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Abstract

This paper proposes a reinforcement learning-based approach for optimal transient frequency control in power systems
with stability and safety guarantees. Building on Lyapunov stability theory and safety-critical control, we derive sufficient
conditions on the distributed controller design that ensure the stability and transient frequency safety of the closed-loop
system. Our idea of distributed dynamic budget assignment makes these conditions less conservative than those in
recent literature, so that they can impose less stringent restrictions on the search space of control policies. We construct
neural network controllers that parameterize such control policies and use reinforcement learning to train an optimal
one. Simulations on the IEEE 39-bus network illustrate the guaranteed stability and safety properties of the controller
along with its significantly improved optimality.
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1. Introduction

With modern power systems shifting from high-inertia
traditional generations to low-inertia renewable resources,
it is increasingly important to design control mechanisms
that allow to operate frequency around its nominal value.
To tackle the frequency control problem, the appeal of
learning methods lies in the convenience of incorporating
large amounts of data and accounting for optimality con-
siderations in the controller design. This paper serves as
a contribution to the growing body of work that seeks
to leverage learning in the synthesis of efficient decision-
making mechanisms in power systems that have rigorous
guarantees on stability and performance.

Literature Review

Transient stability of power systems refers to its ability
to regain operating equilibrium after disturbances, while
retaining the state within operational margins. The litera-
ture has investigated optimal frequency control design for
improving transient stability, e.g., load-side control [1, 2],
droop coefficient design [3], and proportional-derivative
control [4], to mention a few. These methods either rely
on designing optimal linear feedback controllers offline or
solving optimization problems in real time to obtain opti-
mal control policies. While these approaches ensure tran-
sient stability, they do not strictly guarantee transient
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safety, as the frequency may enter unsafe regions before
convergence. To address this, [5] combined Lyapunov sta-
bility analysis and safety-control methods to ensure both
stability and transient safety. This approach was fur-
ther combined with model predictive control in [6, 7] to
minimize the control effort by enhancing the cooperation
among the nodes, at the cost of a significantly heavier
computational burden.

Recent research has employed data-driven methods to
improve frequency control design without the restriction
for the controllers to be linear or the need to solve com-
putationally complex optimization problems in real time.
Reinforcement learning (RL) has emerged as an attractive
method to learn such control policies offline, see e.g., [8].
In general, stability and safety of the closed-loop system
are not guaranteed without additional design constraints
on the learned policies. This has resulted in a number
of works that developed stability [9–13] or safety [14–16]
guaranteed RL approaches to learn optimal controllers for
frequency [9, 10, 13, 14] and voltage control [11, 12, 15, 16]
in power systems. With respect to previous work, the main
novelty here is that we develop an RL-based approach that
jointly guarantees stability and transient frequency safety.
To achieve this, we go beyond purely decentralized con-
troller designs and leverage the distributed cooperation
among agents, so that they can share the disturbance to
be balanced and ensure system stability.

Statement of Contributions

We study optimal transient frequency control in power
systems with dynamics described by the swing equations.
We formulate an optimization problem to identify control
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designs that minimize the frequency deviation from the
equilibrium and the control cost over time while ensur-
ing asymptotic stability and transient frequency safety in
the presence of disturbances. Leveraging notions of Lya-
punov stability and safety-critical control, we identify con-
straints on the distributed controller design whose satisfac-
tion automatically guarantees that the closed-loop system
remains stable and the transient frequency stays within
the desired safety bounds. These constraints use budgets
to break down the requirement of collectively satisfying
an inequality to ensure stability into individual stability
conditions, one per bus, in a way that is distributed and
allows additional design flexibility for certain buses while
having others compensate for it. These constraints define
the search space of distributed, stable, and safe control
policies. We leverage them to enforce appropriate struc-
tural constraints on neural networks so that the resulting
parameterized controller belongs to the search space and
can approximate with arbitrary accuracy any of its ele-
ments. Finally, we use a recurrent neural network (RNN)-
based RL framework to learn the optimal parameters for
these neural networks. Simulation results of the designed
controllers on the IEEE 39-bus power system validate their
guaranteed stability and transient safety as well as their
significantly improved optimality compared to previous
controller designs.

2. Preliminaries

We introduce here some notations and basic notions
from the algebraic graph theory and the swing dynamics
for power systems.

2.1. Notations

Throughout this paper, we use N, R, R≥0 and R>0 to
denote the set of natural, real, nonnegative and positive
real numbers, respectively. For a, b ∈ N, let [a, b]N , {x ∈
N | a 6 x 6 b}. For C ⊂ Rn, ∂C denotes its boundary.
For A ∈ Rm×n, [A]i and [A]ij represent its i-th row and
(i, j)-th element, respectively. We denote by A† its unique
pseudo-inverse and by Range(A) its column space. 1n and
0n in Rn are vectors of all ones and zeros, respectively. A
continuous function α : R → R is of (extended) class-K if
it is strictly increasing and α(0) = 0. Finally, ‖ · ‖1, ‖ · ‖
and ‖ · ‖∞ are respectively 1-norm, Euclidean norm and
infinity norm.

