that the performance of the proposed data-
based approach on bilinear systems is comparable with model-
based methods.

1Throughout the paper, we use R and Z≥0 (resp. Z>0) to denote the sets
of real and non-negative (resp. positive) integer numbers, resp. Let I and 0
(resp. 1) denote the identity matrix and zero (resp. all-ones) vector/matrix with
appropriate dimensions, resp. Given a function f : Z≥0 → Rd and i, j ∈
Z≥0, with i ≤ j, we denote by f[i,j] the restriction of f to the interval [i, j] in
vector form, that is, f[i,j] = [f(i)> f(i+1)> · · · f(j)>]>, and f{i,j} the
sequence {f(i), . . . , f(j)}. Given a vector X = [x>1 x>2 · · · x>j ]> ∈ Rij

with x1, · · · ,xj ∈ Ri, we let Hk(X) denote the Hankel matrix of depth
k ∈ Z>0, with k ≤ j,

Hk(X) :=


x1 x2 · · · xj−k+1
x2 x3 · · · xj−k+2

...
...

. . .
...

xk xk+1 · · · xj

 ∈ Rik×(j−k+1).

Given two matrices Y and Z with proper dimensions, [Y Z] and [Y;Z]
denote their row- and column-concatenations, resp. Moreover, we use Z† and
ImZ to represent the pseudo-inverse and the image space of Z, resp. Finally,
⊗ denotes the Kronecker product, while ‖·‖ represents the Euclidean norm.
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II. PROBLEM FORMULATION

Consider the following discrete-time bilinear time-invariant
control system

x(t+ 1) = Ax(t) + Bu(t) +
[ n∑
j=1

xj(t)Nj

]
u(t), (1)

where x(t) ∈ Rn and u(t) ∈ Rm are the system state
and input, respectively, and A ∈ Rn×n, B ∈ Rn×m and
Nj ∈ Rn×m, j = 1, . . . , n are system matrices. Denoting
N = [N1 N2 · · · Nn] ∈ Rn×mn, the dynamics (1) can be
alternatively written as

x(t+ 1) = Ax(t) + Bu(t) + N(x(t)⊗ u(t)). (2)

We make the following assumption.

Assumption II.1. The pair (A, [B N]) is controllable.

Note that Assumption II.1 is weaker than asking for the
bilinear system (2) to be controllable. Given initial x0 and
target xf states, we consider the following (point-to-point)
optimal control problem over the time horizon T ,

min
u[0,T−1]

T−1∑
t=0

x>(t)Qx(t) + u>(t)Ru(t)

s.t. x(t+ 1) = Ax(t) + Bu(t) +
[ n∑
j=1

xj(t)Nj

]
u(t),

x(0) = x0, x(T ) = xf . (P1)

Here, Q ∈ Rn×n and R ∈ Rm×m are positive semi-definite.
The minimum-energy control problem corresponds to Q = 0
and R = I . This optimization is nonconvex and its closed-
form solution is not known in general. The optimality con-
ditions of (P1) lead to a nonlinear two-point boundary-value
problem, for which there is no analytical solution available.

The problem we address is as follows. We assume the
system matrices A, B and Nj , j = 1, . . . , n are unknown.
Instead, we have access to input/state data of a control
experiment of the system (2), that is, a control input sequence
u{0,L−1} along with the corresponding state sequence x{0,L}
of (2). Our objective is to develop an algorithmic procedure
that is able to learn from the data the optimal control sequence
u?{0,T−1} that solves (P1).

III. DATA SUITABILITY FOR OPTIMAL CONTROL

In this section, we characterize when the available data is
suitable to solve the optimal control problem and discuss a
procedure to design the control experiment. To motivate our
discussion, we start by considering the linear system

x(t+ 1) = Ax(t) + Bu(t) (3)

(corresponding to N = 0 in (2)). Let x{0,L} be
a state sequence generated by (3) with input sequence
u{0,L−1}. According to Willems’ fundamental lemma [4],
[23], and assuming the pair (A,B) is controllable, if
u{0,L−1} is persistently exciting2 of order n + T , then

2The signal f{0,L−1} is persistently exciting of order k if the matrix
Hk(f[0,L−1]) is full-row rank.

