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Abstract

This paper synthesizes anytime algorithms, in the form of continuous-time dynamical systems, to solve monotone variational
inequalities. We introduce three algorithms that solve this problem: the projected monotone flow, the safe monotone flow,
and the recursive safe monotone flow. The first two systems admit dual interpretations: either as projected dynamical systems
or as dynamical systems controlled with a feedback controller synthesized using techniques from safety-critical control. The
third flow bypasses the need to solve quadratic programs along the trajectories by incorporating a dynamics whose equilibria
precisely correspond to such solutions, and interconnecting the dynamical systems on different time scales. We perform a
thorough analysis of the dynamical properties of all three systems. For the safe monotone flow, we show that equilibria
correspond exactly with critical points of the original problem, and the constraint set is forward invariant and asymptotically
stable. The additional assumption of convexity and monotonicity allows us to derive global stability guarantees, as well as
establish the system is contracting when the constraint set is polyhedral. For the recursive safe monotone flow, we use tools
from singular perturbation theory for contracting systems to show KKT points are locally exponentially stable and globally
attracting, and obtain practical safety guarantees. We illustrate the performance of the flows on a two-player game example
and also demonstrate the versatility for interconnection and regulation of dynamical processes of the safe monotone flow in
an example of a receding horizon linear quadratic dynamic game.

Key words: Variational inequalities, safety-critical control, projected dynamical systems, parametric optimization,
optimization-based controller synthesis

1 Introduction

Variational inequalities encompass a wide range of prob-
lems arising in operations research and engineering applica-
tions, including minimizing a function, characterizing Nash
equilibria of a game, and seeking saddle points of a func-
tion. In this paper, we synthesize continuous-time flows
whose trajectories converge to the solution set of a mono-
tone variational inequality while respecting the constraints
at all times.
Our motivation for considering this problem is two-fold.
First, iterative algorithms in numerical computing can be
interpreted as dynamical systems. This opens the door for
the use of controls and system-theoretic tools to charac-
terize their qualitative and quantitative properties, e.g.,
stability of solutions, convergence rate, and robustness to
disturbances. In turn, the availability of such character-
ization sets the stage for developing sample-data imple-
mentations and systematically designing new algorithms
equipped with desired properties.
The second motivation stems from problems where the
solution to the variational inequality is used to regulate a
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physical process modeled as a dynamically evolving plant
(e.g., providing setpoints, specifying optimization-based
controllers, steering the plant toward an optimal steady-
state). This type of problem arises in multiple application
areas, including power systems, network congestion con-
trol, and traffic networks. In these settings, the algorithm
used to solve the variational inequality is interconnected
with a plant, and thus the resulting coupled system natu-
rally lends itself to system-theoretic analysis and design.
We are particularly interested in situations where the
problem incorporates constraints which, when violated,
would threaten the safe operation of the physical system.
In such cases, it is desirable that the algorithm is anytime,
meaning that it is guaranteed to return a feasible point
even when terminated before it has converged to a solu-
tion. The anytime property ensures that the specifications
conveyed to the plant remain feasible at all times.
Related Work: The study of the interplay between
continuous-time dynamical systems and variational in-
equalities has a rich history. In the context of optimization,
classical references include [7, 16, 32]. For general varia-
tional inequalities, flows solving them can be obtained
through differential inclusions involving monotone set-
valued maps, originally introduced in [15]. These systems
have been equivalently described as a projected dynam-
ical systems [37] and complementarity systems [17, 31].
One limitation of these systems is that they are, in gen-
eral, discontinuous, which poses challenges both for their
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theoretical analysis and practical implementation.
The interconnection of optimization algorithms with phys-
ical plants has attracted much attention recently [20, 30].
The specific setting where the algorithm optimizes the
steady-state of the plant is typically referred to as online
feedback optimization and has been studied in continuous
time in the context of power systems [23,34], network con-
gestion control [36], and traffic networks [11], as well as
discrete time in [29].
Recently this framework has also been generalized to game
scenarios [1,10], and settings where the dynamics are cou-
pled with a time-varying variational inequality [43]. A com-
plementary approach uses extremum seeking control [6],
which has been generalized to the setting of games in [28].
Extremum seeking differs from the methods introduced
here in that they are typically zeroth-order methods, and
do not offer exact stability guarantees. The recent work [45]
considers safety guarantees for extremum seeking control
for the special case of a single inequality constraint. In fact,
the proposed algorithm can be understood as an approxi-
mation of the safe gradient flow in [3], which is a precursor
for constrained optimization of the algorithms proposed
here for constraint sets parameterized by multiple inequal-
ity and equalities.
To synthesize our flows, we employ techniques from safety-
critical control [4, 19], which refers to the problem of de-
signing a feedback controller that ensures that the state of
the system satisfies certain constraints. The problem of en-
suring safety is typically formalized by specifying a set of
states where the system is said to remain safe, and ensuring
the safe set is forward invariant. The work [12] reviews set
invariance in control. A popular technique for synthesizing
safe controllers uses the concept of control barrier func-
tions (CBFs), see [5,44,46] and references therein, to spec-
ify optimization-based feedback controllers which “filter” a
nominal system to ensure it remains in the safe set. Here,
we apply this strategy to synthesize anytime algorithms,
viewing the constraint set as a safety set and the mono-
tone operator of the variational inequality as the nominal
system. This view has connections to projected dynamical
systems, whose relationship with CBF-based control design
has recently been explored in [25], and leads to the alter-
native “projection-based” interpretation of the projected
monotone flow and safe monotone flow proposed here.
Statement of Contributions: We consider the synthesis of
continuous-time dynamical systems solving variational in-
equalities while respecting the constraints at all times, with
a view toward applications where the flow is used to reg-
ulate a physical process through interconnection with a
dynamically evolving plant. We discuss three flows that
solve this problem. The projected monotone flow is already
known, but we provide a novel control-theoretic interpre-
tation as a control system whose closed-loop behavior is as
close as possible to the monotone operator while still be-
longing to the tangent cone of the constraint set. The safe
monotone flow can be interpreted either as a control sys-
tem with a feedback controller synthesized using techniques
from safety-critical control or as an approximation of the
projected monotone flow. The latter interpretation relies
on the novel notion of restricted tangent set, which gener-
alizes the usual concept of tangent cone from variational
geometry. We show that equilibria correspond exactly with
critical points of the original problem, establish existence

and uniqueness of solutions, and characterize the regular-
ity properties of flow. We also show that the constraint set
is forward invariant and asymptotically stable, and derive
global stability guarantees under the additional assump-
tion of convexity and monotonicity. Our technical analysis
relies on a suite of Lyapunov functions to establish stability
properties with respect to the constraint set and the whole
state space. When the constraint set is polyhedral, we es-
tablish that the system is contracting and exponentially
stable. Finally, the recursive safe monotone flow bypasses
the need for continuously solving quadratic programs along
the trajectories by incorporating a dynamics whose equi-
libria precisely correspond to such solutions, and intercon-
necting the dynamical systems on different time scales. Us-
ing tools from singular perturbation theory for contract-
ing systems, we show that for variational inequalities with
polyhedral constraints, the KKT points are locally expo-
nentially stable and globally attracting, and obtain prac-
tical safety guarantees. We compare the three flows on a
simple two-player game and also demonstrate how the safe
monotone flow can be interconnected with dynamical pro-
cesses on an example of a receding horizon linear quadratic
dynamic game.
The algorithms introduced here generalize the safe gradi-
ent flow, a continuous-time system proposed in our pre-
vious work [3] (in parallel, [29] introduced a discrete-time
implementation of a simplified version of it). With respect
to the safe gradient flow, our treatment extends the results
in three key ways. First, we consider variational inequal-
ities, rather than just constrained optimization problems,
making the flows introduced here applicable to a much
broader range of problems. Second, with assumptions of
monotonicity and convexity of the constraints, we obtain
global stability and convergence results, rather than local
stability results. Third, the rigorous characterization of the
contractivity properties of the safe monotone flow paves the
way for its interconnection with other dynamically evolv-
ing processes. In fact, the proposed recursive safe monotone
flow critically builds on this analysis by leveraging different
timescales and singular perturbation theory.

2 Preliminaries

We review here basic notions from variational inequalities,
projections, and set invariance. Readers familiar with these
concepts can safely skip this section.

2.1 Notation

Let R denote the set of real numbers. For c ∈ R, [c]+ =
max{0, c}. For x ∈ Rn, xi denotes the ith component and
x−i denotes all components of x excluding i. For v, w ∈ Rn,
v ≤ w (resp. v < w) denotes vi ≤ wi (resp. vi < wi)
for i ∈ {1, . . . , n}. We let ∥v∥ denote the Euclidean norm.
We write Q ⪰ 0 (resp., Q ≻ 0) to denote Q is positive
semidefinite (resp., Q is positive definite). Given Q ⪰ 0,
we let ∥x∥Q =

√
x⊤Qx. For a symmetric Q, λmin(Q) and

λmax(Q) denote the minimum and maximum eigenvalues
of Q, resp. Given C ⊂ Rn, the distance of x ∈ Rn to
C is dist(x,C) = infy∈C ∥x− y∥. We let C, int(C), and
∂C denote its closure, interior, and boundary, resp. The
projection map onto C is ΠC : Rn ⇒ C, where ΠC(x) ={
y ∈ C | ∥x− y∥ = dist(x, C)

}
. Given a closed and convex

set C ⊂ Rn, the normal cone to C at x ∈ Rn is NC(x) =
{d ∈ Rn | d⊤(x′ − x) ≤ 0, ∀x′ ∈ C} and the tangent cone
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to C at x is TC(x) = {ξ ∈ Rn | d⊤ξ ≤ 0, ∀d ∈ NC(x)}.
Given g : Rn → R, we denote its gradient by ∇g.
For g : Rn → Rm, ∂g(x)

∂x denotes its Jacobian. For
I ⊂ {1, 2, . . . ,m}, we denote by ∂gI(x)

∂x the matrix whose
rows are {∇gi(x)⊤}i∈I . Given a function f : Rn → R, we
say it is directionally differentiable if for all ξ ∈ Rn, the
following limit exists

f ′(x; ξ) = lim
h→0+

f(x+ hξ)− f(x)

h
.