2.2. Graph theory

Here we present some basic notions in graph theory [17].
Let G = (I, E) be an undirected graph, where I =
{1, . . . , n} is the node set and E = {e1, . . . , em} ⊆ I × I
is the edge set. Two nodes are neighbors if there exists an
edge linking them. We denote by Ni the set of neighbors of
node i. A path is an ordered sequence of nodes such that
any pair of consecutive nodes in the sequence is an edge of
the graph. The graph G is connected if there exists a path

between any pair of nodes. The adjacency matrix A is
defined by [A]ij > 0 if i and j are neighbors, 0 otherwise.
The Laplacian matrix L is defined as [L]ij = −[A]ij for
i 6= j, and [L]ii =

∑n
j=1,j 6=i[A]ij . The value 0 is an eigen-

value of L with eigenvector 1n. This eigenvalue is simple
if and only if the graph is connected. For each edge ek ∈ E
with nodes i, j, we assign an arbitrary orientation so that
either i or j is the source of ek and the other node is the
target of ek. Then the incidence matrix B = (dik) ∈ Rn×m
of graph G is defined as

dik =


1 if node i is the source of edge ek

−1 if node i is the target of edge ek

0 otherwise.

2.3. Power network dynamics

The power network is modeled by a connected undi-
rected graph G = (I, E), where I = {1, . . . , n} is the set
of buses and E ⊆ I × I is the set of transmission lines.
We assume each bus represents an aggregate area con-
sisting of loads and generators. For each bus i ∈ I, we
use θi ∈ R, ωi ∈ R, pi ∈ R, ui ∈ R to represent its volt-
age angle, frequency deviation (from the nominal value),
uncontrolled active power injection, and controlled active
power injection, respectively. The frequency dynamics is
described by the swing equations [18]:

θ̇i(t) = ωi(t), (1)

Miω̇i(t) =−Diωi(t)−
∑
j∈Ni

bij sin (θi(t)−θj(t))+ui(t)+pi,

for all i ∈ I, where Mi, Di ∈ R≥0 are the inertia and
damping coefficients of bus i, respectively, and bij ∈ R>0 is
the susceptance of the transmission line connecting buses
i and j. For simplicity, we assume Mi, Di, bij are all
positive.

Define vectors θ , [θ1, . . . , θn]> ∈ Rn, ω ,
[ω1, . . . , ωn]> ∈ Rn and p , [p1, . . . , pn]> ∈ Rn. Let
B ∈ Rn×m be the incidence matrix under an arbitrary
graph orientation, and define the voltage angle difference
vector

λ(t) , B>θ(t) ∈ Rm. (2)

Denote by Yb ∈ Rm×m the diagonal matrix with [Yb]k,k =
bij , for each edge k = 1, 2, . . . ,m that links nodes i and

j, and define M , diag(M1,M2, . . . ,Mn) ∈ Rn×n, D ,
diag(D1, D2, . . . , Dn) ∈ Rn×n. We rewrite the dynamics
(1) in a compact form in terms of λ(t) and ω(t) as

λ̇(t) = B>ω(t)

Mω̇(t) = −Dω(t)−BYb sinλ(t) + u(t) + p, (3)

where u(t) , [u1(t), . . . , un(t)]> ∈ Rn, and sinλ(t) ∈ Rm
is the component-wise sine value of λ(t). Note that the
transformation (2) enforces λ(0) ∈ Range(B>). We refer
to any λ(0) satisfying this condition as an admissible initial
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value. For convenience, we use x(t) , (λ(t), ω(t)) ∈ Rm+n

to denote the collection of all the state variables, and skip
writing its dependence on t if the context is clear.

Let L , BYbB
>, and define ω∞ ,

∑n
i=1 pi∑n
i=1Di

, p̃ , p −
ω∞D1n. According to [19], if∥∥L†p̃∥∥E,∞ < 1, (4)

where ‖y‖E,∞ , max(i,j)∈E |yi − yj |, then there exists

λ∞ ∈ Γ , {λ | |λk| < π/2,∀k = 1, ...,m} unique in
Γcl,{λ | |λk|≤π/2,∀k = 1, ...,m} such that

p̃ = BYb sinλ∞ and λ∞ ∈ Range(B>).

Provided λ(0) ∈ Range(B>), (3) with u ≡ 0 has a unique
equilibrium (λ∞, ω∞1n), which is asymptotically stable.

