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Abstract— This paper considers the problem of regulating a
dynamical system to equilibria that are defined as solutions of
an input- and state-constrained optimization problem. To solve
this regulation task, we design a state feedback controller based
on a continuous approximation of the projected gradient flow.
We first show that the equilibria of the interconnection between
the plant and the proposed controller correspond to critical
points of the constrained optimization problem. We then derive
sufficient conditions to ensure that, for the closed-loop system,
isolated locally optimal solutions of the optimization problem
are locally exponentially stable and show that input constraints
are satisfied at all times by identifying an appropriate forward-
invariant set.

I. INTRODUCTION

This paper considers the problem of steering the state of a
dynamical system to equilibria that are implicitly defined as
the solution of a constrained, nonlinear optimization prob-
lem. Such a regulation problem is motivated by optimization
and control problems in a number of areas, including power
systems [1], transportation systems [2], epidemic control,
and robotics [3]. To address this regulation problem, prior
work [2], [4]–[11] in “online feedback optimization” has
considered the design of controllers based on adaptations of
first-order optimization methods. The majority of these works
consider equilibria that are solutions to either unconstrained
optimization problems or problems with constraints on the
control inputs. However, an open research question remains
regarding how to systematically design feedback controllers
to regulate a dynamic plant to solutions of optimization
problems with nonlinear constraints on the system’s state,
which is what we tackle here. State constraints are critical
across multiple domains: e.g., in power transmission systems,
to impose frequency and line flow limits [1].

Literature review. Constrained problems in online regu-
lation of dynamical systems were first considered in [5],
where controllers for control-affine systems were engineered
based on saddle flows and conditions for asymptotic sta-
bility of saddle points of the Lagrangian function were
established. Similar gradient-based strategies for constrained
convex problems were proposed in [6], and local stability
results were provided based on non-singularity of the matrix
modeling the closed loop. The Moreau envelope was used
in [8] to deal with linear inequality constraints on the
state; however, the stability analysis hinges on augmented
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Lagrangian approaches, which leads to perturbations of the
set of optimal solutions. A primal-dual flow based on a regu-
larized Lagrangian was utilized in [2]; however, the approach
in [2] is applicable to only linear inequality constraints on
the system’s state. Polytopic constraint sets for the state
of linear systems (without disturbances) were considered in
for discrete-time linear systems [10]. Finally, our controller
design relies on a continuous approximation of the projected
gradient flow, termed safe gradient flow [12], that solves
constrained optimization problems. The treatment here sig-
nificantly expands [12] by (i) having the safe gradient flow
act as a feedback controller, (ii) analyzing the stability of the
interconnection with a dynamic plant, and (iii) providing a
precise characterization of the local stability region.

Contributions. We present a new class of feedback con-
trollers for dynamic plants (possibly subject to unknown
disturbances) to regulate their input and state to locally
optimal solutions of an optimization problem with constraints
on the state at steady-state. Our main contribution is twofold.
(a) We propose a new control design strategy that leverages
the safe gradient flow [12]. The controller utilizes state feed-
back to perform the regulation task at hand. Critically, our
dynamic controller is defined by a locally Lipschitz vector
field, thus ensuring existence and uniqueness of classical
solutions, and guarantees that input constraints are enforced
at all times; moreover, its equilibria correspond to the critical
points of the optimization problem.
(b) We show the existence of a forward invariant set for
the interconnection of the dynamic plant and the proposed
controller, and we leverage singular perturbation theory [13]
to find sufficient conditions for the stability of the closed-
loop system. We show that isolated locally optimal solutions
of the optimization problem are locally exponentially stable
and characterize the region of attraction.

II. PRELIMINARIES AND PROBLEM FORMULATION

Notation. (·)⊤ denotes transposition. For a given vector
x ∈ Rn, ∥x∥ :=

√
x⊤x. Given the vectors x ∈ Rn and

y ∈ Rm, (x, y) ∈ Rn+m denotes their concatenation. For a
smooth function f : Rn → R, the gradient is denoted by ∇f
and its Hessian matrix is denoted by ∇2f . For a continuously
differentiable function h : Rn → Rm, its Jacobian matrix is
denoted by Jh. For any natural number n, [n] denotes the
set {1, · · · , n}. For any vectors, a and b, a ≤ b means that
all the entries of a − b are less than or equal to 0. The
distance between a point s and an nonempty set S is defined
as dist(s,S) = infs0∈S ∥s − s0∥. The diameter of a set S
is defined as diam(S) := sups1,s2∈S ∥s1 − s2∥. We define



Bn(x
∗, r) := {x ∈ Rn : ∥x − x∗∥ < r} and 0n ∈ Rn the

vector of all zeros.
Plant model. We consider systems that can be modeled

using continuous-time dynamics

ẋ = f(x, u, w), x(t0) = x0 (1)

where f : X × U × W → Rn, with X ⊆ Rn, U ⊆ Rnu ,
and W ⊆ Rnw open and connected sets. In (1), x ∈ X is
the state (with x0 ∈ X the initial condition), u ∈ Uc ⊂ U
is the control input, and w ∈ Wc ⊂ W is an unknown
disturbance. We assume that Uc and Wc are compact, and
that the vector field f is continuously differentiable and
Lipschitz-continuous. We make the following assumptions.