Given a vector field G : Rn → Rn and a function V : Rn →
R, the Upper-right Dini derivative of V along G is

D+
G V (x) = lim sup

h→0+

1

h
(V (Φh(x))− V (x)) ,

where Φh is the flow map corresponding to ẋ = G(x). When
V is directionally differentiable D+

G V (x) = V ′(x,G(x)) and
when V is differentiable, then D+

G V (x) = ∇V (x)⊤G(x).
2.2 Variational Inequalities

Here we review the basic theory of variational inequalities
following [27]. Let F : Rn → Rn be a map and C ⊂ Rn

a set of constraints. A variational inequality refers to the
problem of finding x∗ ∈ C such that

(x− x∗)⊤F (x∗) ≥ 0, ∀x ∈ C. (1)

We use VI(F, C) to refer to the problem (1) and SOL(F, C)
to denote its set of solutions. Variational inequalities pro-
vide a framework to study many different analysis and op-
timization problems, including
• Solving the nonlinear equation F (x∗) = 0, which corre-

sponds to VI(F,Rn);
• Minimizing the function f : Rn → R subject to the

constraint that x ∈ C, which corresponds to VI(∇f, C);
• Finding saddle points of the function ℓ : Rn × Rm → R

subject to the constraints that x1 ∈ X1 and x2 ∈ X2,
which corresponds to VI([∇x1ℓ;−∇x2ℓ], X1 ×X2).
• Finding the Nash equilibria of a game with N agents,

where the ith agent wants to minimize the cost
Ji(xi, x−i) subject to the constraint xi ∈ Xi, which
corresponds to VI(F, C), where F is the pseudogradient
operator defined by F (x) = (∇x1

J1(x), . . . ,∇xN
JN (x))

and C = X1 ×X2 × · · · ×XN .
The map F : Rn → Rn is monotone if (x1− x2)

⊤(F (x1)−
F (x2)) ≥ 0, for all x1, x2 ∈ Rn, and F is µ-strongly mono-
tone if there exists µ > 0 such that (x1 − x2)

⊤(F (x1) −
F (x2)) ≥ µ ∥x1 − x2∥2, for all x1, x2 ∈ Rn. When F is a
gradient map, i.e. F = ∇f for some function f : Rn → R,
then monotonicity (resp. µ-strong monotonicity) is equiv-
alent to convexity (resp. strong convexity) of f . When F is
monotone and C is convex, VI(F, C) is a monotone varia-
tional inequality.
In order to provide a characterization of the solution set
SOL(F, C), we need to introduce a more explicit description
of the set of constraints. Suppose that g : Rn → Rm and h :
Rn → Rk are continuously differentiable and C is described
by inequality constraints and affine equality constraints,

C = {x ∈ Rn | g(x) ≤ 0, h(x) = Hx− ch = 0}, (2)

where A ∈ Rk×n and b ∈ Rk. For x ∈ Rn, we denote the
active constraint set I0(x) = {i ∈ [1,m] | gi(x) = 0},
inactive constraint set I−(x) = {i ∈ [1,m] | gi(x) < 0},
and constraint violation set I+(x) = {i ∈ [1,m] | gi(x) >
0}. The problem (1) satisfies the constant-rank condition
at x ∈ C if there exists an open set U containing x such that
for all I ⊂ I0(x), the rank of {∇gi(y)}i∈I ∪ {∇hj(y)}kj=1

remains constant for all y ∈ U . The problem (1) satisfies the
Mangasarian-Fromovitz Constraint Qualification (MFCQ)
condition at x ∈ C if {∇hj(x)}ki=1 are linearly independent,
and there exists ξ ∈ Rn such that ∇gi(x)⊤ξ < 0 for all
i ∈ I0(x), and ∇hj(x)

⊤ξ = 0 for all j ∈ {1, . . . , k}. If
MFCQ holds at x∗ ∈ C, then, if x∗ satisfies (1), there exists
(u∗, v∗) ∈ Rm × Rk such that

F (x∗) +

m∑
i=1

u∗
i∇gi(x∗) +

k∑
j=1

v∗j∇hj(x
∗) = 0 (3a)

g(x∗) ≤ 0 (3b)
h(x∗) = 0 (3c)

u∗ ≥ 0 (3d)
(u∗)⊤g(x∗) = 0. (3e)

Equations (3) are called the KKT conditions. A point
(x∗, u∗, v∗) satisfying them is a KKT triple and the pair
(u∗, v∗) is a Lagrange multiplier. We denote the set of KKT
triples by KKT(F, C). For monotone variational inequali-
ties, when MFCQ holds at x∗, then the KKT conditions
are both necessary and sufficient for x∗ ∈ SOL(F, C).
When F is monotone SOL(F, C) is closed and convex. If
F is additionally µ-strongly monotone, then the set of
solutions is a singleton.

2.3 Controller Synthesis for Set Invariance

We review here notions from the theory of set invariance
for control systems following [12] and discuss methods for
synthesizing feedback controllers that ensure it. Consider
a control-affine system

ẋ = F(x, µ) = F0(x) +

r∑
i=1

µiFi(x), (4)

with Lipschitz-continuous vector fields Fi : Rn → Rn, for
i ∈ {0, . . . , r}, and a set U ⊂ Rm of valid control inputs µ.
Let C ⊂ Rn be a constraint set of the form (2) to which we
want to restrict the evolution of the system. We consider
the problem of designing a feedback controller k : Rn → U
such that C is forward invariant with respect to the closed-
loop dynamics ẋ = F(x, k(x)). In applications, C often
corresponds to the set of states for which the system can
operate safely. For this reason, we refer to C as the safety set,
and call the system safe under a controller k if C is forward
invariant. A controller ensuring safety is safeguarding. We
discuss two optimization-based strategies for synthesizing
safeguarding controllers.

2.3.1 Safeguarding Control via Projection
The first strategy ensures the closed-loop dynamics
lie in the tangent cone of the safety set. If MFCQ
holds at x ∈ C, the tangent cone can conveniently be
expressed as, cf. [41, Theorem 6.31], TC(x) = {ξ ∈
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Rn
∣∣∣∂h(x)∂x ξ = 0, ∂gI(x)

∂x ξ ≤ 0}. We then define the set-
valued map Kproj : Rn ⇒ U which characterizes the set
of inputs that ensure the system remains inside the safety
set. The set has the form,

Kproj(x)=
{
µ ∈ U | D+

F0
gi(x)+

r∑
ℓ=1

µℓD
+
Fℓ
gi(x) ≤ 0, i ∈ I(x),

D+
F0
hj(x) +

r∑
ℓ=1

µℓD
+
Fℓ
hj(x) = 0, j = 1, . . . , k

}
.

Any feedback k : C → U such that k(x) ∈ Kproj(x) for
x ∈ C renders C forward invariant.
Lemma 2.1 (Projection-based Safeguarding Feed-
back) Consider the system (4) with safety set C and sup-
pose that Kproj(x) ̸= ∅ for all x ∈ C. Then, the feedback
controller k : C → U is safeguarding if k(x) ∈ Kproj(x) for
all x ∈ C and the closed-loop system ẋ = F(x, k(x)) admits
a unique solution for all initial conditions.

PROOF. By hypothesis, the closed-loop system satisfies
F(x, k(x)) ∈ TC(x) for all x ∈ C. Then, C is forward invari-
ant by Nagumo’s Theorem [12, Theorem 3.1]. 2

To synthesize a safeguarding controller, we propose a strat-
egy where k(x) at each x ∈ C is expressed as the solution
to a mathematical program. Because Kproj(x) is defined
in terms of affine constraints on the control input µ, we
can readily express a feedback satisfying the hypotheses of
Lemma 2.1 in the form of a mathematical program,

k(x) ∈ argmin
µ∈Kproj(x)

J(x, µ), (5)

for an appropriate choice of cost function J : C × U → R.
In general, care must be taken to ensure that the set Kproj
is nonempty and that the controller k in (5) satisfies appro-
priate regularity conditions to ensure existence and unique-
ness for solutions of the resulting closed-loop dynamics.
Even if these properties hold, the approach has several lim-
itations: the controller is ill-defined for initial conditions
lying outside the safety set and the closed-loop system in
general is nonsmooth.

2.3.2 Safeguarding Control via Control Barrier Functions
The second strategy for synthesizing safeguarding con-
trollers addresses the limitations of projection-based
methods. The approach relies on the notion of a vec-
tor control barrier functions [3, 4]. Given a set X ⊃ C
and set of valid control inputs U ⊂ Rm, we say the pair
(g, h) : Rn × Rk → Rm is a (m, k)-vector control barrier
function (VCBF) for C on X relative to U if there exists
α > 0 such that the map Kcbf,α : Rn ⇒ U given by

Kcbf,α(x)=
{
µ ∈ U | D+

F0
gi(x)+

r∑
ℓ=1

µℓD
+
Fℓ
gi(x)+αgi(x) ≤ 0,

D+
F0
hj(x) +

r∑
ℓ=1

µℓD
+
Fℓ
hj(x) + αhj(x) = 0,

1 ≤ i ≤ m, 1 ≤ j ≤ k
}
,

takes nonempty values for all x ∈ X. Similar to the previ-
ous strategy, the set Kcbf,α characterizes the set of inputs
which ensure that the state remains inside the safe set. Un-
like the previous strategy, this assurance is implemented
gradually: the parameter α corresponds to how tolerant we
are of trajectories approaching the boundary of the safety
set, with smaller values of α corresponding to situations
where the trajectories beginning in the interior are more
aggressively controlled. For α = ∞, the set corresponds
to Kproj.
When m = 1 and k = 0, a vector control barrier func-
tion is equivalent to the usual notion of a control barrier
function [4, Definition 2]. The generalization provided by
VCBFs allows us to consider a broader class of safety sets.
Lemma 2.2 (VCBF-based Safeguarding Feedback)
Consider the system (4) with safety set C and suppose (g, h)
is a vector control barrier function for C on X relative to
U . Then, the feedback controller k : X → U is safeguarding
and ensures asymptotic stability of C on X if k(x) ∈ Kα(x)
for all x ∈ X and the closed-loop system ẋ = F(x, k(x))
admits a unique solution for all initial conditions.
To synthesize a safeguarding feedback controller, one can
pursue a design using a similar approach to Section 2.3.1.
Given a cost function J : X×U → R, we let k(x) solve the
following mathematical program:

k(x) ∈ argmin
µ∈Kcbf,α(x)

J(x, µ). (6)

Similarly to the case of projection-based safeguarding feed-
back control, care must be taken to verify the existence
and uniqueness of solutions to the closed-loop system, as
well as to handle situations where (6) does not have unique
solutions. If these properties hold, then the control design
addresses the challenges of projection-based methods. In
particular, we can ensure that a controller of the form (6)
is well-defined outside the safety set and results in closed-
loop system with continuous solutions, under mild condi-
tions which we discuss in the following sections.

3 Problem Formulation

Consider a variational inequality VI(F, C) defined by a con-
tinuously differentiable map F : Rn → Rn and a convex set
C of the form (2), where g : Rn → Rm is continuously differ-
entiable. Our goal is to synthesize a dynamical system that
solves the variational inequality. We formalize this next.
Problem 1 (Anytime solver of variational inequal-
ity) Design a dynamical system, ẋ = G(x), which is well
defined on a set X containing C such that
(i) Trajectories of the system converge to SOL(F, C);
(ii) C is forward invariant;
(iii) Trajectories of the system with initial condition outside

C converge to C.
Item (i) ensures that the dynamical system can be viewed
as an algorithm which solves (1): solutions can be obtained
by simulating system trajectories and taking the limit as
t→∞ of x(t). Item (ii) ensures that this algorithm is any-
time, meaning that even if terminated early, it is guaranteed
to return a feasible solution provided the initial condition
is feasible. Item (iii) accounts for infeasible initial condi-
tions, and ensures asymptotic safety. Both the expression
of the algorithm in the form of a continuous-time dynami-
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cal system and the anytime property are particularly useful
for real-time applications, where the algorithm might be
interconnected with other physical processes – e.g., when
the algorithm output is used to regulate a physical plant
and constraints of the optimization problem ensure the safe
operation of the plant.
In the following, we introduce three dynamics to solve Prob-
lem 1. The first, synthesized using the technique outlined
in Section 2.3.1, is the projected monotone flow. This dy-
namics is already well-known but we reinterpret it here
through the lens of control theory. The next two, synthe-
sized using the technique outlined in Section 2.3.2, are the
safe monotone flow and the recursive safe monotone flow.
Both dynamics are entirely novel.