3. Problem Formulation

Consider a power network modeled as in Section 2.
Under the condition (4), the unforced system admits
a unique locally asymptotically stable equilibrium point
(λ∞, ω∞1n). However, in the presence of disturbances,
the transient frequency can enter unsafe regions before
convergence to the equilibrium. This can be caused, for
instance, by a sudden change in load or generation. If such
frequency excursions exceed certain bounds, they might in
fact lead to failure of loads or generators. To address this
issue, we need to design feedback controllers {ui}i∈I to en-
sure each nodal frequency ωi stays within its safety bounds
[ωi, ωi] during transients, while preserving the asymptotic
stability of (3). We also seek to minimize the frequency
deviation from the equilibrium and the control cost inte-
grated over time. This gives rise to

min
u

∫ T

t=0

{
γ‖ω(t)− ω∞1n‖2 + ‖u(t)‖2

}
dt (5a)

s.t. λ̇ = B>ω (5b)

Mω̇ = −Dω −BYb sinλ+ u+ p, (5c)

lim
t→∞

(λ, ω) = (λ∞, ω∞1n), ωi ≤ ωi ≤ ωi, (5d)

where T is the time horizon of interest and γ is a coeffi-
cient balancing control cost and frequency deviation. Here
p = pnom + ∆p, where pnom is the nominal power injection
and ∆p accounts for the disturbance. We assume ∆p van-
ishes in finite time, and hence only affects the transient be-
havior. The term γ‖ω−ω∞1n‖2 in the objective function
penalizes deviation from the equilibrium frequency, and
can be interpreted as a soft constraint to provide approx-
imate transient safety. Instead, the safety bound in (5d)
is a hard constraint to strictly guarantee transient safety
by prohibiting the frequency nadir going outside the safe
region. We also require the designed controllers to be dis-
tributed, in the sense that each bus can implement ui(x, p)
using its local information and the information from its
neighboring buses and incident transmission lines.

The infinite-dimensional and nonlinear nature of the
optimization (5) makes it hard to solve. Reinforcement
learning (RL) is an attractive approach to such a problem
by employing the data from system executions to train
a policy that maps states to input actions. This results
in a learned controller with optimized performance for the
given data, but does not guarantee the stability and safety
of the closed-loop system. Instead, model-based methods
leverage knowledge of the dynamics to synthesize feedback
controllers that render the system stable and safe, but have
trouble dealing with the infinite-dimensional nature of the
optimization. The advantages and limitations of RL and
model-based approaches motivate us to combine them by
identifying conditions on the controller design that ensure
stability and safety (cf. Section 4) and incorporating these
conditions in the RL policy search (cf. Section 5).

4. Search Space of Control Policies

Here we identify constraints on the control design that
ensure transient frequency safety and asymptotic stabil-
ity. These constraints define later the search space of con-
trol policies.

4.1. Constraint ensuring frequency invariance

We first turn our attention to the identification of con-
ditions on the controller design that ensure the tran-
sient safety requirement, i.e., ωi(t) staying in [ωi, ωi]
for all i ∈ I and all t ≥ 0. For convenience, let
Qi , {x | ωi ≤ ωi ≤ ωi,∀i ∈ I}. To make this set for-
ward invariant, one simply needs to ensure that the time-
derivative of the frequency is negative when ωi = ωi, pos-
itive when ωi = ωi, and anything when ωi ∈ (ωi, ωi).
However, such specification may result in discontinuous
controllers. Instead, we seek a specification that gradu-
ally kicks in as the frequency reaches certain thresholds,
while retaining the stability properties of (3) in the ab-
sence of input when the frequency is inside the thresholds.
Meanwhile, a dead zone [ωth

i , ω
th
i ] is introduced to avoid

over-reaction of the controller to small frequency devia-
tions. Built on this idea, the next result identifies a suffi-
cient condition for a continuous controller design to ensure
forward invariance of the frequency-safe set Qi.

Lemma 4.1. (Sufficient condition for frequency invari-
ance [5, Lemma 4.4]): Assume the solution of (3) exists
and is unique for every admissible initial condition. For
each i ∈ I, let ωth

i , ω
th
i ∈ R be such that ωi < ωth

i <
ωth
i < ωi and αi(·) and αi(·) be class-K functions. If for

all x ∈ Rm+n and p ∈ Rn,{
ui(x, p) ≤ αi(ωi−ωi)

ωi−ωth
i

+ qi(x, p), ωi > ωth
i ,

ui(x, p) ≥ αi(ωi−ωi)

ωth
i −ωi

+ qi(x, p), ωi < ωth
i ,

(6)

where qi(x, p) , Diωi + [BYb]i sinλ − pi, then Qi is a
forward invariant set.

3



4.2. Constraint ensuring asymptotic stability

Here we derive a constraint on the control design that
ensures asymptotic stability. We approach this by con-
sidering an energy function and restricting the input so
that its time-derivative along the closed-loop dynamics is
nonpositive. Following [5, 20], consider

V (λ, ω) ,
1

2

n∑
i=1

Mi (ωi − ω∞)
2

+

m∑
j=1

[Yb]j,j a (λj) , (7)

where a (λj) , cosλ∞j − cosλj − λj sinλ∞j + λ∞j sinλ∞j .
The derivative of V along the dynamics (3) is given by

V̇ (λ, ω)=−
n∑
i=1

Di (ωi−ω∞)
2
+

n∑
i=1

(ωi−ω∞)ui(x, p). (8)

To ensure V̇ (λ, ω) ≤ 0, one can simply ask ui(x, p) to
satisfy

−Di(ωi − ω∞)2 + (ωi − ω∞)ui(x, p) ≤ 0, (9)

for each i ∈ I. This stability condition is convenient, from
a network perspective, because it provides an individually
decoupled constraint for each bus. This is essentially the
approach taken in our previous work [5] and also in [9].
Nevertheless, one can see that it is over-constraining, as
the sum of all terms in (8) is what needs to be nonpos-
itive, not each individual summand. One could envision
scenarios where some buses can deal with larger distur-
bances than others. In such cases, it would be advanta-
geous to allow less capable buses to violate (9) up to a
level that can be compensated by more capable buses to
still make the overall sum (8) nonpositive. Leveraging this
insight, the next result generalizes the stability condition
in [5, Lemma 4.1].