Assumption 1 (Steady-state map): There exists a unique
continuously differentiable function h : U × W → X such
that, for any fixed ū ∈ U and w̄ ∈ W , f(h(ū, w̄), ū, w̄) = 0.
Moreover, h(u,w) admits the decomposition h(u,w) =
hu(u) + hw(w), and hw(w) and the Jacobian Jh(u) :=
∂hu(u)

∂u are locally Lipschitz continuous. □
Assumption 1 guarantees that, due to the continuity

of Jh(u) and compactness of Uc and Wc, there exists
ℓhu

, ℓhw
≥ 0 such that ∥Jh(u)∥ ≤ ℓhu

and ∥hw(w1) −
hw(w2)∥ ≤ ℓhw

∥w1 − w2∥ hold for any u ∈ Uc and any
w1, w2 ∈ Wc. Hereafter, we denote the compact set of
admissible equilibrium points of the system (1) by Xeq :=
h(Uc ×Wc). Let r > 0 denote the largest positive constant
such that Xr := Xeq + Bn(0n, r) satisfies Xr ⊆ X . We
make the following stability assumption on the plant, which
is common in the feedback optimization literature [7]–[9].

Assumption 2 (Stability): ∃ a, k > 0 such that, for any
fixed ū ∈ Uc and w̄ ∈ Wc, the bound ∥x(t) − h(ū, w̄)∥ ≤
k∥x0 − h(ū, w̄)∥e−a(t−t0), holds for all t ≥ t0, for some
t0 ≥ 0, and for every initial condition x0 ∈ X0 :=
Xeq + Bn(0n, r0), r0 < r/k − diam(Xeq), where x(t) is
the solution of (1). □

Assumption 2 guarantees the equilibrium h(u,w) is expo-
nentially stable, uniformly in time. Using this, the existence
of a Lyapunov function is guaranteed by the following result,
which is a slight extension of [14, Prop. 2.1].

Lemma 2.1: (Existence of a Lyapunov function): Consider
the system (1) satisfying Assumptions 1-2, where X0 is the
set of initial conditions defined in Assumption 2. Then, for
any fixed w ∈ Wc, there exists a function W : X0 ×U → R
that satisfies the inequalities:

d1∥x− h(u,w)∥2 ≤W (x, u) ≤ d2∥x− h(u,w)∥2,
∂W

∂x
f(x, u, w) ≤ −d3∥x− h(u,w)∥2,∥∥∥∥∂W∂x
∥∥∥∥ ≤ d4∥x− h(u,w)∥,

∥∥∥∥∂W∂u
∥∥∥∥ ≤ d5∥x− h(u,w)∥,

for some positive constants d1 ≤ d2, d3, d4, d5. △
Our control problem is formalized next.
Target control problem. We consider an optimization prob-

lem of the form:

min
u∈Rnu

ϕ(u) + ψ (h(u,w)) (2a)

s.t. ℓ (h(u,w)) ≤ 0, γ(u) ≤ 0 (2b)

where the functions ϕ : Rnu → R, ψ : Rn → R, and
ℓ : Rn → Rp have a locally Lipschitz continuous gradi-
ent (Jacobian), and where γ(u) = [γ1(u), · · · , γm(u)]⊤ :
Rnu → Rm is continuously-differentiable. We assume that
Uc can be expressed as Uc = {u : γ(u) ≤ 0}. We note that
the constraints ℓ(x) ≤ 0 specify a given desirable set for
the state of the system at steady state; we also notice that
this set is parametrized by the unknown disturbance w since
it can be rewritten as ℓ(h(u,w)) ≤ 0. The presence of this
constraint is a key differentiating factor relative to existing
works on online feedback optimization [2], [5], [7]–[9].