4 Projected Monotone Flow

In this section, we discuss our first solution to Problem 1,
in the form of the projected monotone flow. We show that
the system can be implemented in two equivalent ways:
either as a control system with a feedback controller de-
signed using the strategy outlined in Section 2.3.1, or as
a projected dynamical system. In fact, this system admits
many other equivalent descriptions, for example in terms of
monotone differential inclusions, or complementarity sys-
tems [8, 17, 31], and its properties have been extensively
studied [37]. However, we focus here on the control-based
and projection-based forms. In the following sections we
describe in detail the derivation of each implementation,
show they are equivalent, and discuss the properties of the
resulting flow regarding safety and stability.

4.1 Control-Based Implementation

Our design strategy originates from the observation that,
when F is monotone, the system ẋ = −F (x) finds solu-
tions to the unconstrained variational inequality VI(F,Rn).
However, trajectories flowing along this dynamics might
leave the constraint set C. This leads us to consider the
control-affine system:

ẋ = F(x, u, v)

= −F (x)−
m∑
i=1

ui∇gi(x)−
k∑

j=1

vj∇hj(x).
(7)

Here, we have augmented the system with inputs from the
admissible set U = Rm

≥0 × Rk to modify the flow of the
original drift −F to account for the constraints in a way
that ensures that the solutions to (7) stay inside of or ap-
proach C. The idea is that if the constraint gi(x) ≤ 0 is in
danger of being violated, the corresponding input ui can be
increased to ensure trajectories continue to satisfy it. Like-
wise, the input vj can be increased or decreased to ensure
the corresponding constraint hj(x) = 0 is satisfied along
trajectories.
Our design proceeds by thinking of C as a safety set for the
system and using the approach outlined in Section 2.3.1
to synthesize a safeguarding feedback controller u = k(x).
Assuming that MFCQ holds for all x ∈ C, Kproj : Rn ⇒
Rm

≥0 × Rk takes the form

Kproj(x) =
{
(u, v) ∈ Rm

≥0 × Rk |

− ∂gI
∂x

F (x)− ∂gI
∂x

∂g

∂x

⊤
u− ∂gI

∂x

∂h

∂x

⊤
v ≤ 0,

− ∂h

∂x
F (x)− ∂h

∂x

∂g

∂x

⊤
u− ∂h

∂x

∂h

∂x

⊤
v = 0

}
. (8)

The following result states that the set of admissible con-
trols is nonempty. We omit its proof for space reasons, but
note that it readily follows from Farka’s Lemma [40].
Lemma 4.1 (Projection onto Tangent Cone is Fea-
sible) If x ∈ C and MFCQ holds at x, then Kproj(x) ̸= ∅.
We then use the feedback controller

k(x) ∈ argmin
(u,v)∈Kproj(x)

J(x, u, v), (9)

where we set the objective function to be

J(x, u, v) =
1

2

∥∥ m∑
i=1

ui∇gi(x) +
k∑

j=1

vj∇hj(x)
∥∥2. (10)

This function measures the magnitude of the “modification”
of the drift term in (7). Thus, the QP-based controller (9)
has the interpretation, at each x, of finding the control
input such that the closed-loop system dynamics are as
close as possible to −F (x), while still being in TC(x). In
general, the program given by (9) does not have unique
solutions. Despite this, we show below that the closed-loop
dynamics of (7) is well defined regardless of which solution
to (5) is chosen. We refer to it as the projected monotone
flow and denote it by P.

4.2 Projection-Based Implementation

The second implementation of the projected monotone flow
consists of projecting −F (x) onto the tangent cone of the
constraint set. In general, the tangent cone does not have
a representation that allows us to compute the projection
easily. However, when the appropriate constraint qualifica-
tion condition holds, the tangent cone admits a convenient
parameterization which allows for the projection to be im-
plemented as a quadratic program. Let x ∈ C and suppose
that MFCQ holds at x. It follows that the tangent cone can
be parameterized as

TC(x) =
{
ξ ∈ Rn

∣∣∣∣∂h(x)∂x
ξ = 0,

∂gI0(x)

∂x
ξ ≤ 0

}
. (11)

The projection-based implementation of the projected
monotone flow takes then the following form:

ẋ = ΠTC(x)(−F (x))

= argmin
ξ∈Rn

1

2
∥ξ + F (x)∥2

subject to
∂gI0(x)

∂x
ξ ≤ 0,

∂h(x)

∂x
ξ = 0.

(12)

The projection onto the tangent ensures by Nagumo’s The-
orem [12, Theorem 3.1] that C is forward invariant.

4.3 Properties of Projected Monotone Flow

Here, we lay out the properties of the projected monotone
flow. We begin by establishing the equivalence between the
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control- and projection-based implementations. We then
discuss existence and uniqueness of solutions, and finally
the stability and safety properties of the dynamics.

4.3.1 Equivalence of Control-Based and Projection-Based
Implementations

Equivalence follows directly from the properties of the tan-
gent cone, as we show next.
Proposition 4.2 (Equivalence of Control-Based
and Projected-Based Implementations) Assume
MFCQ holds at x ∈ C and let (u, v) be any solution
to (9) (note that P(x) = F(x, u, v)). Then, P(x) =
ΠTC(x)(−F (x)).

PROOF. Let (u, v) be any solution to (9) and ξ =
ΠTC(x)(−F (x)). Then F(x, u, v) ∈ TC(x), so it follows
immediately by optimality of ξ that

∥ξ + F (x)∥2 ≤ ∥F(x, u, v) + F (x)∥2 .

Next, because ξ is given by a projection, there exists w ∈
NC(x) such that ξ + F (x) + w = 0, see e.g., [17, Corollary
2]. If MFCQ holds at x ∈ C, by [41, Theorem 6.14], there
exists (ū, v̄) such that w can be written as

w =

m∑
i=1

ūi∇gi(x) +
k∑

j=1

v̄j∇hj(x), ū ≥ 0, ū⊤g(x) = 0.

Combining this expression with the fact that ξ = −F (x)−
w ∈ TC(x) and using the parameterization of the tangent
cone in (11), we deduce that (ū, v̄) ∈ Kproj(x). By optimal-
ity of (u, v),

∥ξ + F (x)∥2 =
∥∥ m∑

i=1

ūi∇gi(x) +
k∑

j=1

v̄j∇hj(x)
∥∥2 ≥

∥∥ m∑
i=1

ui∇gi(x)+
k∑

j=1

vj∇hj(x)
∥∥2 = ∥F(x, u, v)+F (x)∥2 .

But since the projection onto the tangent cone must be
unique, we conclude ξ = F(x, u, v). 2

The value of Proposition 4.2 stems from showing that
safety-critical control can be used to systematically de-
sign algorithms that solve variational inequalities. Though
the control strategy pursued in Section 4.1 results in a
known flow, this sets up the basis for employing other
design strategies from safety-critical control to yield novel
methods, as we will show later.

4.3.2 Existence and Uniqueness of Solutions
The projected monotone flow is discontinuous, and hence
one must consider notions of solutions beyond the classical
ones, see e.g., [21]. Here, we consider Carathéodory solu-
tions, which are absolutely continuous functions that sat-
isfy (12) almost everywhere. The existence and uniqueness
of solutions for all initial conditions follows readily from [8,
Chapter 3.2, Theorem 1(i)].

4.3.3 Safety and Stability of Projected Monotone Flow
We now show that the projected monotone flow is safe,
meaning that the constraint set C is forward invariant, and
the solution set SOL(F, C) is stable. Forward invariance of
C follows directly from Nagumo’s Theorem. The equilib-
ria of the projected monotone flow correspond to solutions
to VI(F, C). Finally, stability of a solution x∗ can be cer-
tified using the Lyapunov function V (x) = 1

2 ∥x− x∗∥2,
as a consequence of [8, Chapter 3.2, Theorem 1(ii)]. These
properties are summarized in the following result.
Theorem 4.3 (Safe and Stability Properties of Pro-
jected Monotone Flow) Let C be convex and suppose
MFCQ holds everywhere on C. The following hold for the
projected monotone flow:
(i) C is forward invariant;
(ii) x∗ is an equilibrium of the projected monotone flow if

and only if x∗ ∈ SOL(F, C);
(iii) If x∗ ∈ SOL(F, C) and F is monotone, then x∗ is glob-

ally Lyapunov stable relative to C;
(iv) If F is µ-strongly monotone, then the projected mono-

tone flow is contracting at rate µ. In particular, the
unique solution x∗ ∈ SOL(F, C) is globally exponen-
tially stable relative to C.

5 Safe Monotone Flow

In this section, we discuss a second solution to Problem 1,
which results in an entirely novel flow, termed safe mono-
tone flow. Similar to the projected monotone flow, this sys-
tem admits two equivalent implementations: either as a
control-system with a safeguarding feedback controller or
as a projected dynamical system.

5.1 Control-Based Implementation

We start with the control system (7) with the admissible
control set U = Rm

≥0 × Rk, viewing C as a safety set, and
design a safeguarding controller. We synthesize this con-
troller using the function (g, h) as a VCBF, following the
approach outlined in Section 2.3.2.
Letting α > 0 be a parameter, the set of control inputs
ensuring safety is given by

Kcbf,α(x) =
{
(u, v) ∈ Rm

≥0 × Rk
∣∣∣ (13)

− ∂g

∂x
F (x)− ∂g

∂x

∂g

∂x

⊤
u− ∂g

∂x

∂h

∂x

⊤
v ≤ −αg(x)

− ∂h

∂x
F (x)− ∂h

∂x

∂g

∂x

⊤
u− ∂h

∂x

∂h

∂x

⊤
v = −αh(x)

}
.

The next result shows that this set is nonempty on an open
set containing the constraint set.
Lemma 5.1 (Vector Control Barrier Function for
(7)) Assume MFCQ holds for all x ∈ C. Then there exists
an open set X ⊃ C on which ϕ = (g, h) is a vector-control
barrier function of (7) for C, on X, relative to Rm

≥0 × Rk.

The proof of this result is identical to [3, Lemma 4.1] and we
omit it for brevity. By Lemma 5.1, the feedback controller
(u, v) = k(x) where

k(x) ∈ argmin
(u,v)∈Kcbf,α(x)

J(x, u, v), (14)
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(a) (b)

Fig. 1. Illustration of the notion of tangent cone, and
α-restricted tangent set. The gray-shaded region represents the
set C. The colored regions depict either type of set, which con-
sists of vectors centered various points xi. The dashed border
indicates directions in which the magnitude of vectors in the
set are unbounded. (a) The α-restricted tangent set. Note that
the set is well-defined at x2 ̸∈ C, however because the region
does not overlap with the point x2, the set T

(α)
C (x2) does not

contain any zero vectors, and all vectors point strictly toward
the feasible set. (b) The tangent cone. Note that the tangent
cone is not well defined at points outside C.

and J is given by (10), is well defined on X. This controller
has the same interpretation as before: determining the con-
trol input belonging to Kcbf,α(x) such that the closed-loop
system dynamics are as close as possible to −F (x). Simi-
lar to the case with projection-based methods, the problem
(6) does not necessarily have unique solutions. However,
we show below that the closed-loop system is well-defined
regardless of which solution is chosen. We refer to it as the
safe monotone flow with safety parameter α, denoted Gα.