Lemma 4.2. (Sufficient condition for local asymptotic
stability): Consider system (3) under condition (4). Fur-
ther suppose that for every i ∈ I, ui(x, p) : Rm+n ×Rn →
R is Lipschitz in x. Let c , minλ∈∂Γcl

V (λ, ω∞1n) and

Jβ , {(λ, ω) | λ ∈ Γcl, V (λ, ω) 6 c/β} (10)

with β ∈ R>0. Suppose for every i ∈ I, x ∈ Rm+n, and
p ∈ Rn,

(ωi−ω∞)ui(x, p)≤D̃i (ωi−ω∞)
2
+bi, if ωi 6= ω∞,

ui(x, p) = 0, if ωi = ω∞,

where 0 < D̃i < Di and
∑n
i=1 bi = 0. Then, provided

λ(0) ∈ Range(B>) and (λ(0), ω(0)) ∈ Jβ for some β > 1,

1. The solution of the closed-loop system exists and is
unique for all t ≥ 0;

2. λ(t) ∈ Range(B>) and (λ(t), ω(t)) ∈ Jβ for all t ≥ 0;

3. (λ∞, ω∞1n) is stable, and limt→∞(λ(t), ω(t)) =
(λ∞, ω∞1n).

Proof. Note that Jβ is non-empty and compact. Hence
if 2) holds, then 1) follows [21, Theorems 3.1 and 3.3].
Therefore we focus on the statements 2)-3). From (8),

V̇ (λ, ω) = −
n∑
i=1

Di (ωi−ω∞)
2

+

n∑
i=1

(ωi−ω∞)ui(x, p)

= −
n∑
i=1

(Di − D̃i) (ωi−ω∞)
2 ≤ 0.

Hence, given (λ(0), ω(0)) ∈ Jβ , we have V (λ, ω) ≤
V (λ(0), ω(0)) ≤ c/β, and 2) follows. For 3), note
that V (λ, ω) > 0 for (λ, ω) ∈ Jβ \ (λ∞, ω∞1n), and

V (λ∞, ω∞1n) = 0, combined with V̇ (λ, ω) ≤ 0, im-
plies that (λ∞, ω∞1n) is stable. Furthermore, noticing
V̇ (λ, ω) = 0 implies that ω = ω∞1n , let Ω = {(λ, ω) ∈
Jβ | ω = ω∞1n}, it is easy to see from (3) that the
largest invariant set in Ω is the point {(λ∞, ω∞1n)}.
Then 3) follows the LaSalle Invariance Principle [21, The-
orem 4.4].

The quantities {bi}i∈I ∈ Rn in Lemma 4.2 correspond
to the budgets that allow some buses to violate the local
condition (9) and instead satisfy

ui(x, p) ≤ D̃i(ωi − ω∞) + bi
(ωi−ω∞) ωi > ω∞,

ui(x, p) = 0 ωi = ω∞,

ui(x, p) ≥ D̃i(ωi − ω∞) + bi
(ωi−ω∞) ωi < ω∞,

(11)

while ensuring system stability as long as
∑n
i=1 bi = 0.

Note that the condition (11) is more general than the sta-
bility condition in [5, Lemma 4.1], which requires ui to
have a different sign from (ωi − ω∞), and the stability
condition in [9, Theorem 1], which further requires ui to
be monotonically decreasing with ωi − ω∞.

4.3. Distributed dynamic budget assignment

Before proceeding to the synthesis of distributed control
policy, here we focus on the assignment of budgets intro-
duced previously. Notice that both sufficient conditions
(6) and (11) obtained above are naturally distributed, ex-
cept for the requirement that

∑n
i=1 bi = 0. Indeed, the

satisfaction of this equality requires coordination across
the buses. Interestingly, a static, a priori budget assign-
ment in general does not work. This is because, if bi 6= 0,
then (11) might require the control input to be infinitely
large (instead of vanishing) when ωi approaches ω∞. In-
stead, we need a dynamic, state-dependent budget as-
signment that makes sure bi approaches zero as ωi ap-
proaches ω∞. The following result details a dynamic bud-
get assignment mechanism that ensures this while guaran-
teeing

∑n
i=1 bi = 0 in a distributed way.

Proposition 4.3. (Distributed dynamic budget assign-
ment): For x ∈ Rm+n, let Ith ⊆ I denote the set of
buses satisfying ωi /∈ [ωth

i , ω
th
i ] and Eth ⊆ E the set of

edges between any pair of nodes in Ith. Define the (pos-
sibly unconnected) state-dependent subgraph G̃ = (I, Eth)
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of G = (I, E) and let L̃ be its Laplacian matrix. Given
ξ ∈ Rn, let the budgets be assigned as bi = [L̃]iξ for each
i ∈ I. Then the following holds:

1.
∑n
i=1 bi = 0 always holds;

2. For each i ∈ I, bi = 0 whenever ωi(t) ∈ [ωth
i , ω

th
i ].