We make the following assumptions on (2).
Assumption 3 (Set of inputs): For any i ∈ [m] and any

u ∈ Uc, it holds that ∇γi(u) ̸= 0 if γi(u) = 0. □
Assumption 4 (Regularity): Let u∗ ∈ Uc be a local mini-

mizer and an isolated Karush–Kuhn–Tucker (KKT) point for
the optimization problem (2). The following hold:
i) Strict complementarity condition [15] and the linear inde-
pendence constraint qualification (LICQ) hold at u∗.
ii) The maps u 7→ γ(u), u 7→ ϕ(u), u 7→ ψ(h(u,w)), and
u 7→ ℓ(h(u,w)) are twice continuously differentiable over
some open neighborhood of u∗ and their Hessian matrices
are positive semi-definite at u∗.
iii) The Hessian ∇2ϕ(u∗) is positive definite. □

Assumption 3 is satisfied when Uc = {u : ∥u−u0∥p ≤ r}
for a given r > 0 and for 1 ≤ p ≤ +∞, or when Uc is a
polytope; it is also satisfied in applications such as the ones
described in [1]–[3], [8]. Assumption 4 is satisfied when (2)
is convex with a strongly convex function [3], [8]; here,
we provide a minimal set of assumptions that allows us to
consider non-convex problems while still allowing for strong
stability guarantees as discussed in the next section. We refer
the reader to [16] for the notions of local minimizer and KKT
point. Next, we outline our problem.

Problem (Regulation to optimal solutions): Design a feed-
back controller to regulate inputs and states of (1) to a
minimizer u∗ of (2) and the optimal state x∗ = h(u∗, w)
without requiring knowledge of the disturbance w, while
respecting input constraints at all times. □

III. CONTROLLER DESIGN AND STABILITY ANALYSIS

A. Approximate projected gradient controller

To solve our regulation problem, we propose the following
state-feedback controller:

u̇ = ηFβ(x, u) (3)

Fβ(x, u) := argmin
θ

∥θ +∇ϕ(u) + J⊤
h ∇ψ(x)∥22,

s.t.
∂ℓ

∂x
(x)Jh(u)θ ≤ −βℓ(x),

∂γ

∂u
(u)θ ≤ −βγ(u),

(4)

where β ∈ R>0 is a design parameter and η > 0 is the
controller gain. To gain intuition on this design, we note
that (3) is an approximation of the projected gradient flow
u̇ = projTF (u)(−∇ϕ(u) − J⊤

h ∇ψ(h(u,w))), where TF (u)
denotes the tangent cone of F(u) := {u : ℓ (h(u,w)) ≤



0, γ(u) ≤ 0} at u; in fact, one can show [12, Prop.
4.4] that limβ→∞ Fβ(h(u,w), u) = projTF (u)(−∇ϕ(u) −
J⊤
h ∇ψ(h(u,w))). A key modification relative to the pro-

jected gradient flow is that the steady-state map h(u,w)
is replaced by measurements of the system state x; this
allows us to leverage measurements of the state to steer it
to the solution (u∗, x∗) of the problem (2) without requiring
knowledge of w.

Assumption 5 (Feasibility and conditions): For all x ∈ X
and u ∈ Uc, ∃ θ ∈ Rnu such that ∂ℓ

∂x (x)Jh(u)θ ≤
−βℓ(x) and ∂γ

∂u (u)θ ≤ −βγ(u). For any x ∈ X and
u ∈ Uc, (4) satisfies the Mangasarian-Fromovitz Constraint
Qualification and the constant-rank condition [17]. □

Since the constraints in (4) are based on techniques
from Control Barrier Functions (CBFs) [12], Assumption 5
guarantees that there always exists a direction that keeps
the system inside the feasible set of problem (2). We show
later that Assumption 5 can be weakened to a subset of X .
Defining z := (x, u), the plant (1) under the controller (3)
leads to the following interconnected system:

ż = F (z, w), F (z, w) :=

[
f(x, u, w)
ηFβ(x, u)

]
, (5)

with initial condition z(t0) = (x(t0), u(t0)). Before present-
ing our main convergence and stability results for (5), we
discuss some important properties. The proof of all results
is postponed to Section IV.

Proposition 3.1 (Forward invariance): Let Assumptions
3 and 5 be satisfied. Then, (5) renders the set Uc forward
invariant. △

Proposition 3.2 (Lipschitzness): Let Assumptions 4-5 be
satisfied. Then:
(i) for any w ∈ W , u 7→ Fβ(h(u,w), u) is Lipschitz
continuous with constant ℓFu

≥ 0 over Uc;
(ii) for any u ∈ Uc, x 7→ Fβ(x, u) is locally Lipschitz
continuous;
(iii) For any compact subset X̃ ⊆ X and any x ∈ X̃ , u 7→
Fβ(x, u) is locally Lipschitz continuous. △

Proposition 3.1 guarantees that constraints on the inputs
are satisfied, while Proposition 3.2 ensures the existence and
uniqueness solutions in the classical sense; this is a key
advantage over projected gradient flows which may be, in
general, discontinuous.