G̃T (L) :=
[
x[0,L−T ];HT (u[0,L−1])

]
∈ R(n+mT )×(L−T+1)

is full-row rank. This ensures that any input/state trajectory
(ū[0,T−1], x̄[0,T−1]) of length T of the linear system (3) can
be expressed as[

x̄[0,T−1]
ū[0,T−1]

]
=

[
HT (x[0,L−1])
HT (u[0,L−1])

]
α̃,

for some α̃ ∈ RL−T+1. This property plays a key role in the
data-driven control of linear systems, including stabilization
and system identification [5], predictive control [10], and
point-to-point optimal control [9].

Now consider the original bilinear system (2). If, for a
moment, we regard x(t)⊗u(t) as an independent input, then
the dynamics corresponds to a linear system with input matrix
[B N] and control input v(t) = [u(t);x(t)⊗ u(t)]. Willems’
fundamental lemma applied to this linear system implies
that, under the Assumption II.1, if v{0,L−1} is persistently
exciting of order n+T , then

[
x[0,L−T ];HT (v[0,L−1])

]
is full-

row rank, which then ensures that any input/state trajectory
(v̄[0,T−1], x̄[0,T−1]) of length T of system (2) can be repre-
sented by [

x̄[0,T−1]
v̄[0,T−1]

]
=

[
HT (x[0,L−1])
HT (v[0,L−1])

]
α, (4)

for some α ∈ RL−T+1. However, as we know, the input v is
not independent, and ensuring it is persistently exciting is not
guaranteed by simply asking for u to be so. These observations
motivate our ensuing definitions and technical treatment.

A. Data suitability and parametrization of state trajectories

We next introduce the notion of data suitability for optimal
control of bilinear systems.

Definition III.1. (Data suitability for optimal control of bi-
linear systems): Let x{0,L} be a state sequence generated by
(2) with input sequence u{0,L−1}. The data x{0,L}, u{0,L−1}
is suitable (for learning optimal controls) if

GT (L) :=

 H1(x[0,L−T ])
HT (u[0,L−1])
HT (x⊗u[0,L−1])

 ∈ R(n+mT+mnT )×(L−T+1).

is full-row rank.

This definition requires as a necessary condition that L ≥
(mn+m+1)T+n−1. We point out that GT (L) being full-row
rank is equivalent to

[
H1(x[0,L−T ]);HT (v[0,L−1])

]
being full-

row rank, as both matrices can be obtained from each other
by row permutation. Using (2), one can obtain the relation (5),
where OT ∈ RnT×n, PT ∈ RnT×mT , QT ∈ RnT×mnT . If
GT (L) is full-row rank, it immediately follows that

[OT PT QT ] = HT (x[1,L])GT (L)†.

Remark III.2. (Suitable data for optimal control versus for
identification and stabilization): When T = 1, we have
[O1 P1 Q1] = [A B N], which corresponds to system identi-
fication. Moreover, ifH1(x[0,L−1]) is full-row rank, then under
knowledge of an upper bound on ‖N‖, one can construct
locally stabilizing controllers directly from data, cf. [15].
Notice GT (L) is full-row rank ⇒ G1(L) is full-row rank
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HT (x[1,L]) =


A
A2

...
AT︸ ︷︷ ︸
OT

∣∣∣∣∣∣∣∣∣
B 0 · · · 0
AB B · · · 0

...
...

. . .
...

AT−1B AT−2B · · · B︸ ︷︷ ︸
PT

∣∣∣∣∣∣∣∣∣
N 0 · · · 0
AN N · · · 0

...
...

. . .
...