Proof. For 1), note that
∑n
i=1 bi =

∑n
i=1[L̃]iξ = 1>n L̃ξ.

Since 0 is an eigenvalue of L̃ with eigenvector 1n, the con-
clusion follows. For 2), according to the definition of L̃, if
i /∈ Ith, then [L̃]i = 0>n , and hence bi = [L̃]iξ = 0.

The underlying idea of Proposition 4.3 is that, instead
of assigning bi directly to each bus i ∈ I, we let each bus
i ∈ I choose a value ξi by itself and compute bi by exchang-
ing information with its neighbors, utilizing the algebraic
properties of Laplacian matrices to enforce

∑n
i=1 bi = 0.

For bus i ∈ I, whenever ωi(t) ∈ [ωth
i , ω

th
i ], the mechanism

does not include it in the budget assignment process, and
in that case its budget bi is simply zero. Finally, we re-
mark that other dynamic budget assignment mechanisms,
different from the one proposed here, might also work.

4.4. Distributed, stable and safe control policies

Here, we combine the results of the previous sections
to identify the search space of distributed policies. In the
next result, we propose a policy design to satisfy (6) and
(11), which renders the closed-loop system stable and safe.

Theorem 4.4. (Distributed control policies with asymp-
totic stability and transient safety guarantees): Given
thresholds ωth

i , ωth
i such that ω∞ ∈ (ωth

i , ω
th
i ). Let ξ ∈ Rn

satisfy ‖[L]i‖1‖ξ‖∞ ≤ min{D̃i(ω
th
i −ω∞)2, D̃i(ω

th
i −ω∞)2}

for all i ∈ I. Under condition (4), consider the system (3)
with a Lipschitz control policy satisfying (12) with budgets
bi = [L̃]iξ for each i ∈ I, where L̃ is defined in Proposi-
tion 4.3. If λ(0) ∈ Range(B>) and (λ(0), ω(0)) ∈ Jβ for
some β > 1, then the following holds:

1. The solution of the closed-loop system exists and is
unique for all t ≥ 0;

2. λ(t) ∈ Range(B>) and (λ(t), ω(t)) ∈ Jβ for all t ≥ 0;

3. (λ∞, ω∞1n) is stable, and limt→∞(λ(t), ω(t)) =
(λ∞, ω∞1n);

4. For each i ∈ I, if ωi(0) ∈ [ωi, ωi], then ωi(t) ∈ [ωi, ωi]
for all t > 0;

5. The budgets vanish in finite time, i.e., there exists a
time t0>0 such that bi=0 for all t>t0 and all i∈I.

Proof. Statements 1)-4) readily follow Lemmas 4.1 and 4.2
if (12) (i) ensures that (6) and (11) hold and (ii) de-
fines a specification that can be satisfied by a Lips-
chitz controller. For (i), from Proposition 4.3 we have∑n
i=1 bi = 0, and therefore (12) implies both (6) and

(11). For (ii), notice that the only problem is that

(12) requires ui = 0 when ωi ∈ [ωth
i , ω

th
i ]. Hence, to

guarantee it admits a Lipschitz controller, we need to
show that ui can be chosen as 0 right after ωi passes
the thresholds ωth

i and ωth
i . Hence, it suffices to show

that limωi→(ωth
i )+ min{D̃i(ωi−ω∞)+ [L̃]iξ

(ωi−ω∞) ,
αi(ωi−ωi)

ωi−ωth
i

+

qi(x, p)} ≥ 0 and limωi→(ωth
i )− max{D̃i(ωi − ω∞) +

[L̃]iξ
(ωi−ω∞) ,

αi(ωi−ωi)

ωth
i −ωi

+ qi(x, p)} ≤ 0. Now we only show the

case when ωi → (ωth
i )+, since the other case can be proved

similarly. Note that limωi→(ωth
i )+

αi(ωi−ωi)

ωi−ωth
i

+ qi(x, p) =

+∞, and hence the minimum is attained by the first term.
We end the proof by noting that limωi→(ωth

i )+ D̃i(ωi −
ω∞)+ [L̃]iξ

(ωi−ω∞) ≥ D̃i(ω
th
i −ω∞)−D̃i(ω

th
i −ω∞) = 0, where

we have employed the fact that |[L̃]iξ| ≤ ‖[L]i‖1‖ξ‖∞.
Finally, for 5), the asymptotic convergence established
in 3) indicates that there exists a t0 > 0 such that
ωth
i ≤ ωi(t) ≤ ωth

i holds for all t > t0 and all i ∈ I.
Together with Proposition 4.3, the result follows.

Theorem 4.4 provides a characterization of the search
space of distributed control policies that guarantee asymp-
totically stable and transient-safe closed-loop systems.
Fig. 1 illustrates the search space.