B. Stability analysis

This section characterizes the stability of (5). We first
establish the existence of a compact and forward-invariant set
for the state x; this is necessary for the Lipschitz constant in
Proposition 3.2(iii) to be well defined and plays an integral
part in the proof of the main stability result.

Define the compact set X1 := {x | dist(x,Xeq) <√
d2/d1 (d0 + diam(Xeq))}, where

d0 := max

{
dist(x(t0),Xeq),

2(d4ℓhu + d5)ℓFuMu

d3
α0

}
,

with t0 ≥ 0, α0 > 0 and Mu := maxu∈Uc ∥u − u∗∥.
Proposition 3.2(iii) applies to X1 with t0 = 0; we denote

as ℓFx
the Lipschtiz constant of Fβ(x, u) w.r.t x over X1.

The following result establishes forward invariance of X1.
Lemma 3.3 (Forward invariance): Consider system (5)

and let Assumptions 1, 2, and 5 hold. Assume that
r0 >

√
d2/d1 diam(Xeq). If dist(x(t0),Xeq)≤

√
d1/d2r0−

diam(Xeq) and

α0 ≤ d3
2(ℓFx

ℓhu
+ d5)ℓFu

Mu

(√
d1/d2r0 − diam(Xeq)

)
.

Then:
(a) X1 ⊆ X0; and,
(b) for any η ≤ min{ d3

2(d4ℓhu+d5)ℓFx
, α0}, the state x(t)

never leaves X1 after time t ≥ t0. △
Note that, since X1 is forward invariant, Assumption 5

can be restricted to X1. Additionally, by comparing the KKT
conditions for (2) and for the optimization defining Fβ , we
obtain the following result.

Proposition 3.4 (Equilibria and optimizer): There exists
λ∗ such that (u∗, λ∗) is a KKT point for (2) if and only
if (h(u∗, w), u∗) is an equilibrium for (5). △

Before stating the main stability result, we introduce
some useful notation. Let z̃ = (x − x∗, u − u∗) and
define E :=

∂Fβ(h(u,w),u)
∂u |u=u∗ , e1 := −λmax(E), and

e2 := −λmin(E). Then, we can write the dynamics as [13]:
Fβ(h(u,w), u) = E(u − u∗) + ĝ(u), where ĝ(u) satisfies
∥ĝ(u)∥2 ≤ L∥u − u∗∥22, ∀u ∈ Bnu

(u∗, δ), for some L > 0
and δ > 0. Define

smin =

{
0 , if δ ≥ e1

L ,
1− δL

e1
, if δ < e1

L .

Also, let M ∈ R2×2 with entries m11 = θ
η (d3−d4ℓhuℓFxη−

d5ℓFxη), m12 = m21 = − 1
2 (θ(d4ℓhu+d5)ℓFu+(1−θ)κℓFx

e1
),

m22 = (1 − θ)κs, where θ = κℓFx(e1ℓFu(d4ℓhu + d5) +
κℓFx

)−1 and κ > 0.

Theorem 3.5 (Local exponential stability): Consider the
system (5) satisfying Assumption 1-5, and let (x(t), u(t)),
t ≥ t0, be the unique trajectory of (5). Assume that r0 >√
d2/d1 diam(Xeq) and let α0 satisfy the conditions on

Lemma 3.3. Then, for any κ > 0, any s ∈ (smin, 1], and
0 < η < min {η∗1 , η∗2 , α0}, with

η∗1 :=
sd3e1

ℓFx(d4ℓhu + d5)(ℓFu + e1s)
, η∗2 :=

d3
2(d4ℓhu + d5)ℓFx

it holds that M is positive definite and

∥z̃(t)∥ ≤ r̄ ∥z̃(t0)∥ e−
1
2λMr2(t−t0), ∀ t ≥ t0, (6)

where r̄ :=
√

r1
r2
(1 + ℓ2hu

+ ℓhu), r1, r2 are defined as

r1 := max

{
η

θd1
,

2e2η

κ(1− θ)

}
, r2 := min

{
η

θd2
,

2e1η

κ(1− θ)