AT−1N AT−2N · · · N︸ ︷︷ ︸
QT

GT (L) (5)

⇒ H1(x[0,L−1]) is full-row rank. We deduce that suitable data
comprises data needed for system identification and local sta-
bilization. Also, although OT ,PT and QT can be constructed
only using A,B and N when G1(L) is full-row rank, this is
not enough to express any input/state trajectory of length T as
a linear combination of the collected input/state data, and thus
G1(L) being full-row rank is not sufficient to recover optimal
controls. Another important observation is that, in the linear
case (N = 0), according to [9], optimal controls over the time
horizon T can be learned if G̃T (L) is full-row rank. Moreover,
one can identify and globally stabilize linear systems directly
using data if G̃1(L) is full-row rank, cf. [5]. Since G̃T (L) is
full-row rank⇒ G̃1(L) is full-row rank, this further reinforces
the parallelism between the bilinear and linear cases regarding
data conditions for different control problems. �

We have established that any input/state trajectory of (2)
admits a data-based representation of the form (4). The next
result establishes when the converse is also true, i.e., when a
trajectory of the form (4) corresponds to a trajectory of (2).

Lemma III.3. (Data-based representation of input/state tra-
jectory in terms of suitable data): Let x{0,L} and u{0,L−1} be
a suitable data set. Then

(i) Any input/state trajectory (ū[0,T−1], x̄[0,T ]) of system (2)
can be represented as[

x̄[0,T ]

ū[0,T−1]

]
=

[
HT+1(x[0,L])
HT (u[0,L−1])

]
α

for some α ∈ RL−T+1;
(ii) Conversely, let α ∈ RL−T+1 such that

x̄⊗ ū[0,T−1] = HT (x⊗ u[0,L−1])α, (6)

where x̄[0,T−1] = HT (x[0,L−1])α and ū[0,T−1] =
HT (u[0,L−1])α. Then,

[
HT+1(x[0,L]);HT (u[0,L−1])

]
α

is an input/state trajectory of (2) over the time horizon T .

Proof. For statement (i), note that any input/state trajectory
(x̄[0,T ], ū[0,T−1]) of (2) is uniquely determined by x̄(0) ∈
ImH1(x[0,L−T ]) and ū[0,T−1] ∈ ImHT (u[0,L−1]). Recall-
ing that GT (L) is full-row rank, statement (i) follows. For
statement (ii), let α satisfy (6) and consider the initial state
x̄(0) = H1(x[0,L−T ])α and input sequence ū[0,T−1] =
HT (u[0,L−1])α. Then,

x̄[1,T ] = [OT PT QT ]

 x̄(0)
HT (x̄⊗ ū[0,T−1])

ū[0,T−1]


= [OT PT QT ]GT (L)α = HT (x[1,L])α,

where we have employed (5). The conclusion follows by
noting HT+1(x[0,L]) = [H1(x[0,L−T ]);HT (x[1,L])].

B. Online design of control experiment for data suitability
We discuss next how to ensure that the available data

is suitable. Based on our discussion above, v{0,L−1} being
persistently exciting of order n + T is enough to ensure
the suitability of the data for bilinear systems. In contrast
to the linear case, where u{0,L−1} can be designed to be
persistently exciting of any order by selecting control inputs
offline, the persistence of excitation of v{0,L−1} depends on
both the control input u(t) and the system state x(t). Due
to the unknown nonlinear dynamics, there is no available
closed-form expression of x(t) in terms of u(t). Hence,
selecting control inputs offline may not guarantee v{0,L−1}
to be persistently exciting of order n + T , which motivates
an online approach to design u to ensure data suitability. The
next results state some useful facts for our experiment design.