5.2 Projection-Based Implementation

Here we describe the implementation of the safe monotone
flow as a projected dynamical system. Similar to the pro-
jected monotone flow, the projected system is obtained by
projecting−F (x) onto a set-valued map. However, because
the projection onto the tangent cone is in general discontin-
uous as a function of the state, we replace the tangent cone
with the α-restricted tangent set, denoted T

(α)
C , defined as

T
(α)
C (x) =

{
ξ ∈ Rn |

∂g(x)

∂x
ξ ≤ −αg(x), ∂h(x)

∂x
ξ = −αh(x)

}
.

(15)

Figure 1 illustrates this definition. This set can be inter-
preted as an approximation of the usual tangent cone, but
differs in several key ways. First, the restricted tangent set
is not a cone, meaning that vectors in T

(α)
C (x) cannot be

scaled arbitrarily: in certain direction, the magnitude of
vectors in T

(α)
C (x) is restricted. An important property of

T
(α)
C (x) is that, even though the tangent cone is undefined

for x ̸∈ C, this is not the case for the restricted tangent set.
In fact, it can be shown that T

(α)
C takes nonempty values

on an open set containing C. This property allows for the
safe monotone flow to be well-defined for infeasible initial
conditions. The next result summarizes properties of the
α-restricted tangent set.
Proposition 5.2 (Properties of α-Restricted Tan-
gent Set) Assume MFCQ holds for all x ∈ C. The set-
valued map T

(α)
C : Rn ⇒ Rn satisfies:

(i) T
(α)
C (x) is convex for all x ∈ Rn;

(ii) For any fixed x ∈ C, the set T (α)
C (x) satisfies MFCQ at

all ξ ∈ T
(α)
C (x).

(iii) There exists an open set X containing C such that
T

(α)
C (x) ̸= ∅ for all x ∈ X;

(iv) If x ∈ C, then T
(α)
C ⊂ TC(x).

PROOF. We first observe that (i) follows from the fact
that the constraints characterizing T

(α)
C (x) are affine in the

variable ξ. We prove (ii) using the same strategy as [3,
Lemma 4.5], which we sketch here. If MFCQ holds at x ∈ C,
then the inequalities defining (15) satisfy Slater’s condi-
tion [14, Chapter 5.2.3] at x and therefore MFCQ holds for
all ξ ∈ T

(α)
C (x). To show (iii), we note that Slater’s con-

dition implies that the affine constraints parameterizing
T

(α)
C (x) are regular [39, Theorem 2], meaning that the sys-

tem remains feasible with respect to perturbations. Since
T

(α)
C (x) is nonempty for all x ∈ C, it follows that there exists

an open set X containing C such that T (α)
C (x) is nonempty

for all x ∈ X. Finally, (iv) follows from the definition of the
tangent cone. 2

Using the α-restricted tangent set, we can define the pro-
jected dynamical system

ẋ = Π
T

(α)

C (x)
(−F (x))

= argmin
ξ∈Rn

1

2
∥ξ + F (x)∥2

subject to
∂g(x)

∂x
ξ ≤ −αg(x)

∂h(x)

∂x
ξ = −αh(x).

(16)

Similar to the projected monotone flow, the projection op-
eration ensures that the trajectories of the system remain
in the safety set. However, as we show next, the advantages
of projecting onto the restricted tangent cone is that the
system is well defined for infeasible initial conditions, and
trajectories of the system are smooth.

5.3 Properties of Safe Monotone Flow

We now discuss the properties of the safe monotone flow.
We begin by establishing the equivalence of the control-
based and projection-based implementations. Next, we dis-
cuss its stability and safety properties.

5.3.1 Equivalence of Control-Based and Projection-Based
Implementations

We establish here that the control-based and projection-
based implementations of the safe monotone flow are equiv-
alent. The next result states that the closed-loop dynamics
resulting from the implementation of (6) over (7) is equiv-
alent to the projection onto T

(α)
C (x). The structure of the

proof mirrors that of Proposition 4.2.
Proposition 5.3 (Equivalence of Control-Based
and Projection-Based Implementations) Assume
MFCQ holds for everywhere on C and let X ⊂ Rn be an
open set containing C on which Kcbf,α takes nonempty val-
ues. Let (u, v) be any solution to (14) at x ∈ X (note that
Gα(x) = F(x, u, v)). Then, Gα(x) = Π

T
(α)

C (x)
(−F (x)).
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PROOF. Let (u, v) be any solution to (14) and ξ =

Π
T

(α)

C (x)
(−F (x)). Then F(x, u, v) ∈ T

(α)
C (x), so it fol-

lows immediately by optimality of ξ that ∥ξ + F (x)∥2 ≤
∥F(x, u, v) + F (x)∥2. Next, because ξ is given by a projec-
tion, there exists w ∈ NT (ξ), where T = T

(α)
C (x) such that

ξ + F (x) + w = 0, see e.g., [17, Corollary 2], and where

w =

m∑
i=1

ūi∇gi(x) +
k∑

j=1

v̄j∇hj(x), ū ≥ 0,

ū⊤(∇g(x)⊤ + αg(x)) = 0.

Combining this expression with the fact that ξ = −F (x)−
w ∈ T

(α)
C (x) and using the definition of the α-restricted

tangent cone, we deduce that (ū, v̄) ∈ Kcbf,α(x). By opti-
mality of (u, v), we have

∥ξ + F (x)∥2 =
∥∥ m∑

i=1

ūi∇gi(x) +
k∑

j=1

v̄j∇hj(x)
∥∥2 ≥

∥∥ m∑
i=1

ui∇gi(x) +
k∑

j=1

vj∇hj(x)
∥∥2=∥F(x, u, v) + F (x)∥2 .

But since the projection onto the α-restricted tangent cone
must be unique, we conclude ξ = F(x, u, v). 2

5.3.2 Existence and Uniqueness of Solutions
We now discuss conditions for the existence and uniqueness
of solutions of the safe monotone flow.
Proposition 5.4 (Existence and Uniqueness of So-
lutions to Safe Monotone Flow) Assume MFCQ and
the constant-rank condition hold on C for all x ∈ C and let
X be the open set containing C in Proposition 5.2(iii). Then
(i) For all x0 ∈ C, there exists a unique solution x : R≥0 →

Rn to the safe monotone flow with x(0) = x0.
(ii) For all x0 ∈ X, there exists a unique solution x :

[0, tf ] → Rn such that x(0) = x0. Furthermore, the
solution can be extended so that either tf = ∞ or
x(t)→ ∂X as t→ tf .

PROOF. We first note that the program (16) satisfies the
General Strong Second-Order Sufficient Condition (cf. [35])
and Slater’s condition at x ∈ X. Because the objective
function and constraints of (16) are twice continuously dif-
ferentiable, we can apply [35, Theorem 3.6] to conclude
that Gα is locally Lipschitz at x. Therefore, Gα is also lower
semicontinuous and by [8, Chapter 2, Theorem 1] there ex-
ists for all x0 ∈ X a solution x : [0, tf ] → Rn for some
tf > 0 with x(0) = x0. Furthermore, either tf = ∞ or
x(t) → ∂X as t → tf . Uniqueness of solutions holds by
local Lipschitznes and (ii) follows.
To show (i), we note that Gα(x) ∈ TC(x), and by [12, The-
orem 3.1], for any solution with x(0) ∈ C, we have that
x(t) ∈ C for all t ≥ 0 on the interval on which the solution
exists. Since C ⊂ int(X), solutions beginning in C cannot
approach ∂X, and exist for all time.

5.3.3 Safety of Safe Monotone Flow
Here we establish the safety properties of the safe monotone
flow. We begin by characterizing optimality conditions for
the closed-loop dynamics.
Lemma 5.5 (Optimality Conditions for Closed-
loop Dynamics) For x ∈ Rn, consider the equations

ξ + F (x) +
∂g(x)

∂x

⊤
u+

∂h(x)

∂x

⊤
v = 0, (17a)

∂g(x)

∂x
ξ + αg(x) ≤ 0, (17b)

∂h(x)

∂x
ξ + αh(x) = 0, (17c)

u ≥ 0, (17d)

u⊤
(∂g(x)

∂x
ξ + αg(x)

)
= 0, (17e)

in (ξ, u, v). Let Λα : Rn ⇒ Rm
≥0 × Rk be

Λα(x) = {(u, v) | ∃ξ such that (ξ, u, v) solves (17)}.

Assume MFCQ holds everywhere on C. Then, there exists
an open set X ⊃ C such that, if x ∈ X, then Λα(x) ̸= ∅. If
(ξ, u, v) solves (17), then Gα(x) = ξ and (u, v) solves (14).

PROOF. Let F̃ (x, ξ) = F (x)+ξ. Then ξ = Π
T

(α)

C (x)
(−F (x))

is a solution to the monotone variational inequality
VI(F̃ (x, ·), T (α)

C (x)), parameterized by x. Since MFCQ
holds at all ξ ∈ T

(α)
C (x) by Proposition 5.2(iii), we can use

the KKT conditions to characterize Gα(x), which corre-
spond to (17). Further, by Proposition 5.2(iv), solutions
to (17) exist on an open set X containing C. Since F̃
is strongly monotone with respect to ξ, the solution to
VI(F̃ (x, ·), T (α)

C (x)) is unique on X, proving the result. 2

We rely on the optimality conditions in Lemma 5.5 to es-
tablish the following result characterizing the equilibria and
safety properties of the safe monotone flow.
Theorem 5.6 (Equilibria and Safety of Safe Mono-
tone Flow) Let α > 0, C be convex, and suppose MFCQ
and the constant rank condition holds everywhere on C. The
following hold for the safe monotone flow:
(i) C is forward invariant and asymptotically stable on X;
(ii) x∗ is an equilibrium if and only if x∗ ∈ SOL(F, C);

PROOF. To show (i), note that by Proposition 5.3, for
all x ∈ X there exists (u(x), v(x)) ∈ Kcbf,α(x) such that
Gα(x) = F(x, u(x), v(x)). Given the existence and unique-
ness of solutions of the closed-loop system, cf. Proposi-
tions 5.4, the result follows from Lemma 2.2 since ϕ(x) =
(g(x), h(x)) is a VCBF. Statement (ii) follows from the ob-
servation that, if Gα(x∗) = 0, by Lemma 5.5, there exists
(u∗, v∗) such that (0, u∗, v∗) solves (17), which holds if and
only if (x∗, u∗, v∗) solves (3). 2

5.3.4 Stability of Safe Monotone Flow
Here we characterize the stability properties of the safe
monotone flow. We begin by establishing conditions for
stability relative to C.
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Theorem 5.7 (Stability of SafeMonotoneFlowRel-
ative to C) Assume MFCQ holds everywhere on C. Then
(i) If x∗ ∈ SOL(F, C) and F is monotone, then x∗ is glob-

ally Lyapunov stable relative to C;
(ii) If x∗ ∈ SOL(F, C) and F is µ-strongly monotone, then

x∗ is globally asymptotically stable relative to C.
Before proving Theorem 5.7, we provide several interme-
diate results. Our strategy relies on fixing x∗ ∈ SOL(F, C)
and considering the candidate Lyapunov function

V (x)=
1

2
∥x− x∗∥2︸ ︷︷ ︸

Ṽ (x)

− 1

α2
inf

ξ∈T
(α)

C (x)

{
ξ⊤F (x)+

1

2
∥ξ∥2

}
︸ ︷︷ ︸

W (x)

. (18)

We first compute bounds on the Dini derivative of Ṽ
along Gα.