}
and λM = λmin(M), for any initial condition (x(t0), u(t0))

such that dist(x(t0),Xeq)≤
√

d1

d2
r0 −diam(Xeq) , ∥u(t0)−

u∗∥ ≤ e1
L (1− s). △

Theorem 3.5 establishes local exponential stability of
(u∗, x∗), where we recall that u∗ satisfies Assumption 4



and x∗ = h(u∗, w). We note that the free parameter s
affects both λM and the size of the region of attraction; in
particular, as s decreases, the region gets smaller and λM
may increase. We also note that the other free parameter κ
can be used to maximize λMr2. However, this is something
that may be burdensome for a numerical perspective. The
result of Theorem 3.5 holds for constant disturbances; the
extension to time-varying disturbances will be the subject
of future research. If the QP problem (4) is not solved to
convergence, then we would have an inexact implementation
of the controller; in this case, by combining Theorem 3.5
and [13, Lemma 9.4], it is possible to derive results in terms
or practical local exponential stability.

IV. PROOFS

For brevity, we use the shorthand notation Fβ(u) :=
Fβ(h(u,w), u). Consider the variable shift x̃ = x−h(u,w),
which shifts the equilibrium of (1) to the origin. In the new
variables, (5) reads as:

˙̃x = f(x̃+ h(u,w), u, w)− d

dt
h(u,w) (7a)

u̇ = ηFβ(x̃+ h(u,w), u) (7b)

For (7a), we denote by W (x̃, u) the Lyapunov function from
Lemma 2.1.

(a) Proof of Proposition 3.1. By definition, ∂γ
∂uFβ(x, u) ≤

−βγ(u) or, equivalently ∇γ⊤i Fβ(x, u) ≤ −βγi(u). Then,
using (3), for u ∈ ∂Uc = ∪i{u : γi(u) = 0}, we have
γ̇i(u) = ∇γ⊤i Fβ(x, u) ≤ −βγi(u) = 0. Hence by Nagumo’s
Theorem [18], {u : γi(u) ≤ 0} is forward invariant for all i.

(b) Proof of Proposition 3.2. Note that the statement
describes the (local) Lipschitzness of both Fβ(x, u) and
Fβ(h(u,w), u). To establish these properties, we apply [17,
Theorem 3.6] to show the local Lipschitzness of functions
defined by quadratic programs with parameter-dependent
linear inequality constraints.

For (i), note that (4) with x replaced by h(u,w) (with
h(u,w) ∈ X ) satisfies the General Strong Second-Order
Sufficient Condition [17] and Slater’s condition at u ∈ U .
Moreover, the cost and constraints of (4) are twice contin-
uously differentiable. Thus, Fβ(h(u,w), u) is locally Lips-
chitz at u ∈ U by [17, Theorem 3.6]. Finally, Fβ(h(u,w), u)
is Lipschitz on Uc due to the compactness of Uc. A similar
reasoning can be applied to prove the local Lipschitzness of
Fβ(x, u) in each of its arguments.

(c) Proof of Lemma 3.3. First, it is straightforward to verify
that X1 ⊆ X0. Next, define X2 = {x | infx′∈Xeq ∥x −
x′∥ ≤ d0}, then x(t0) ∈ X2 ⫋ X1. We show that for
η ≤ min{ d3

2d4ℓhuℓFx
, α0}, we have d

dtW (x̃, u) < 0 for any
x(t) ∈ X1 \ X2. Note that,

d

dt
W (x̃, u) =

∂W

∂x̃
˙̃x+

∂W

∂u
u̇ (8a)

=
∂W

∂x̃
f(x̃+ h(u,w), u)− ∂W

∂x̃
Jh(u)u̇+

∂W

∂u
u̇ (8b)

≤− d3∥x̃∥2 + (d4ℓhu
+ d5) ∥u̇∥∥x̃∥ (8c)

Next, we bound ∥u̇∥. If x ∈ X1, then

∥u̇∥ = η∥Fβ(x, u)∥ = η∥Fβ(x, u)− Fβ(u
∗)∥

≤ η∥Fβ(x, u)− Fβ(u)∥+ η∥Fβ(u)− Fβ(u
∗)∥

≤ ηℓFx∥x− h(u,w)∥+ η∥Fβ(u)− Fβ(u
∗)∥

and note that ∥Fβ(u)− Fβ(u
∗)∥ ≤ ℓFu

∥u− u∗∥. Hence, if
x ∈ X1, one has that
d

dt
W (x̃, u)

≤− d3∥x̃∥2 + (d4ℓhu
+ d5) ∥x̃∥(ℓFx

η∥x̃∥+ ℓFu
η∥u− u∗∥)

≤(−d3 + (d4ℓhu+ d5)ℓFxη)∥x̃∥2 + (d4ℓhu+ d5) ℓFuηMu∥x̃∥.