Proposition III.4. (Scaled persistently exciting input returns a
full-row rank Hankel matrix of state data): Consider system (2)
and further assume that the pair (A,B) is controllable. Then,
for any input sequence u{0,L−1} that is persistently exciting
of order n+ k, there exists ε̄ such that for all ε ∈ (0, ε̄), the
input sequence εu{0,L−1} with initial state x(0) = 0 ensures
Hk(x[1,L]) is full-row rank.

We omit the proof for space reasons, but note that the result
follows by using for the higher-order case of k ≥ 1 the same
arguments employed in [16] for the case of k = 1.

Proposition III.5. (Property on the left kernel of GT (t) when
it is not full-row rank): Suppose GT (t) is not full-row rank for
some t ≥ T . If x(t− T + 1)

u[t−T+1,t−1]
x⊗ u[t−T+1,t−1]

 ∈ Im

 H1(x[0,t−T ])
HT−1(u[0,t−2])
HT−1(x⊗ u[0,t−2])

 , (7)

then there must exist ξ ∈ Rn, η1, . . . , ηT ∈ Rm, and
χ1, . . . , χT ∈ Rmn such that the following holds[

ξ> η>1 · · · η>T χ>1 · · · χ>T
]
GT (t) = 0, (8)

with at least one in {ηT , χT } not equal to 0.

Proof. We reason by contradiction. Suppose all vectors of the
form

[
ξ> η>1 · · · η>T χ>1 · · · χ>T

]
in the left kernel of GT (t)

satisfy that both ηT and χT are equal to 0. Then,

[
ξ> η>1 · · · η>T−1 χ>1 · · ·χ>T−1

]  H1(x[0,t−T ])
HT−1(u[0,t−2])
HT−1(x⊗u[0,t−2])

 = 0.

Combining this with (7), we deduce that

[
ξ> η>1 · · · η>T−1 χ>1 · · ·χ>T−1

]  H1(x[0,t−T+1])
HT−1(u[0,t−1])
HT−1(x⊗ u[0,t−1])

 = 0.
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Combining this with the fact that H1(x[1,t−T+1])
HT−1(u[1,t−1])
HT−1(x⊗ u[1,t−1])

 =

 A B 0 N 0
0 0 I 0 0
0 0 0 0 I

GT (t),

we obtain[
ξ>A ξ>B η>1 · · · η>T−1 ξ>N χ>1 · · · χ>T−1

]
GT (t) = 0.

Consequently, given our hypothesis of contradiction, ηT−1
and χT−1 must both be equal to 0. Following a sim-
ilar procedure iteratively, we conclude that ηT−1 =
· · · = η1 = 0 and χT−1 = · · · = χ1 =
0. This implies that ImGT (t) = ImH1(x[0,t−T ]) ×
R(m+mn)T . Left multiplying by [A B 0 N 0] on both
sides, we obtain A ImH1(x[0,t−T ]) + ImB + ImN =
ImH1(x[1,t−T+1]). Since x(t − T + 1) ∈ ImH1(x[0,t−T ]),
then A ImH1(x[0,t−T ]) + ImB + ImN = ImH1(x[0,t−T ]).
This implies ImH1(x[0,t−T ]) is an A-invariant subspace
containing Im [B N]. Since the reachable subspace of the
pair (A, [B N]) is Rn by Assumption II.1, and the fact
that it is also the smallest A-invariant subspace containing
Im [B N], we deduce that Rn ⊆ ImH1(x[0,t−T ]). Therefore
R(m+mn)T+n ⊆ Imx[0,t−T ]×R(m+mn)T = ImGT (t), which
contradicts the fact that GT (t) is not full-row rank.

Based on Propositions III.4 and III.5, we introduce the
online control experiment procedure in Algorithm 1 to ensure
data suitability. The underlying idea of the strategy is to
increase the row rank of GT (t) at each step.