Lemma 5.8 (Dini Derivative of Ṽ ) Assume MFCQ
holds everywhere on C. For x∗ ∈ SOL(F, C), let (u∗, v∗) be
Lagrange multipliers corresponding to x∗. For x ∈ X and
(u, v) ∈ Λα(x), then

D+
Gα

Ṽ (x) ≤ −µ ∥x− x∗∥2

− (u− u∗)⊤(g(x)− g(x∗))− (v − v∗)⊤h(x),

if F is µ-strongly monotone (inequality holds with µ = 0 if
F is monotone instead).

PROOF. Note that

D+
Gα

Ṽ (x) = −(x− x∗)⊤F (x)

−
m∑
i=1

ui(x− x∗)⊤∇gi(x)−
k∑

j=1

vj(x− x∗)⊤∇hj(x).

By µ-strong monotonicity of F , −(x − x∗)⊤F (x) ≤
−µ ∥x− x∗∥2− (x− x∗)⊤F (x∗) (the inequality holds with
µ = 0 if F is monotone). Next, we rearrange (3a) and use
that gi is convex for all i = 1, . . . ,m and hj is affine for all
j = 1, . . . ,m to obtain

−(x− x∗)⊤F (x∗)

=

m∑
i=1

u∗
i (x− x∗)⊤∇gi(x∗) +

k∑
j=1

v∗j (x− x∗)⊤∇hj(x
∗)

≤
m∑
i=1

u∗
i (gi(x)− gi(x

∗)) +

k∑
j=1

v∗j (hj(x)− hj(x
∗))

= (u∗)⊤(g(x)− g(x∗)) + (v∗)⊤h(x).

where the last equality follows from the fact that h(x∗) = 0.
By a similar line of reasoning, we have

−
m∑
i=1

ui(x− x∗)⊤∇gi(x)−
k∑

j=1

vj(x− x∗)⊤∇hj(x)

≤ −
m∑
i=1

ui(gi(x)− gi(x
∗))−

k∑
j=1

vj(hj(x)− hj(x
∗))

= −u⊤(g(x)− g(x∗))− v⊤h(x).

The result follows by summing the two expressions. 2

We now move on to characterizing properties of W .
Lemma 5.9 (Properties of W ) Assume MFCQ holds
everywhere on C. Define the matrix-valued function Q :
X × Rm

≥0 → Rn×n by

Q(x, u) =
1

2

(∂F (x)

∂x
+

∂F (x)

∂x

⊤)
+

m∑
i=1

ui∇2gi(x).

Then, for all x ∈ X and (u, v) ∈ Λα(x),

W (x) = −1

2
∥Gα(x)∥2 + αu⊤g(x) + αv⊤h(x) (19)

and
D+

Gα
W (x) ≥ Gα(x)⊤Q(x, u)Gα(x)

− α2u⊤g(x)− α2v⊤h(x).
(20)

PROOF. We first show that the solution to the optimiza-
tion problem in the definition of W is ξ = Gα(x). Note
that the constraints in the definition of W in (18) and
(16) are identical. Let J(x, ξ) denote the objective func-
tion in the definition of W . Then J(x, ξ)− 1

2 ∥ξ + F (x)∥2 =

− 1
2 ∥F (x)∥2. Because the difference between the objective

functions of (16) and the definition of W is independent of
ξ, the two optimization problems have the same solution.
The claim now follows because the solution to (16) is Gα(x).
Next we show that W can be expressed in closed form as
(19). Because the optimizer is ξ = Gα(x), we have

W (x) = Gα(x)⊤F (x) +
1

2
∥Gα(x)∥2 . (21)

Note that (Gα(x), u, v) satisfies the optimality conditions
(17) for all (u, v) ∈ Λα(x). Therefore we can rearrange

(17a) to obtain F (x) = −Gα(x)− ∂g(x)
∂x

⊤
u− ∂h(x)

∂x

⊤
v. Next

Gα(x)⊤F (x)=−∥Gα(x)∥2−u⊤ ∂g(x)

∂x
Gα(x)−v⊤

∂h(x)

∂x
Gα(x)

= −∥Gα(x)∥2 + αu⊤g(x) + αv⊤h(x),

where the second equality follows by rearranging (17c) and
(17e). Then, (19) follows by substituting the previous ex-
pression into (21).
Finally we show (20). Let L(x; ξ, u, v) be the Lagrangian
of the parametric optimization problem in the definition of
W in (18). Then

L(x; ξ, u, v) = ξ⊤F (x) +
1

2
∥ξ∥2 + (22)

m∑
i=1

ui(∇gi(x)⊤ξ + αgi(x)) +

k∑
i=1

vi(∇hi(x)
⊤ξ + αhi(x)).

Next by [13, Theorem 4.2], it follows that

D+
Gα

W (x) = sup
(u,v)∈Λα(x)

{
∇xL(x;Gα(x), u, v)⊤Gα(x)

}
≥ ∇xL(x;Gα(x), u, v)⊤Gα(x).
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By direct computation, we can verify that

∇xL(x; ξ, u, v) = Q(x, u)ξ + α
∂g(x)

∂x

⊤
u+ α

∂h(x)

∂x

⊤
v

Therefore

∇xL(x;Gα(x), u, v)⊤Gα(x) = Gα(x)⊤Q(x, u)Gα(x)

+ αu⊤ ∂g(x)

∂x
Gα(x) + αv⊤

∂h(x)

∂x
Gα(x)

= Gα(x)⊤Q(x, u)Gα(x)− α2u⊤g(x)− α2v⊤h(x),

where once again, the last equality above follows by rear-
ranging (17c) and (17e). 2

We are now ready to prove Theorem 5.7.

PROOF. [Proof of Theorem 5.7] Let x∗ ∈ SOL(F, C) and
suppose the hypotheses of (i) hold. Consider the function
V : X → R defined by (18). We show that V is a (strict)
Lyapunov function when F is (µ-strongly) monotone. Let
x ∈ C and (u, v) ∈ Λα(x). Then, using (17d), αu⊤g(x) +
v⊤h(x) ≤ 0, so by examining the expression in (19) we see
that W (x) ≤ 0 for all x ∈ C with equality if and only if
x ∈ SOL(F, C). Thus V is positive definite with respect
to x∗. Next, D+

Gα
V (x) = D+

Gα
Ṽ (x)− 1

α2D
+
Gα

W (x), and by
Lemmas 5.8 and 5.9,

D+
Gα

V (x) ≤ − 1

α2
Gα(x)Q(x, u)Gα(x) + u⊤g(x) + v⊤h(x)

− (u− u∗)⊤(g(x)− g(x∗))(v − v∗)⊤(h(x)− h(x∗))

= − 1

α2
Gα(x)Q(x, u)Gα(x)

+ (u∗)⊤g(x) + (v∗)⊤h(x) + u⊤g(x∗) + v⊤h(x∗).

Since u ≥ 0 and x∗ ∈ C, we have g(x∗) ≤ 0 and h(x∗) =
0, and therefore u⊤g(x∗) + v⊤h(x∗) ≤ 0. Similarly, since
u∗ ≥ 0, and x ∈ C, we have g(x) ≤ 0 and h(x) = 0,
and therefore (u∗)⊤g(x) + (v∗)⊤h(x) ≤ 0. Finally, since
F is monotone and g is convex, it follows that Q(x, u) is
positive semi-definite, and thereforeD+

Gα
V (x) ≤ 0. To show

(ii), we can use the same reasoning above to show that
D+

Gα
V (x) ≤ −µ ∥x− x∗∥2. 2

Next, we discuss stability with respect to the entire state
space, which ensures the safe monotone flow can be used
to solve VI(F, C) even for infeasible initial conditions.
Theorem 5.10 (Stability of Safe Monotone Flow
with Respect to Rn) Assume MFCQ and the constant-
rank condition holds on C. Then
(i) If x∗ ∈ SOL(F, C) and F is monotone, then x∗ is glob-

ally Lyapunov stable;
(ii) If x∗ ∈ SOL(F, C) and F is µ-strongly monotone, then

x∗ is globally asymptotically stable.
To prove Theorem 5.10, we can no longer rely on the Lya-
punov function V defined in (18) because it is no longer
positive definite and may take negative values for x ̸∈ C.

Instead, we consider the new candidate Lyapunov function

Vϵ(x) = Ṽ (x) +
[
− 1

α2
W (x)

]
+
+ δϵ(x) (23)

where ϵ > 0 and δϵ is the penalty function given by

δϵ(x) =
1

ϵ

m∑
i=1

[gi(x)]+ +
1

ϵ

k∑
j=1

|hj(x)|.

Before proceeding to the proof of Theorem 5.10, we provide
a bound for the Dini derivative of δϵ along Gα.
Lemma 5.11 (Dini Derivative of δϵ) For all x ∈ X
and ξ ∈ Rn, δϵ is directionally differentiable along ξ at x.
In particular,

D+
Gα

δϵ(x) ≤ −
α

ϵ

∑
i∈I+(x)

gi(x)−
α

ϵ

∑
j∈Ih(x)

|hj(x)| , (24)

where Ih(x) = {j ∈ [1, k] | hj(x) ̸= 0}.

PROOF. Note that δϵ corresponds to the ℓ1 penalty func-
tion for the set C. By [26, Proposition 3], the directional
derivative of δϵ is

δ′ϵ(x; ξ) =
1

ϵ

∑
i∈I+(x)

∇gi(x)⊤ξ +
1

ϵ

∑
i∈I0(x)

[∇gi(x)⊤ξ]++

1

ϵ

∑
j∈Ih(x)

sgn(hj(x))∇hj(x)
⊤ξ +

1

ϵ

∑
j ̸∈Ih(x)

∣∣∇hj(x)
⊤ξ

∣∣ .
Note D+

Gα
δϵ(x) = δ′ϵ(x;Gα(x)). Expression (24) fol-

lows by noting that ∇gi(x)⊤Gα(x) ≤ −αgi(x) and
∇hj(x)

⊤Gα(x) = −αhj(x). 2

We are now ready to prove Theorem 5.10.

PROOF. [Proof of Theorem 5.10] We begin by showing
(i). Let x∗ ∈ SOL(F, C). Note that, from the optimality
conditions (17), Λα(x

∗) corresponds to the set of Lagrange
multipliers of the solution x∗ to VI(F, C). Because MFCQ
holds at x∗, it follows that Λα(x

∗) is bounded. Thus, it is
possible to choose ϵ > 0 small enough so that

α

ϵ
> sup

(u∗,v∗)∈Λα(x∗)

{
∥(u∗, v∗)∥∞

}
. (25)

Next, it follows immediately from the definition (23) that
Vϵ is positive definite with respect to x∗. We now compute
D+

Gα
Vϵ(x) and show that it is negative semidefinite. Let

x ∈ X. We consider three cases: W (x) < 0, W (x) > 0, and
W (x) = 0. In the case where W (x) < 0,

D+
Gα

Vϵ = D+
Gα

Ṽ (x)− 1

α2
D+

Gα
W (x) +D+

Gα
δϵ(x).