5. Synthesis of Distributed Neural Network Con-
trollers

In this section, we construct neural networks that pa-
rameterize control policies satisfying the requirements in
Section 4.4, and then apply an RNN-based RL framework
to train an optimal one.

5.1. Selecting class-K functions and frequency thresholds

The condition (12) obtained in Theorem 4.4 depends
upon the class-K functions αi, αi and the frequency thresh-
olds ωth

i , ω
th
i . Their choice affects the search space of con-

trol policies. One can make specific choices for these de-
sign parameters according to practical considerations. Al-
ternatively, one can use neural networks to parameterize
and train them along with the control policy. Note that
parameterizing ωth

i and ωth
i is easy since they are static

values instead of functions. The more difficult task of pa-
rameterizing αi and αi requires the neural networks to be
strictly monotone. Approaches to this include structure-
based [22] and verification-based [23] methods. Here, we
adopt the single hidden layer monotone neural network
design in [9], which achieves universal approximation, yet
is easy to implement. We provide next the details of the
proposed parameterization method.

Lemma 5.1. (Neural network parameterization of class-
K functions): Let σ(x) = max(0, x) be the ReLU function.
For each i ∈ I, let

αi(ωi) = z+
i σ(1mωi + c+i ) + z−i σ(−1mωi + c−i ),
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ui(x, p) ≤ min

{
D̃i(ωi − ω∞) + bi

(ωi−ω∞) ,
αi(ωi−ωi)

ωi−ωth
i

+ qi(x, p)
}

ωi > ωth
i ,

ui(x, p) = 0 ωth
i 6 ωi 6 ωth

i ,

ui(x, p) ≥ max
{
D̃i(ωi − ω∞) + bi

(ωi−ω∞) ,
αi(ωi−ωi)

ωth
i −ωi

+ qi(x, p)
}

ωi < ωth
i .

(12)

𝑢𝑖  𝛼𝑖(𝜔𝑖 − 𝜔𝑖)

𝜔𝑖 − 𝜔𝑖
𝑡ℎ + 𝑞𝑖(𝑥, 𝑝) 

𝜔𝑖  𝜔𝑖
𝑡ℎ  𝜔𝑖  

𝜔𝑖  

𝛼𝑖(𝜔𝑖 − 𝜔𝑖)

𝜔𝑖
𝑡ℎ − 𝜔𝑖

+ 𝑞𝑖(𝑥, 𝑝) 

𝐷𝑖(𝜔𝑖 − 𝜔∞) +
𝑏𝑖

(𝜔𝑖 − 𝜔∞)
 

𝜔𝑖
𝑡ℎ  

𝐷𝑖(𝜔𝑖 − 𝜔∞) 

𝐷𝑖(𝜔𝑖 − 𝜔∞) +
𝑏𝑖

(𝜔𝑖 − 𝜔∞)
 

(a) bi > 0

𝐷𝑖(𝜔𝑖 − 𝜔∞) +
𝑏𝑖

(𝜔𝑖 − 𝜔∞)
 

𝛼𝑖(𝜔𝑖 − 𝜔𝑖)

𝜔𝑖 − 𝜔𝑖
𝑡ℎ + 𝑞𝑖(𝑥, 𝑝) 

𝐷𝑖(𝜔𝑖 − 𝜔∞) 

𝑢𝑖  

𝜔𝑖  𝜔𝑖
𝑡ℎ  𝜔𝑖  

𝜔𝑖
𝑡ℎ  𝜔𝑖  

𝛼𝑖(𝜔𝑖 − 𝜔𝑖)

𝜔𝑖
𝑡ℎ − 𝜔𝑖

+ 𝑞𝑖(𝑥, 𝑝) 

𝐷𝑖(𝜔𝑖 − 𝜔∞) +
𝑏𝑖

(𝜔𝑖 − 𝜔∞)
 

(b) bi < 0

Figure 1: The colored region shows the search space for the con-
trollers satisfying by (12), cf. Theorem 4.4, which ensures asymp-
totic stability and transient safety. The orange curve is an instance
of a controller in the specified search space. The sign of the budget
captures whether bus i (a) violates (9) or (b) compensates it up to
a certain amount to ensure the overall system stability.

where c+i , c
−
i ∈ Rm are bias vectors with m hidden units

satisfying [c+i ]1 = 0, [c+i ]j ≤ [c+i ]j−1 (resp. [c−i ]1 = 0,
[c−i ]j ≤ [c−i ]j−1) for j ∈ [2,m]N, and z+

i , z
−
i ∈ R1×m

are weight vectors satisfying
∑`
j=1[z+

i ]1,j > 0 (reps.∑`
j=1[z−i ]1,j < 0) for ` ∈ [1,m]N. Then, αi is of class-

K. Furthermore, for any class-K function κ and given
any compact domain K ⊂ R and ε > 0, there exist
z+
i , z

−
i , c

+
i , c
−
i and m such that |κ(ωi) − αi(ωi)| < ε for

all ωi ∈ K.