Algorithm 1 Online control experiment design

1: Input: x(0) = 0, ‖u(i)‖ < ε for i = 0, . . . , T − 1 s.t.
GT (T ) 6= 0, ε sufficient close to 0, t := T , k := 1

2: repeat
3: while Hn+k(u[0,t−1]) is full-row rank do
4: k ← k + 1 . Increase order
5: end while
6: if (7) holds then
7: select ξ ∈ Rn, η =

[
η>1 . . . η

>
T

]> ∈ RmT , and χ =[
χ>1 . . . χ

>
T

]> ∈ RmnT s.t. (8) holds, with
[
η>T χ>T

]
6= 0

8: if η>T + χ>T (x(t)⊗ I) 6= 0 then
9: choose ‖u(t)‖ < ε s.t. ξ>x(t − T + 1) +
η>u[t−T+1,t] + χ>x⊗ u[t−T+1,t] 6= 0 holds

10: else
11: choose ‖u(t)‖ < ε s.t. rowrk (Hn+k(u[0,t]))

increases
12: end if
13: else
14: choose ‖u(t)‖ < ε arbitrarily
15: end if
16: t← t+ 1 . Update iteration
17: until GT (t) is full-row rank
18: L← t
19: Output: Full-row rank GT (L)

Theorem III.6. (Online control experiment design to ensure
data suitability): Let (A,B) be controllable and design the

control experiment for system (2) according to Algorithm 1.
Then the output GT (L) is full-row rank.

Proof. Given t ≥ T , assume GT (t) is not full-row rank. If (7)
does not hold, it is easy to see that any choice of u(t) leads to
rowrk (GT (t+1)) > rowrk (GT (t)). Hence, we concentrate on
the case when (7) holds. In this case, from Proposition III.5, we
know there exist ξ ∈ Rn, η1, . . . , ηT ∈ Rm, and χ1, . . . , χT ∈
Rmn, with at least one in {ηT , χT } not equal to 0 making (8)
hold. We aim to design u(t) to satisfy ξ>x(t − T + 1) +
η>u[t−T+1,t] + χ>x⊗ u[t−T+1,t] 6= 0 so that [x(t − T +
1);u[t−T+1,t];x⊗ u[t−T+1,t]] does not belong to ImGT (t),
which ensures rowrk (GT (t+1)) > rowrk (GT (t)). Such u(t)
can be found as long as η>T +χ>T (x(t)⊗ I) 6= 0. If this is not
the case, any selection of u(t) will not affect whether the row
rank of GT (t) will increase or not at this time step. We prove
by contradiction that this situation will not occur indefinitely
under Algorithm 1. Suppose η>T +χ>T (x(`)⊗I) = 0 holds for
all ` ≥ t, it then follows that η>T +χ>T (H1(x[t,`])α⊗I) = 0 for
any α ∈ R`−t+1 with 1>α = 1. According to Algorithm 1, the
order k is increased, followed by an input selection that makes
Hn+k(u[0,`]) full-row rank. Let ` sufficiently large so that
k > t. In this case, Hn+t(u[0,`]) is full-row rank and, using
Proposition III.4, Ht(x[1,`]) is full-row rank too. The latter
implies that H1(x[t,`]) is full-row rank. Together with the fact
that at least one in {ηT , χT } is not equal to 0, there must exist
α ∈ R`−t+1 with 1>α = 1 such that η>T + χ>T (H1(x[t,`])α⊗
I) 6= 0 holds, which is a contradiction. This argument shows
that Algorithm 1 increases the row rank of GT (t) by one after
finitely many steps. Hence, in a finite number of steps, the
algorithm terminates with a full-row rank GT (L).

Note that the controllability assumption on the pair (A,B)
is only necessary to ensure Algorithm 1 is successful, cf.
Theorem III.6. Our design methodology below is still valid
as long as a full row-rank matrix GT (L) can be obtained.

IV. DATA-DRIVEN CONTROL DESIGN

Here, we lay out our algorithmic procedure to find a local
solution of the optimal control problem (P1) using suitable
data. Our first step is to provide an equivalent data-based
representation of the optimization problem. We then iteratively
apply a convex-concave procedure to solve it efficiently. The
next result provides a data-based formulation of the optimal
control problem (P1), provided the available data is suitable.