It then follows that d
dtW (x̃, u) < 0 if

∥x̃∥ > (d4ℓhu + d5) ℓFuηMu

d3 − (d4ℓhu
+ d5)ℓFx

η
and η <

d3
(d4ℓhu

+ d5)ℓFx

.

For any x(t) ∈ X1 \ X2 and any η ≤
min{ d3

2(d4ℓhu+d5)ℓFx
, α0}, one has that

∥x̃(t)∥ > d0 ≥ 2(d4ℓhu
+ d5)ℓFu

Mu

d3
α0

≥ (d4ℓhu
+ d5)ℓFu

Muη
d3

2

≥ (d4ℓhu
+ d5)ℓFu

ηMu

d3 − (d4ℓhu + d5)ℓFxη
,

implying that d
dtW (x̃, u) < 0.

Next, we show that x(t) will not exit X1. Otherwise, there
must exist t2 > 0 such that

inf
x′∈Xeq

∥x(t2)− x′∥ =
√
d2/d1 (d0 + diam(Xeq)) .

Additionally, we know that infx′∈Xeq
∥x(0) − x′∥ ≤ d0, by

continuity, there exists t1 such that 0 < t1 < t2, x(t) ∈
X1 \ X2, infx′∈Xeq

∥x(t)− x′∥ > d0 + ϵ, ∀t ∈ [t1, t2), and
infx′∈Xeq ∥x(t1) − x′∥ < d0 + 2ϵ, where ϵ > 0 sufficiently
small. It follows that d

dtW (t) < 0, ∀t ∈ [t1, t2); hence, we
must have that limt→t−2

W (t) ≤W ( t2+t1
2 ) < W (t1).

On the other hand, we have that limt→t−2

√
W (t) ≥√

d1∥x(t2) − h(u(t2), w)∥ ≥
√
d1 infx′∈Xeq ∥x(t2) − x′∥ =√

d2(d0 + diam(Xeq)), and√
W (t1) ≤

√
d2∥x(t1)− h(u(t1), w)∥

≤
√
d2

(
inf

x′∈Xeq

∥x(t1)− x′∥+ ϵ+ diam(Xeq)

)
≤
√
d2(d0 + diam(Xeq) + 3ϵ).

Thus, limt→t−2

√
W (t)+3ϵ

√
d2 ≥

√
W (t1). If we let ϵ→ 0,

one would have that limt→t−2

√
W (t) ≥

√
W (t1), which is

a contradiction.
(d) Proof of Theorem 3.5. In order to demonstrate the local

exponential stability of the interconnected system, we first
establish an intermediate result pertaining to the stability of
the “open-loop controller” u̇ = Fβ(u) at u∗.

We note that Fβ(u) is well-defined for any u ∈ Uc since
the constraints in Fβ(h(u,w), u) are always feasible by As-
sumption 5. By Assumption 4, and using [12, Lemma 5.11]



and [12, Theorem 5.6(iii)], we deduce Fβ is differentiable at
u∗ and its Jacobian E =

∂Fβ(u)
∂u |u=u∗ is negative definite;

let P := κ
∫∞
0

(exp(Eζ)⊤ exp(Eζ)dζ for some κ > 0. By
[13, Theorem 4.10], it holds that PE +E⊤P = −κIn, and
κ

2e2
∥u− u∗∥22 ≤ (u− u∗)⊤P (u− u∗) ≤ κ

2e1
∥u− u∗∥22. Let

V (u) := (u− u∗)⊤P (u− u∗); then

(u− u∗)⊤PFβ(u) + Fβ(u)
⊤P (u− u∗)

=(u− u∗)⊤
(
PE + E⊤P

)
(u− u∗)

+ 2(u− u∗)⊤P ĝ(u)

≤− κ∥u− u∗∥2 + 2∥u− u∗∥∥P∥∥ĝ(u)∥

≤ − κ∥u− u∗∥2 + κ

e1
∥u− u∗∥L∥u− u∗∥2

where the last inequality holds for all ∥u − u∗∥ < ρ <
min{δ, e1/L}. For u̇ = ηFβ(x, u), it follows that

1

η
V̇ =

1

η
u̇⊤P (u− u∗) +

1

η
(u− u∗)⊤Pu̇

= 2Fβ(u)
⊤P (u− u∗)

+ 2(Fβ(x, u)− Fβ(u))
⊤P (u− u∗)