We omit the proof of this result, but note that it is
analogous to the proof of [9, Theorem 2]. The underlying
idea is to construct a piece-wise linear approximation of a
nonlinear function in which every linear segment is strictly
increasing. An arbitrary accuracy of the approximation
can be achieved given sufficiently many neurons. Also note
that αi can be constructed in the same way with weight
vectors z+

i , z
−
i and bias vectors c+i , c

−
i .

Lemma 5.2. (Neural network parameterization of fre-
quency threshold): Let ς(x) = 1

1+e−x be the sigmoid func-
tion. For each i ∈ I, let

ωth
i = (ω∞ − ωi)ς(v+

i ) + ωi, ω
th
i = (ω∞ − ωi)ς(v−i ) + ωi,

where v+
i , v

−
i ∈ R are biases. Then ωth

i and ωth
i approxi-

mate any values in (ωi, ω
∞), and (ω∞, ωi), respectively.

The proof of Lemma 5.2 readily follows the definition of
the sigmoid function.

5.2. Neural network controller design

We first give the final ingredient to parameterize control
policies that satisfy condition (12) using neural networks.
The next result provides a parameterization of any func-
tion ωi 7→ fi(ωi) satisfying fi(ωi) = 0 for ωi ∈ [ωth

i , ω
th
i ].

Lemma 5.3. (Neural network parameterization of fi):
For each i ∈ I, let

fi(ωi)=q+
i σ(1m(ωi−ωth

i )+r+
i )+q−i σ(−1m(ωi−ωth

i )+r−i ),

where r+
i , r

−
i ∈ Rm are bias vectors with m hidden units

satisfying [r+
i ]j ≤ 0 and [r−i ]j ≤ 0 for all j ∈ [1,m]N,

and q+
i , q

−
i ∈ R1×m are weight vectors. Then, fi(ωi) = 0

for ωi ∈ [ωth
i , ω

th
i ]. Moreover, for any Lipschitz function

gi : R → R satisfying gi(ωi) = 0 for ωi ∈ [ωth
i , ω

th
i ] and

given any compact domain K ⊂ R and ε > 0, there exists
q+
i , q

−
i , r

+
i , r

−
i and m such that |fi(ωi) − gi(ωi)| < ε for

all ωi ∈ K.

The proof of this result uses the definition of ReLU func-
tion and exploits a piece-wise linear approximation similar
to that in Lemma 5.1. Let z := {z+

i , z
−
i , z

+
i , z

−
i }i∈I , c :=

{c+i , c
−
i , c

+
i , c
−
i }i∈I , v := {v+

i , v
−
i }i∈I , q := {q+

i , q
−
i }i∈I ,

r := {r+
i , r

−
i }i∈I and denote φ = {z, c, v, q, r, ξ}. The

following result constructs the distributed neural network
controllers.

Theorem 5.4. (Distributed neural network controllers):
For each i ∈ I, let αi, αi, ω

th
i , ωth

i , and fi be constructed
according to Lemmas 5.1, 5.2 and 5.3, respectively. Un-
der the assumptions of Theorem 4.4, let ui,φ(x, p) =

min{D̃i(ωi − ω∞) + [L̃]iξ
(ωi−ω∞) ,

αi(ωi−ωi)

ωi−ωth
i

+ qi(x, p)} and

ui,φ(x, p) = max{D̃i(ωi − ω∞) + [L̃]iξ
(ωi−ω∞) ,

αi(ωi−ωi)

ωth
i −ωi

+

qi(x, p)}. Then,

ui,φ(x, p)=
σ(ωi−ωth

i )

ωi−ωth
i

[fi(ωi)−σ(fi(ωi)−ui,φ(x, p))]

+
σ(ωth

i −ωi)
ωth
i −ωi

[
fi(ωi)+σ(ui,φ(x, p)−fi(ωi))

]
,

(13)

is a distributed control policy satisfying (12). Furthermore,
any Lipschitz control policy satisfying (12) can be approx-
imated arbitrarily close by (13).

The proof readily follows the universal approximation
results in Lemmas 5.1, 5.2 and 5.3.
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5.3. Learning optimal control policy using RNN

Having parameterized in Theorem 5.4 the search space
identified in Section 4.4, here we describe an approach to
train an optimal control policy adopting the RNN-based
RL framework proposed in [9]. To simulate the trajec-
tories for training the neural network controller (13), we
use a first-order Euler discretization with stepsize ∆t for
problem (5). Let K be the total number of timesteps. The
discrete-time optimization problem is

min
φ

1

K

K−1∑
k=0

γ‖ω(k)− ω∞1n‖2 + ‖uφ(k)‖2 (14a)

s.t. λ(k) = λ(k − 1) +B>ω(k − 1)∆t (14b)

M(ω(k)− ω(k − 1)) =
[
−Dω(k − 1)

−BYb sinλ(k − 1) + uφ(k − 1) + p
]
∆t. (14c)

where uφ = [u1,φ, . . . , un,φ]>. The learning algorithm
works as follows. At the beginning of the training process,
all parameters in φ are randomly generated. Training is
implemented in a batch updating style, where the initial
states ω(0) and λ(0) in each batch are randomly gener-
ated. In each episode, we use the current control policy
uφ to generate state trajectories of length K for all batches
through dynamics (14b),(14c), and compute the loss func-
tion (14a). The trainable parameters φ are updated by
gradient descent on the loss function (14a) and converge
to a local optimum.