Combining the bounds in Lemmas 5.8, 5.9, and 5.11,

D+
Gα

Vϵ(x) ≤ −
1

α2
Gα(x)Q(x, u)Gα(x) (26)
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+
∑

i∈I+(x)

(
u∗ − α

ϵ

)
gi(x) +

∑
j∈Ih(x)

(
v∗ − α

ϵ

)
|hj(x)| .

Since ϵ satisfies (25), it follows that D+
Gα

Vϵ(x) ≤ 0.

For the case where W (x) > 0, we rearrange (19) to write

u⊤g(x) + v⊤h(x) =
1

α
W (x) +

1

2α
∥G(x)∥2 >

1

2α
∥G(x)∥2 .

Then, we have

D+
Gα

Vϵ(x) = D+
Gα

Ṽ (x) +D+
Gα

δϵ(x)

≤ −(u− u∗)⊤g(x)− (v − v∗)⊤h(x)

− α

ϵ

∑
i∈I+(x)

gi(x)−
α

ϵ

∑
j∈Ih(x)

|hj(x)|

≤ − 1

2α
∥Gα(x)∥2 + (27)∑

i∈I+(x)

(
u∗ − α

ϵ

)
gi(x) +

∑
j∈Ih(x)

(
v∗ − α

ϵ

)
|hj(x)| ,

and therefore D+
Gα

Vϵ(x) ≤ 0. In the case where W (x) = 0,

D+
Gα

Vϵ(x) = D+
Gα

Ṽ (x) +
1

α2
[−D+

Gα
W (x)]+ +D+

Gα
δϵ(x),

which leads us to two subcases: (a) D+
Gα

W (x) < 0 and
(b) D+

Gα
W (x) ≥ 0. In subcase (a), D+

Gα
Vϵ(x) satisfies the

bound in (26) and, therefore,D+
Gα

Vϵ(x) ≤ 0. In subcase (b),
u⊤g(x) + v⊤h(x) = 1

2α ∥Gα(x)∥
2 and, therefore, D+

Gα
Vϵ(x)

satisfies the bound in (27), so D+
Gα

Vϵ(x) ≤ 0.

Finally, for (ii), we can use the same arguments above to
show in each case D+

Gα
Vϵ(x) ≤ −µ ∥x− x∗∥2. 2

We conclude this section by discussing the contraction
properties of the safe monotone flow. Contraction refers
to the property that any two trajectories of the system
approach each other exponentially (cf. [18,24] for a precise
definition), and implies exponential stability of an equi-
librium. We show that, for sufficiently large α, the safe
monotone flow system is contracting provided F is globally
Lipschitz and the constraint set C is polyhedral.
Our analysis relies relies on the following result.
Lemma 5.12 ( [47, Lemma 2.1]) Consider the following
quadratic program

min
(u,v)∈Rm

≥0
×Rk

1

2

∥∥∥∥[uv
]∥∥∥∥2

Q̃

+ c⊤
[
u
v

]
+ p, (28)

where Q̃ ⪰ 0. Then (u∗, v∗) solves (28) if and only if it is a
solution to the linear program

min
(u,v)∈Rm

≥0
×Rk

(
Q̃

[
u∗

v∗

]
+ c

)⊤ [
u
v

]
. (29)

We now show that the safe monotone flow is contracting.

Theorem 5.13 (Contraction and Exponential Sta-
bility of Safe Monotone Flow) Let F be µ-strongly
monotone and globally Lipschitz with constant ℓF and C
a polyhedral set defined by (2) with g(x) = Gx − cg and
h(x) = Hx− ch. If

α >
ℓ2F
4µ

, (30)

then the safe monotone flow is contracting with rate c =

µ − ℓ2F
4α . In particular, the unique solution x∗ ∈ SOL(F, C)

is globally exponentially stable.

PROOF. We claim that if the assumptions hold, then

(x− y)⊤(Gα(x)− Gα(y)) ≤ −c ∥x− y∥2 , (31)

in which case the system is contracting by [24, Theorem
31], and exponential stability of x∗ ∈ SOL(F, C) follows as
a consequence. To show the claim, from (17a), note that

Gα(x) = −F (x)−G⊤ux −H⊤vx.

for any (ux, vx) ∈ Λα(x). Let then x, y ∈ X and (ux, vx) ∈
Λα(x) and (uy, vy) ∈ Λα(y). Then, using the strong mono-
tonicity of F ,

(x−y)⊤(Gα(x)− Gα(y)) = −(x− y)⊤(F (x)− F (y))

+ (x− y)⊤(Gα(x) + F (x)− Gα(y)− F (y))

≤ −µ ∥x− y∥2 − (x− y)⊤
[
G⊤ H⊤] [ux − uy

vx − vy

]
= −µ ∥x− y∥2 −

[
ux − uy

vx − vy

]⊤ [
G(x− y)
H(x− y)

]
. (32)

Next, let J̃(x;u, v) = − infξ∈Rn L(x; ξ, u, v), where L is the
Lagrangian of (16), defined in (22), and let

Q̃ =

[
GG⊤ GH⊤

HG⊤ HH⊤

]
.

For x ∈ Rn, L is minimized when ξ = −F (x)−G⊤u−H⊤v,
and therefore

J̃(x;u, v) =
1

2

∥∥∥∥[uv
]∥∥∥∥2

Q̃

+

[
GF (x)−α(Gx− cg)
HF (x)−α(Hx− ch)

]⊤[
u
v

]
+

1

2
∥F (x)∥2 .

(33)

If (ux, vx) ∈ Λα(x), then (ux, vx) is a solution to the pro-
gram min(u,v)∈Rm

≥0
×Rk J̃(x, u, v), which is the Lagrangian

dual 1 of (16). By Lemma 5.12, (ux, vx) is also a solution
to the linear program,

min
(u,v)∈Rm

≥0
×Rk

(
Q̃

[
ux

vx

]
+

[
GF (x)− α(Gx− cg)
HF (x)− α(Hx− ch)

])⊤ [
u
v

]
.

1 By convention, the Lagrangian dual problem is a maximiza-
tion problem (cf. [14, Chapter 5]). However, the minus sign in
the definition of J̃ ensures that here it is a minimization. The
reason for this sign convention is to make the notation simpler.

11



Since (uy, vy) is also feasible for the previous linear pro-
gram, by optimality of (ux, vx),

−
[
ux − uy

vx − vy

]⊤ [
Gx− cg
Hx− ch

]
≤ − 1

α

∥∥∥∥[ux

vx

]∥∥∥∥2
Q̃

+
1

α

[
uy

vy

]⊤
Q̃

[
ux

vx

]
− 1

α

[
ux − uy

vx − vy

]⊤ [
GF (x)
HF (x)

]
.

By a similar line of reasoning,

−
[
uy − ux

vy − vx

]⊤ [
Gy − cg
Hy − ch

]
≤ − 1

α

∥∥∥∥[uy

vy

]∥∥∥∥2
Q̃

+
1

α

[
ux

vx

]⊤
Q̃

[
uy

vy

]
− 1

α

[
uy − ux

vy − vx

]⊤ [
GF (y)
HF (y)

]
.

Combining the previous two expressions, we obtain

−
[
ux − uy

vx − vy

]⊤ [
G(x− y)
H(x− y)

]
≤ − 1

α

[
ux − uy

vx − vy

]⊤ [
G(F (x)− F (y))
H(F (x)− F (y))

]
− 1

α

∥∥∥∥[ux − uy

vx − vy

]∥∥∥∥2
Q̃

≤ ℓF
α

∥∥∥∥∥
[
G
H

]⊤ [
ux − uy

vx − vy

]∥∥∥∥∥ ∥x− y∥ − 1

α

∥∥∥∥∥
[
G
H

]⊤ [
ux − uy

vx − vy

]∥∥∥∥∥
2

,

where we used ∥(u, v)∥Q̃ =
∥∥M⊤(u, v)

∥∥, with M = [G;H].
For any ϵ > 0, by Young’s Inequality [42, pp. 140],

−
[
ux − uy

vx − vy

]⊤ [
G(x− y)
H(x− y)

]
≤ ℓF

2ϵα
∥x− y∥2

−
( 1

α
− ϵℓF

2α

)∥∥∥∥∥
[
G
H

]⊤ [
ux − uy

vx − vy

]∥∥∥∥∥
2

.

Substituting into (32), we obtain

(x− y)⊤(Gα(x)− Gα(y)) ≤ −
(
µ− ℓF

2ϵα

)
∥x− y∥2

−
( 1

α
− ϵℓF

2α

)∥∥∥∥∥
[
G
H

]⊤ [
ux − uy

vx − vy

]∥∥∥∥∥
2

.

Hence, (31) holds with c = µ− ℓF
2ϵα if ϵ satisfies ℓF

2αµ ≤ ϵ ≤
2
ℓF

. Such ϵ can be chosen if α >
ℓ2F
4µ , corresponding to (30),

with optimal estimate of the contraction rate c = µ − ℓ2F
4α .

2

6 Recursive Safe Monotone Flow

A drawback of the projected and safe monotone flows is
that, in order to implement them, one needs to solve either
the quadratic programs (9) or (14) at each time along the
trajectory of the system. As a third algorithmic solution to
Problem 1, in this section we introduce the recursive safe
monotone flow which gets around this limitation by incor-
porating a dynamics whose equilibria correspond to the
solutions of the quadratic program. We begin by showing

how to derive the dynamics for general constraint sets C by
interconnecting two systems on multiple time scales. Next,
we use the theory of singular perturbations of contracting
flows to obtain stability guarantees in the case where C is
polyhedral, and show that trajectories of the recursive safe
monotone flow track those of the safe monotone flow. The
latter property enables us to formalize a notion of “practi-
cal safety” that the recursive safe monotone flow satisfies.

6.1 Construction of the Dynamics

We discuss here the construction of the recursive safe
monotone flow. The starting point for our derivation is the
control-affine system (7). The safe monotone flow consists
of this system with a feedback controller specified by the
quadratic program (14). Rather than solving this program
exactly, the approach we take is to replace it with a mono-
tone variational inequality parameterized by the state. For
fixed x ∈ X, we can solve solve this inequality, and hence
obtain the feedback k(x), using the safe monotone flow
corresponding to this problem. Coupling this flow with the
control system (7) yields the recursive safe monotone flow.
In this section we carry out this strategy in mathematically
precise terms. We rely on the following result, which pro-
vides an alternative characterization of the CBF-QP (14).
Lemma 6.1 (Alternative Characterization of Safe
Feedback) For x ∈ Rn, consider the optimization

minimize
(u,v)∈Rm

≥0
×Rk

1

2

∥∥ m∑
i=1

ui∇gi(x) +
k∑

j=1

vj∇hj(x)
∥∥2

+ u⊤
(∂g
∂x

F (x)− αg(x)
)
+ v⊤

(∂h
∂x

F (x)− αh(x)
)
.

(34)

If (u, v) is a solution to (34), then (u, v) is a solution to (14).