≤
(
−κ+

κL

e1
∥u− u∗∥2

)
∥u− u∗∥22

+ 2∥u− u∗∥∥P∥∥(Fβ(u)− Fβ(x, u))∥

≤ −κs ∥u− u∗∥22 +
κ

e1
∥u− u∗∥∥(Fβ(u)− Fβ(x, u))∥

where the last inequality holds if ∥u − u∗∥ ≤ e1
L (1 − s),

for any s ∈ (smin, 1]. In the proof of Lemma 3.3, we have
shown that d

dtW (x̃, u) ≤ −d3∥x̃∥2 + (d4ℓhu
+ d5) ∥u̇∥∥x̃∥

and ∥u̇∥ ≤ ηℓFx
∥x− h(u,w)∥+ η∥Fβ(u)−Fβ(u

∗)∥. Since
∥Fβ(u) − Fβ(x, u)∥ ≤ ℓFx∥x − h(u,w)∥ and ∥Fβ(u) −
Fβ(u

∗)∥ ≤ ℓFu∥u − u∗∥, one has that, if ∥u − u∗∥ ≤
e1
L (1− s), s ∈ (smin, 1], then

d

dt

1

η
V (u) ≤ −κs ∥u− u∗∥22 +

κℓFx

e1
∥u− u∗∥∥x̃∥, (9)

d

dt
W (x̃, u) ≤(−d3 + d4ℓhu

ℓFx
η + d5ℓFx

η)∥x̃∥2

+ (d4ℓhu + d5)ℓFuη∥x̃∥∥u− u∗∥.
(10)

Next, define the Lyapunov function candidate v(x̃, u) :=
θ 1
ηW (x̃, u)+(1− θ) 1ηV (u) for (7). Using (9) and (10), the

following holds if ∥u− u∗∥ ≤ e1
L (1− s):

d

dt
v(x̃, u) ≤ θ

η

(
(−d3 + d4ℓhuℓFxη + d5ℓFxη)∥x̃∥2

+(d4ℓhu
+ d5)ℓFu

η∥x̃∥∥u− u∗∥)

+ (1− θ)(−κs ∥u− u∗∥22 +
κℓFx

e1
∥u− u∗∥∥x̃∥)

= −ζ⊤Mζ,

where ζ = (∥x̃∥, ∥u − u∗∥)⊤, and θ ∈ (0, 1), η > 0. To
ensure that v(x̃, u) is a valid Lyapunov function candidate,
we need M to be positive definite. Since M is symmetric, the
sufficient and necessary conditions for positive definiteness

are m11 > 0 and m11m22 > m21m12, which are equivalent
to η < d3

d4ℓhuℓFx+d5ℓFx
and

s

η
>

1

4θ(1− θ)κd3

(
θ(d4ℓhu + d5)ℓFu + (1− θ)

κℓFx

e1

)2

+
ℓFxs

d3
(d4ℓhu

+ d5)

=
1

4κd3

(
θ

1− θ
α2
1 +

1− θ

θ
α2
2 + 2α1α2

)
+
ℓFx

s

d3
(d4ℓhu

+ d5) ≥
1

κd3
α1α2 +

ℓFx
s

d3

where α1 = (d4ℓhu + d5)ℓFu , α2 =
κℓFx

e1
for brevity. The

last inequality comes from the arithmetic-geometric mean
inequality [19], and equality can be attained if and only if
θ

1−θα
2
1 = 1−θ

θ α2
2, which is equivalent to θ = α2

α1+α2
. In the

rest of the proof, we fix

θ =
α2

α1 + α2
=

κℓFx

e1ℓFu(d4ℓhu + d5) + κℓFx

.

Therefore, one has that η < sd3e1
ℓFx (d4ℓhu+d5)(ℓFu+e1s)

.

Since we need x(t) staying in X0, the valid range of η is
η ≤ min

{
sd3e1

ℓFx (d4ℓhu+d5)(ℓFu+e1s)
, α0,

d3

2(d4ℓhu+d5)ℓFx

}
, by

combining the limitation for η in Lemma 3.3.
To conclude, we first note that

∥ζ∥2 = ∥x̃∥2 + ∥u− u∗∥2 ≤ 1

d1
W +

2e2
κ
V

=
η

θd1

θ

η
W +

2e2η

κ(1− θ)

1− θ

η
V ≤ max

{
η

θd1
,

2e2η

κ(1− θ)

}
︸ ︷︷ ︸

=r1

v,

∥ζ∥2 = ∥x̃∥2 + ∥u− u∗∥2 ≥ 1

d2
W +

2e1
κ
V

=
η

θd2

θ

η
W +

2e1η

κ(1− θ)

1− θ

η
V ≥ min

{
η

θd2
,

2e1η

κ(1− θ)

}
︸ ︷︷ ︸

=r2

v.