Theorem IV.1. (Data-based reformulation of optimal control
problem): Given a data set x{0,L} and u{0,L−1} suitable for
optimal control, problem (P1) is equivalent to the following
data-based optimization:

min
α

T−1∑
t=0

x̄>(t)Qx̄(t) + ū>(t)Rū(t)

s.t.

[
x̄[0,T ]

ū[0,T−1]

]
=

[
HT+1(x[0,L])
HT (u[0,L−1])

]
α,

x̄(0) = x0, x̄(T ) = xf , (6) holds. (P2)

The proof of this result readily follows from Lemma III.3.
Notice that the optimization problem (P2) is nonconvex be-
cause of the presence of bilinear terms αiαj , i, j ∈ {1, . . . , L−
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T+1}, in the constraints. Here, we describe a convex–concave
procedure from [24] that can be iteratively employed to solve
it3. We first describe the bilinear terms with new variables
ri,j = αiαj , which we employ in the constraints in (P2) to
make them all become affine. We represent this set of con-
straints by A1(α, r) = 0. Additionally, we write each equality
ri,j = αiαj with the following equivalent representation

(αi + αj)
2 − (α2

i + α2
j )− 2ri,j ≤ 0,

(α2
i + α2

j )− (αi + αj)
2 + 2ri,j ≤ 0.

We gather all these new nonconvex constraints in the expres-
sion C1(α) − C2(α) + A2(r) ≤ 0, where {Ci}2i=1, and A2

are vector-valued convex function and affine functions, resp.
Using C0 to denote the convex cost function, (P2) reads

min
α,r

C0(α)

s.t. C1(α)− C2(α) +A2(r) ≤ 0, (P3)
A1(α, r) = 0.

The nonconvex constraint in (P3) can be convexified by
linearizing the concave function −C2. We perform such con-
vexification iteratively to yield Algorithm 2. The next result
follows from [24, Section 1.3].

Lemma IV.2. (Convergence to critical point of (P2)): Given
a feasible initial point α0, all iterates of Algorithm 2 are
feasible, {C0(αk)}∞k=1 decreases monotonically, and {αk}∞k=1

converges to a critical point α? of (P2).

Algorithm 2 Convex-concave procedure to solve ((P3))

1: Given Initial feasible point α0, k := 0.
2: repeat
3: Let C̄2(α, αk) , C2(αk) +∇αC2(αk)>(α− αk) .

Convexifying the constraint
4: Set αk+1 to be the solution of the convex problem .

Convex optimization

min
α,r

C0(α)

s.t. C1(α)− C̄2(α, αk) +A1(r) ≤ 0

A2(α, r) = 0

5: k ← k + 1 . Update iteration
6: until convergence

V. SIMULATION EXAMPLES

Here we illustrate the effectiveness of the proposed data-
based approach to solve the optimal control problem (P1). For
comparison, we use the model-based approaches taken in [20],
[22] designed specifically for bilinear systems.

Example V.1. (Population control): We consider a population
control problem introduced in [20, Example 1] evolving in
continuous time. For the horizon T = 20, we use a first-order

3Local optimal solutions to bilinear programs can also be found using the
OPTI Toolbox in MATLAB.

Euler discretization with stepsize 0.1. The resulting discrete-
time bilinear system is

x(t+ 1) = x(t) + 0.1x(t)u(t).