PROOF. Note that the constraints of (34) satisfy MFCQ
for all (u, v) ∈ Rm

≥0×Rk. Since the objective function in (34)
is convex in (u, v), one can see that necessary and sufficient
conditions for optimality are given by a KKT system that,
after some manipulation, takes the form

−∂g

∂x

∂g

∂x

⊤
u− ∂g

∂x

∂h

∂x

⊤
v − ∂g

∂x
F (x)− αg(x) ≤ 0

−∂h

∂x

∂g

∂x

⊤
u− ∂h

∂x

∂h

∂x

⊤
v − ∂h

∂x
F (x)− αh(x) = 0

u ≥ 0

u⊤
(
− ∂g

∂x

∂g

∂x

⊤
u− ∂g

∂x

∂h

∂x

⊤
v − ∂g

∂x
F (x)− αg(x)

)
= 0.

It follows immediately that if (u, v) satisfies the above equa-
tions, then (u, v) ∈ Kcbf,α(x) given by (13). 2

The rationale for considering (34), rather than working
with (14) directly, is that the constraints of (34) are inde-
pendent of x, which will be important for reasons we show
next. Being a constrained optimization problem, (34) can
be expressed in terms of a variational inequality (parame-
terized by x ∈ Rn). Formally, let F̃ (x, u, v) be given by

F̃ (x, u, v) =

[
− ∂g

∂xF(x, u, v)− αg(x)
−∂h

∂xF(x, u, v)− αh(x)

]
, (35)
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where F is given by (7) and let C̃ = Rm
≥0 × Rk, which we

parameterize as

C̃ = {(u, v) ∈ Rm × Rk | u ≥ 0}. (36)

The optimization problem (34) corresponds to the varia-
tional inequality VI(F̃ (x, ·, ·), C̃).
Our next step is to write down the safe monotone flow with
safety parameter β > 0 corresponding to the variational
inequality VI(F̃ (x, ·), C̃). Note that the β-restricted tangent
set (15) of C̃ is

T
(β)

C̃ (u, v) =
{
(ξu, ξv) ∈ Rm × Rk | ξu ≥ −βu

}
.

The projection onto T
(β)

C̃ (u, v) has the following closed-
form solution

Π
T

(β)

C̃
(u,v)

([
a
b

])
=

[
max{−βu, a}

b

]
.

Using this expression and applying Proposition 5.3,
we write the safe monotone flow corresponding to
VI(F̃ (x, ·), C̃) as

u̇ = max
{
− βu,

∂g(x)

∂x
F(x, u, v) + αg(x)

}
v̇ =

∂h(x)

∂x
F(x, u, v) + αh(x).

(37)

Under certain assumptions, which we formalize in the se-
quel, for a fixed x, trajectories of (37) converge to solutions
of the QP (14).
This discussion suggests a system solving the original varia-
tional inequality VI(F, C) can be obtained by coupling (37)
with the dynamics (7) as follows:

ẋ = F(x, u, v) (38a)

τ u̇ = max
{
− βu,

∂g(x)

∂x
F(x, u, v) + αg(x)

}
(38b)

τ v̇ =
∂h(x)

∂x
F(x, u, v) + αh(x). (38c)

We refer to the system (38) as the recursive safe mono-
tone flow. The parameter τ characterizes the separation of
timescales between the system (38a) and (38b)-(38c). The
interpretation of the dynamics is that, when τ > 0 are suffi-
ciently small, (38b)-(38c) evolve on a much faster timescale
and rapidly approach the solution set of (14). The system
on the slower timescale (38a) then approximates the safe
monotone flow. We formalize this analysis next.

6.2 Stability of Recursive Safe Monotone Flow

To prove stability of the system (38), we rely on results from
contraction theory [24]. Specifically, we derive conditions
on the time-scale separation τ that ensures that (38) is
contracting and, as a consequence, globally attractive and
locally exponentially stable. Throughout the section, we
assume the following assumption holds.
Assumption 1 (Strong Monotonicity, Lipschitz-
ness, and Polyhedral Constraints) The following holds:

(i) F is µ-strongly monotone and ℓF -Lipschitz;
(ii) C is a polyhedral set defined by (2) with g(x) = Gx−cg

and h(x) = Hx− ch, and the matrix

Q̃ =

[
GG⊤ GH⊤

HG⊤ HH⊤

]
(39)

has full rank.
Next, we show that it is possible to tune the parameters β
so the system (37) is contracting, uniformly in x.
Lemma 6.2 (Contractivity of (37)) Under Assump-
tion 1, if β > 1

4
λmax(Q̃)

λmin(Q̃)
, then the system (37) is contracting

with rate c̄ = λmin(Q̃)− λmax(Q̃)
4β uniformly in x.

PROOF. We first observe that F̃ is given by

F̃ (x, u, v) = Q̃

[
u
v

]
− α

[
Gx− cg
Hx− ch

]
.

By Assumption 1, Q̃ ≻ 0 and therefore F̃ is (i) λmin(Q̃)-
strongly monotone in (u, v) uniformly in x and (ii) ∥Q̃∥-
Lipschitz in (u, v) uniformly in x. By Theorem 5.13, if
β > ∥Q̃∥2

4λmin(Q̃)
, the system (37) is uniformly contracting. The

result follows by observing that ∥Q̃∥2 = λmax(Q̃). 2

We now characterize the contraction and stability proper-
ties of the recursive safe monotone flow.
Theorem 6.3 (Contractivity of Recursive Safe
Monotone Flow) Assume F is µ-strongly monotone and
ℓF globally Lipschitz, and α satisfies (30). Under Assump-
tion 1 and β chosen as in Lemma 6.2, then
(i) the unique KKT triple, (x∗, u∗, v∗) corresponding to

VI(F, C) is the only equilibrium of (38).
Moreover, for all ϵ > 0, there exists τ∗ > 0, such that for
all 0 < τ < τ∗,
(ii) the system (38) is contracting on the set

Zϵ =
{
(x, u, v) ∈X × Rm × Rk |

∥(u, v)− k(x)∥ ≤ ϵ
}
,

and every solution of (38) eventually enters Zϵ in fi-
nite time. In particular, there exists a class KL func-
tion β : R≥0 × R≥0 → R such that for every solu-
tion (x(t), u(t), v(t))∥∥(u(x(t)), v(x(t)))− k(x(t))

∥∥
≤ β

( ∥∥(u(x(0)), v(x(0)))− k(x(0))
∥∥ , t);

(iii) the unique KKT triple (x∗, u∗, v∗) is locally exponen-
tially stable and globally attracting.

PROOF. We begin with (i). By direct examination
of (38), we see that the equilibria correspond exactly with
triples satisfying (3). Since the matrix Q̃ has full rank, the
gradients of all the constraints are linearly independent,
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and hence MFCQ holds on C. Since F is µ-strongly mono-
tone, the solution x∗ ∈ SOL(F, C) is unique and there
exists a unique Lagrange multiplier (u∗, v∗) such that
(x∗, u∗, v∗) satisfies (3).
To show (ii), we verify that all hypotheses in [22, Theo-
rem 4] hold. First, note that the map x 7→ F(x, u, v) is ℓF -
Lipschitz in x uniformly in (u, v), and ∥[G;H]∥-Lipschitz
in (u, v), uniformly in x. Let H denote the righthand side
of (37). Because H is piecewise affine in (u, v) and F glob-
ally Lipschitz, there exists constants ℓH,x, ℓH,u,v > 0, such
thatH is ℓH,x-Lipschitz in x uniformly in (u, v) and ℓH,u,v-
Lipschitz in (u, v) uniformly in x. By Lemma 6.2, there ex-
ists c̄ > 0 such that (37) is c̄-contracting, uniformly in x.
Finally, we note that the reduced system corresponding to
(38) is ẋ = Gα(x), which is contracting by Theorem 5.13.
Thus all the hypotheses of [22, Theorem 4] hold and (ii) fol-
lows. Finally (iii) follows from combining (i) and (ii). 2

6.3 Safety of Recursive Safe Monotone Flow

Here we discuss the safety properties of the recursive safe
monotone flow. In general, even if the initial condition be-
longs to C, i.e., x(0) ∈ C, it is not guaranteed that solutions
of the system (38) satisfy x(t) ∈ C for t > 0. However, un-
der appropriate conditions, we can show that the system is
“practically safe”, in the sense that x(t) remains in a slightly
expanded form of the original constraint set C.
Theorem 6.4 (Practical Safety of Recursive Safe
Monotone Flow) Assume F is µ-strongly monotone and
ℓF globally Lipschitz, and α satisfies (30). Under Assump-
tion 1 and β chosen as in Lemma 6.2, for all ϵ > 0, there
exists δ > 0 and τ∗ such that, if 0 < τ < τ∗, any solution
to (38) with x(0) ∈ C and ∥(u(0), v(0))− k(x(0))∥ ≤ δ sat-
isfies x(t)∈Cϵ={x∈Rn |g(x) ≤ ϵ, |h(x)| ≤ ϵ} for all t ≥ 0.
To prove Theorem 6.4, we rely on the notion of input-to-
state safety. Consider the system

ẋ = Gα(x)−
n∑

i=1

ei(t)∇gi(x)−
m∑
j=1

dj(t)∇hj(x). (40)

This system can be interpreted as the safe monotone flow
perturbed by a disturbance determined by (e(t), d(t)). The
set C is input-to-state safe (ISSf) with respect to (40), with
gain γ, if there exists a class K function γ such that, if
γ(∥(e, d)∥∞) < ϵ, then Cϵ is forward invariant under (40).
This notion of input-to-state safety is a slight generalization
of the standard definition, cf. [33], to the case where the safe
set is parameterized by multiple equality and inequality
constraints. We show next that (40) is ISSf.
Lemma 6.5 (Perturbed Safe Monotone Flow is
ISSf) Under Assumption 1, the set C is input-to-state safe
with respect to (40) with gain γ(r) = λmax(Q̃)

α r, where Q̃ is
defined in (39).

PROOF. For i ∈ {1, . . . ,m}, under (40)

ġi(x) = G⊤
i

(
Gα(x)−

n∑
i=1

ei(t)∇gi(x)−
m∑
j=1

dj(t)∇hj(x)
)

≤ −αgi(x)−G⊤
i

( n∑
i=1

ei(t)∇gi(x)−
m∑
j=1

dj(t)∇hj(x)
)

≤ −αgi(x) + λmax(Q̃) ∥(e(t), d(t))∥ ,

where G⊤
i is the ith row of G. It follows from [33, Theorem

1] that the set Cgi = {x ∈ Rn | G⊤
i x− (cg)i ≤ 0} is input-

to-state safe with gain γ with respect to (38).
For j ∈ {1, . . . , k}, under (40),

ḣj(x) = H⊤
j

(
Gα(x)−

n∑
i=1

ei(t)∇gi(x)−
m∑
j=1

dj(t)∇hj(x)
)

= −αhj(x)−H⊤
j

( n∑
i=1

ei(t)∇gi(x)−
m∑
j=1

dj(t)∇hj(x)
)
,

where H⊤
j is the jth row of H. It follows that

ḣj(x) ≤ −αhj(x) + λmax(Q̃) ∥(e(t), d(t))∥ ,
ḣj(x) ≥ −αhj(x)− λmax(Q̃) ∥(e(t), d(t))∥ .