Let λM be the minimum eigenvalue of M ; then, v̇ ≤
−λM∥ζ∥2 = −λM (∥x̃∥2 + ∥u− u∗∥2) ≤ −λMr2v. By the
Comparison Lemma [13, Lemma 3.4], it follows that v(t) ≤
v(t0) exp(−λMr2(t− t0)) if ∥u(t0)− u∗∥ ≤ e1

L (1− s), for
all s ∈ (smin, 1]. Besides, we note that ∥ζ(t)∥ and ∥z̃(t)∥
satisfy the following:

∥z̃(t)∥2 =∥x− h(u∗, w)∥2 + ∥u− u∗∥2

≤(∥x̃∥+ ∥h(u,w)− h(u∗, w)∥)2 + ∥u− u∗∥2

≤∥ζ(t)∥2 + 2ℓhu
∥x̃∥∥u− u∗∥+ ℓ2hu

∥u− u∗∥2

≤(1 + ℓ2hu
)∥ζ(t)∥2 + ℓhu(∥x̃∥2 + ∥u− u∗∥2)

=(1 + ℓ2hu
+ ℓhu)∥ζ(t)∥2.

Similarly, one can show that ∥ζ(t)∥2 ≤ (1 + ℓ2hu
+

ℓhu
)∥z̃(t)∥2. Hence, ∥z̃(t)∥ ≤

√
(1 + ℓ2hu

+ ℓhu
)r1v(t) ≤√

(1 + ℓ2hu
+ ℓhu

)r1v(t0) exp
(
− 1

2λMr2(t− t0)
)

≤ (1 +

ℓ2hu
+ ℓhu

)
√

r1
r2
∥z̃(t0)∥ exp

(
− 1

2λMr2(t− t0)
)
, for all t ≥

t0, if ∥u(t0) −u∗∥ ≤ e1
L (1− s), for all s ∈ (smin, 1].



V. REPRESENTATIVE NUMERICAL RESULTS

In this section, we apply (5) to the problem of regulat-
ing the position of a unicycle robot to the solution of a
constrained optimization problem. Specifically, the unicycle
dynamics [20] read as ȧ = v1 cos θ, ḃ = v1 sin θ, θ̇ = v2,
where v1, v2 ∈ R are the low-level inputs, the state is x =
(a, b, θ), with (a, b) the position in a 2-dimensional plane,
and θ ∈ (−π, π] its orientation with respect to the a-axis.
We consider the cost functions ϕ(u) := 0.05∥u∥22, ψ(x) :=
∥(a, b) − xtarget∥22 and constraints u ∈ Uc := {(ua, ub) |
−10 ≤ ua, ub ≤ 10} and ℓ(x) := ∥(a, b)∥22 − 0.9 ≤ 0,
where xtarget = (0.6, 0.8) is the targeted final position of the
robot. Here, we follow [11] and focus on the error variables
ξ := ∥u − (a, b)⊤∥ and θ̄ := atan 2

(
ub−b
ua−a

)
− θ, whose

dynamics yield a globally exponentially stable equilibrium
point (ξ, θ̄) = (0, 0) with the choice v1 = kξ cos(θ̄) and
v2 = k(cos(θ̄) + 1) sin(θ̄) + kθ̄, where u = (ua, ub) is the
high-level control input given by the optimization problem.
Finally, we model measurement errors in the state x by
instead considering (â, b̂) := (a, b) + w, where w ∈ R2 is a
constant disturbance.

In Figure 1, we apply (5) to regulate u and x toward the
minimizer with initial condition x(0) = (0,−1, 0), u(0) =
(0, 0) and parameters β = 10, k = 2, η = 0.1. In Figure 1(a),
we plot the trajectories of (a, b) and steady-state mapping
h(u(t), w) with and without disturbance w. For both cases,
all trajectories converge to the corresponding equilibrium
h(u∗, w). In Figure 1(b), we plot the error ∥z̃(t)∥. For both
cases, the error curves can be upper bounded by a plot of
an exponentially decreasing function, in consistency with
Theorem 3.5.
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(a) Trajectory of x(t) and h(u(t), w)
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Fig. 1. Trajectories for the interconnected system and error plot.

VI. CONCLUSIONS

We proposed a state feedback controller based on a contin-
uous approximation of the projected gradient flow to regulate
a dynamical system to optimal solutions of a constrained
optimization problem. In particular, the optimization problem
can have nonlinear inequality constraints on the system state.
We derived sufficient conditions to ensure that isolated lo-
cally optimal solutions for which the strict complementarity
condition and the LICQ hold are locally exponentially stable
for the closed-loop system. Future research efforts will look
at extensions of our results to time-varying disturbances and
to sample-data implementations of our controller.
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