Remark 5.5. (Robust policy learning through Lipschitz
regularization): One way to enhance the robustness of the
learned control policy is to add an additional regulariza-
tion term in the cost function to promote the control pol-
icy by a small Lipschitz constant [24]. Here we implement
this Lipschitz-regularized learning by adding an additional
term ρ 1

K−1

∑K−1
k=1 ‖uφ(k)−uφ(k−1)‖2 to (14a), where the

parameter ρ controls the trade-off between robustness and
optimality of the learned control policy. We implement
this reguralization in the simulations below and illustrate
its added robustness against state measurement noise. •

6. Case Study

We conduct a case study to illustrate the performance
of the proposed approach. We consider the IEEE 39-bus
power network and assume each bus represents an aggre-
gate area containing loads and generators. The system
parameters are from [5, 25]. We consider the time horizon
of interest to be T = 50 seconds and bus 38 encounter-
ing a sudden change in power injection during the time
interval (0, 2] seconds, with ∆p38 = −pnom

38 . The nominal
frequency is 60 Hz, and the safe region is set as [59.8, 60.2]
Hz for every bus.

Simulation Setup. We build the RL environment us-
ing TensorFlow 2.7.0 and conduct the training process in
Google Colab on a single TPU with 32 GB memory. We
set the discretization stepsize ∆t at 0.0008 seconds. To

facilitate the training process, we only evaluate the first
10 seconds in each episode, meaning the total number of
stages K in each episode is 12500. For each i ∈ I, ωi(0)
is randomly generated in [59.9, 60.1] Hz, and λ(0) is cal-
culated using power injections randomly generated over
[0.9pnom

i (0), 1.1pnom
i (0)]. The balancing coefficient in the

objective function is γ = 40, and the number of episodes,
the batch size, and the number of neurons m are 150, 50,
20, respectively. We use Adam algorithm [26] to update
parameter φ in each episode with learning rate 0.05.

Baseline for Comparison. We conduct two comparisons
for illustration. The first is to compare our approach to the
methods proposed in [9] and [5]. The controllers in [9] are
parameterized as non-increasing functions passing through
the origin and then trained via RL, and the controllers

in [5] are designed as ui(x, p) = min{0, αi(ωi−ωi)

ωi−ωth
i

+qi(x, p)}

for ωi > ωth
i , ui(x, p) = max{0, αi(ωi−ωi)

ωth
i −ωi

+ qi(x, p)} for

ωi < ωth
i , and ui(x, p) = 0 otherwise, with αi(s) = αi(s) =

2s and ωth
i = 0.1, ωth

i = −0.1 for all i ∈ I. The second is
a comparison of our approach with and without the Lips-
chitz regularization for robustness.

Simulation Results. Fig. 2 illustrates the performance
of the proposed RL-based method, the RL-based method
in [9], and the method in [5] with the same randomly
generated initial states. Table 1 summarizes the com-
parison results. The approach proposed here guarantees
both asymptotic stability and transient safety, while sig-
nificantly reducing the cost. Fig. 3 shows the dynamic
budget allocation under the proposed assignment mech-
anism, validating that the budget for each bus vanishes
when its frequency converges while keeping the summa-
tion of all the budgets equal to zero. In this way, more
nodes can contribute to the transient frequency regulation
while cooperatively minimizing the cost. The proposed
method also achieves faster convergence and smaller tran-
sient fluctuations. Fig. 4 compares the performance of the
proposed method with and without Lipschitz regulariza-
tion in the presence of frequency measurement noise. In
both cases the frequency nadir slightly violates the safety
bound due to the noisy input to controllers. However, the
Lipschitz regularization helps enhance system robustness
by reducing the fluctuations in state and control.

Table 1: Comparison Results

Method Stability Safety Cost
[9] X × 1.1547
[5] X X 2.1652

Ours X X 1.0436

7. Conclusions

We have presented a reinforcement learning approach
to the synthesis of optimal controllers that are distributed
and guarantee the stability and transient safety of power
networks. Leveraging notions of Lyapunov stability and
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Figure 2: Dynamics of the IEEE 39-bus network under the RL-based controller in [9] (top), the controller in [5] (middle), and the proposed
RL-based controller in this paper (bottom).

Figure 3: Budget allocation under the proposed dynamic budget
assignment mechanism for the RL controller.

safety-critical control, we have identified conditions on
the controller design that ensure stability and transient
frequency safety. These constraints incorporate the idea
of endowing some buses with additional design flexibility
through budgets in a way that collectively ensures the sta-
bility of the overall system. We have constructed neural
networks to parameterize the control policies within the
identified search space and employed an RL framework

to learn an optimal controller. Simulations illustrate the
guaranteed stability and transient frequency safety of the
resulting closed-loop system while showing a significant
reduction in the cost. Our future work aims to further
improve the dynamic budget allocation to reduce cost and
transient fluctuation, while incorporating higher-order dy-
namics of generators, inverter-interfaced energy resources,
and their existing control loops.
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