Thus, by [33, Theorem 1], the sets C−hj
= {x ∈ Rn | H⊤

j x−
(ch)j ≤ 0}, and C+hj

= {x ∈ Rn | H⊤
j x − (ch)j ≥ 0} are

also input-to-state safe with gain γ with respect to (38).
Finally, input-to-state safety of C follows from the fact that

C =
( m⋂

i=1

Cgi
)
∩
( k⋂

j=1

(C+hj
∩ C−hj

)
)
. 2

We are now ready to prove Theorem 6.4.

PROOF. [Proof of Theorem 6.4] By Lemma 6.5, C is
input-to-state safe with respect to (40), with gain γ(r) =
λmax(Q̃)

α r. Note that, for any solution (x(t), u(t), v(t)) of
(38), the trajectory x(t) solves (40) with[

e(t)
d(t)

]
=

[
u(t)
v(t)

]
− k(x(t)).

Next, by Theorem 6.3, for all ϵ, there exists τ∗ > 0 such
that if 0 < τ < τ∗, then for all t ≥ 0,

∥∥(e(t), d(t))∥∥ ≤
β
( ∥∥(e(0), d(0))∥∥ , t) for some class KL function β. Now,

choose δ > 0 such that α−1λmax(Q̃)β(δ, 0) < ϵ and let
∥(u(0), v(0))− k(x(0))∥ ≤ δ. Then, for all t ≥ 0,

γ
(∥∥(e(t), d(t))∥∥) ≤ γ(β(δ, t)) ≤ γ(β(δ, 0)) < ϵ.

Hence, for x(0) ∈ C ⊂ Cϵ, since C is input-to-state safe with
respect to (40), we conclude x(t) ∈ Cϵ for all t ≥ 0. 2

7 Numerical Examples

Here we illustrate the behavior of the proposed flows on
two example problems. The first example is a variational
inequality on R2 corresponding to a two-player game with
quadratic payoff functions where we compare the pro-
jected monotone flow. The second example is a constrained
linear-quadratic dynamic game where we implement the
safe monotone flow in a receding horizon manner to exam-
ine its anytime properties.
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7.1 Nash Equilibria of Two-Player Game

The first numerical example we discuss is a variational in-
equality on R2 corresponding to a two-player game, where
player i ∈ {1, 2} wants to minimize a cost Ji(x1, x2) sub-
ject to the constraints that xi ∈ Ci ⊂ R. We take C =
C1 × C2 ⊂ R2. We have selected a two-dimensional exam-
ple that allows us to visualize the constraint set and the
trajectories of the proposed flows to better illustrate their
differences. The problem of finding the Nash equilibria of a
game of this form is equivalent to the variational inequal-
ity VI(F, C), where F is the pseudogradient map, given by
F (x) = (∇x1

J1(x1, x2),∇x2
J2(x1, x2)). For i ∈ {1, 2}, let

Ci = {x ∈ R | −1 ≤ x ≤ 1} and Ji be the quadratic func-
tion Ji(x1, x2) =

1
2x

⊤Qix+ r⊤i x, with

Q1 =

[
1 −1
−1 1

]
∈ R2×2, r1 =

[
0
0

]
∈ R2,

Q2 =

[
1 1
1 1

]
∈ R2×2, r2 =

[
0.5
0.5

]
∈ R2.

The pseudogradient map is given by F (x) = Qx+ r where

Q =

[
1 −1
1 1

]
r =

[
0
0.5

]
Because 1

2 (Q + Q⊤) = I ≻ 0, it follows that the F is 1-
strongly monotone, and therefore the problem has a unique
solution x∗ ∈ SOL(F, C).
Figure 2 shows the results of implementing each of the pro-
posed flows to find the Nash equilibrium. The projected
monotone flow, cf. Figure 2(a), is only well defined in C.
However, the constraint set remains forward invariant and
all trajectories converge to the solution x∗. The safe mono-
tone flow with α = 1.0, cf. Figure 2(b), also keeps the con-
straint set forward invariant and has all trajectories con-
verge to x∗. In addition, the system is well defined outside
of C, and trajectories beginning outside the feasible set con-
verge to it.
In Figure 2(c), we consider the recursive safe monotone
flow with α = 1.0, β = 1.0 and τ = 0.25, where u(0) = 0.
The trajectories converge to x∗ and closely approximate
the trajectories of the safe monotone flow. Note, however,
that the set C is not safe but only practically safe. This
is illustrated in the zoomed-in Figure 2(d), where it is ap-
parent that the trajectories do not always remain in C but
remain close to it.

7.2 Receding Horizon Linear-Quadratic Dynamic Game

We now discuss a more complex example, where the input
to a plant is specified by the solution to a variational in-
equality parameterized by the state of the plant. To solve
it, we interconnect the plant dynamics with the safe mono-
tone flow, and demonstrate that the anytime property of
the latter ensures good performance and satisfaction of the
constraints even when terminated terminated early. The
plant takes the form of a discrete-time linear time-invariant
system with two inputs,

z(s+ 1) = Az(s) +B1w1(s) +B2w2(s), (41)

where A ∈ Rnz×nz and Bi ∈ Rnz×nw for i ∈ {1, 2}.
We consider a linear-quadratic dynamic game (LQDG) be-

(a) Projected monotone flow (b) Safe monotone flow

(c) Recursive safe monotone flow (d) Zoomed-in plot of (c)

Fig. 2. Implementation of (a) projected monotone flow, (b) safe
monotone flow (α = 1.0), and (c) recursive safe monotone flow
(τ = 0.25) in a two-player game. The shaded region shows the
constraint set C and the colored paths represent trajectories of
the corresponding flow starting from various initial condition.
(d) shows a zoomed-in portion of the boundary of C to illustrate
the practical safety of the recursive safe monotone flow.

tween two players, where each player i ∈ {1, 2} can in-
fluence the system (41) by choosing the corresponding in-
put wi ∈ Wi ⊂ Rnw . We fix a time horizon, N > 0, and
an initial condition z(0) = z0, and define a cost J as the
quadratic payoff function,

J(w1(·),w2(·)) = ∥z(N)∥2Qf

+

N−1∑
s=0

∥z(s)∥2Q + ∥w1(s)∥2R1
− ∥w2(s)∥2R2

,
(42)

where Qf , Q ⪰ 0 and R1, R2 ≻ 0. The goal of player 1 is
to minimize the payoff (42), whereas the goal of player 2 is
to maximize it. This problem can be solved in closed form
when the constraints Wi are trivial (cf. [9, Chapter 6], [38]),
but must be solved numerically for nontrivial ones.
We first note the LQDG problem can be written as a varia-
tional inequality. Indeed, let z̄ = (z(1), . . . , z(N)) and, for
i ∈ {1, 2}, let w̄i = (wi(0), . . . , wi(N − 1)). Define

A =


A
A2

...
AN

 , Ci =


Bi 0 · · · 0
ABi Bi · · · 0
A2Bi ABi · · · 0

...
...

. . .
...

AN−1Bi AN−2Bi · · · Bi

 .

Next, letting Q̄ = diag(Q, . . . , Q,Qf ) and R̄i = diag(Ri, . . . , Ri),
and using the fact that z̄ = Az0 + C1w̄1 + C2w̄2, we see
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that the payoff function (42) can be written as,

J(w̄1, w̄2) =

[
w̄1

w̄2

]⊤ [
C⊤

1 Q̄C1 + R̄1 C⊤
1 Q̄C2

C⊤
2 Q̄C1 C⊤

2 Q̄C2 − R̄2

] [
w̄1

w̄2

]
+ 2

[
C⊤

1 Q̄Az0
C⊤

2 Q̄Az0

]⊤ [
w̄1

w̄2

]
+ z⊤0 A⊤Q̄Az0.

Finally, letting x = (w̄1, w̄2), we see that the problem corre-
sponds to the variational inequality VI(F (·, z0), C), where

F (x, z0)=

[
C⊤

1 Q̄C1 + R̄1 C⊤
1 Q̄C2

−C⊤
2 Q̄C1 R̄2 − C⊤

2 Q̄C2

][
w̄1

w̄2

]
+

[
C⊤

1 Q̄Az0
−C⊤

2 Q̄Az0

]
and the constraint set is C = W1

N ×W2
N . If the problem

data satisfies[
C⊤

1 Q̄C1 + R̄1 0
0 R̄2 − C⊤

2 Q̄C2

]
≻ 0,

then F is strongly monotone.
For simulation purposes, we take nz = 5, nw = 2, Bi = I,
Wi = R2

≥0, and A a marginally stable matrix selected ran-
domly. We use the safe monotone flow to solve the varia-
tional inequality and implement the solution in a receding
horizon manner: given the initial state z0, we solve for the
optimal input sequence (w1(·), w2(·)) over the entire time
horizon, apply the input (w1(0), w2(0)) to (41) to obtain
z(1), update the initial condition z0 ← z(1) and repeat.
When F is strongly monotone, on each iteration the flow
converges to the exact solution as t→∞. However, we also
consider here the effect of terminating the solver early at
some t = tf <∞.
Figure 3 shows the results of the simulation. In Figure 3(a),
we plot ∥z(s)∥ for various values of termination times. We
denote the exact solution with tf = ∞. The closed-loop
dynamics with the exact solution to the receding horizon
LQDG is stabilizing, and as tf grows larger, the early ter-
minated solution drives the state of the system closer to
the origin. In Figure 3(b), we plot the first component of
w1(s) in blue and the first component of w2(s) in red. Re-
gardless of when terminated, the inputs satisfy the input
constraints on each iteration due to the safety properties
of the safe monotone flow.

8 Conclusions

We have tackled the design of anytime algorithms to solve
variational inequalities as a feedback control problem. Us-
ing techniques from safety-critical control, we have synthe-
sized three continuous-time dynamics which find solutions
to monotone variational inequalities: the projected mono-
tone flow, already well known in the literature, and the
novel safe monotone and recursive safe monotone flows.
The equilibria of these flows correspond to solutions of the
variational inequality, and so we have embarked in the pre-
cise characterization of their asymptotic stability proper-
ties. We have established asymptotic stability of equilibria
in the case of strong monotonicity, and contractivity and
exponential stability in the case of polyhedral constraints.
We have also shown that the safe monotone flow renders
the constraint forward invariant and asymptotically sta-
ble. The recursive safe monotone flow offers an alternative
implementation that does not necessitate the solution of a

(a) ∥z(s)∥ on each iteration (b) First component of
{wi(s)}i∈{1,2} on each itera-
tion

Fig. 3. Receding horizon implementation of the safe mono-
tone flow solving a linear quadratic dynamic game for different
choices of termination time tf . The closed-loop implementation
of the exact solution corresponds to tf = ∞ (dashed lines). (a)
We plot the evolution of ∥z(s)∥ in green. (b) We plot the evolu-
tion of the first component of w1(s) in blue-green (scale in left
y-axis) and the first component of w2(x) in red-orange (scale
in right y-axis).

quadratic program along the trajectories. This flow results
from coupling two systems evolving on different timescales,
and we have established local exponential stability and
global attractivity of equilibria, as well as practical safety
guarantees. We have illustrated in two game scenarios the
properties of the proposed flows and, in particular, their
amenability for interconnection and regulation of physical
processes. Future work will develop methods for distributed
network problems and consider applications to feedback
optimization arising in applications such as power systems,
traffic networks, and communications systems.
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