We take Q = R = 1 and consider x0 = 1, xf = 1
3 . We

perform a control experiment with L = 60 using randomly
generated inputs, and verify that the resulting G20(60) is full-
row rank. Algorithm 2 obtains a local optimum α? of (P2).
Fig. 1(a) shows the trajectories, both displaying similar perfor-
mance, obtained from the data-based solution in Theorem IV.1
with that of the model-based iterative method [20]. �

Example V.2. (Minimum-energy control problem): Consider
the following bilinear system from [22, Example 4.5]:

x(t+ 1) = Ax(t) + Bu(t) + Nx(t)u(t),

where

A =


0 0 0.024 0 0
1 0 −0.26 0 0
0 1 0.9 0 0
0 0 0.2 0 −0.06
0 0 0.15 1 0.5

 ,B =


0.8
0.6
0.4
0.2
0.5

 ,
N = diag(0.1, 0.2, 0.3, 0.4, 0.5).

We consider the minimum-energy control problem (Q =
0, R = I) with T = 10. Let x0 = 0 and xf =
[0.0004 − 0.00038 0.00318 0.00062 0.00219]

>. We perform
a control experiment with L = 74 using Algorithm 1. We solve
(P2) using Algorithm 2. For comparison, we use the Gramian-
based lower bound of the optimal cost value obtained in [22],

T−1∑
t=0

u?>(t)u?(t) ≥ x>(T )W−1x(T ),

where W is the reachability Gramian of the bilinear system.
Fig. 1(b) compares this lower bound with the values obtained
with the trajectories from the data-based solution in Theo-
rem IV.1, showing a close agreement between the two. �

Example V.3. (Minimum-energy control problem): We con-
sider another minimum-energy control example from [20,
Example 2], for which we use a first-order Euler discretization
with stepsize 0.02. The discrete-time bilinear system is:

x(t+ 1) = Ax(t) + Bu(t) +
[ 3∑
j=1

xj(t)Nj

]
u(t),

with

A =

 1 −0.01 0
0.01 1 0

0 0 1

 ,B = 0,N1 =

 0 0
0 0

−0.02 0

 ,
N2 =

 0 0
0 0
0 0.02

 ,N3 =

 0.02 0
0 −0.02
0 0

 .
We consider T = 50 and perform a control experiment with
L = 452 randomly generated inputs, and verify G50(452) is
full-row rank. We let x0 = [0 0 1]

>, xf = [1 0 0]
>. We

solve (P2) using Algorithm 2 to obtain α? and compare,
cf. Fig. 1(c), the trajectories obtained from the data-based
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Fig. 1: Performance of the proposed data-driven approach (solid blue lines) versus model-based approaches (dashed red lines). The total cost
values are (a) 0.1 ×

∑19
t=0 x

2(t) + u2(t) = 1.3346 for the data-based approach and
∫ 2

0
x2(τ) + u2(τ)dτ = 1.3506 for the model-based

iterative method in [20]; (b)
∑9

t=0 u(t)
>u(t) = 2.25 × 10−6 for the data-based approach and x(10)>W−1x(10) = 1.64 × 10−6 for the

Gramian-based lower bound in [22]; and (c) 0.02×
∑49

t=0 u
>(t)u(t) = 2.7999 for the data-based approach and

∫ 1

0
u>(τ)u(τ)dτ = 4.7976

for the model-based iterative method in [20].

solution in Theorem IV.1 with that of the model-based iterative
method [20], showing that the data-driven approach finds a
better local optimum. �

VI. CONCLUSIONS

We have presented a data-driven method to learn optimal
controls of bilinear systems directly from input/state data with-
out a priori knowledge of the system matrices. The nonlinear
nature of the dynamics has led us to introduce a notion to
describe when data is suitable to recover the optimal con-
trols. We have provided an online control experiment design
method to obtain data with such properties and introduced
an equivalent data-based reformulation of the original optimal
control problem. Given its nonconvexity, we have employed
an iterative convex-concave algorithmic procedure to solve it.
Simulations show that the data-based approach finds optimal
control trajectories with comparable performance to those
obtained by model-based methods. Future work will explore
extensions to noisy data and robustness analysis, investigate
weaker notions under which data is suitable to reconstruct
optimal controls, and design distributed implementations for
large-scale bilinear networks.
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