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When sampling works in data-driven control:
Informativity for stabilization in continuous time

Jaap Eising Jorge Cortés

Abstract—This paper introduces a notion of data informativity
for stabilization tailored to continuous-time signals and systems.
We establish results comparable to those known for discrete-
time systems with sampled data. We justify that additional
assumptions on the properties of the noise signals are needed
to understand when sampled versions of continuous-time signals
are informative for stabilization, thereby introducing the notions
of square Lipschitzness and total bounded variation. This allows
us to connect the continuous and discrete domains, yielding
sufficient conditions to synthesize a stabilizing controller for
the true continuous-time system on the basis of sampled data.
Simulations illustrate our results.

I. INTRODUCTION

Data-driven control has emerged as an appealing way of
combining the use of data with solid theoretical principles
from systems theory to synthesize controllers for unknown
systems on the basis of measurements. The development of
‘one-shot’ controller design methods in particular has attracted
significant interest, where data is directly employed for design
without an intermediate system identification step. Owing to
the discrete-time nature of sampled data, most of this progress
has been for systems operating in discrete time. However,
systems that evolve in continuous time are widespread across
engineering disciplines due to the physical nature of real-world
phenomena. Often times, such systems are interconnected with
digital controllers that operate in discrete time. In the context
of data-driven control, understanding the interface between
the continuous and digital domains is particularly relevant as
measurements come often in the form of samples. The goal of
this paper is to understand to what extent continuous-time data
and its samples are informative enough to ensure stabilizability
of an unknown plant evolving in continuous time.

Literature review: Data-driven control has been particularly
fruitful for linear systems, where the notion of persistency of
excitation and specifically Willems’ fundamental lemma [1]
have allowed users to express any finite length trajectory
in terms of sufficiently informative measurements. This has
proven useful in a range of problems, including simulation [2],
linear feedback design [3], predictive control [4], and opti-
mal control laws [5], [6]. Aligned with this body of work,
the informativity approach to data-driven control introduced
in [7], [8] considers measurements that do not contain enough
information to obtain a unique system. By making assumptions
on the model class and noise model, this approach explicitly
determines the set of all systems consistent with the measure-
ments, thereby enabling the certification of desirable properties
(e.g., stabilizability) for the measured system. Most of the
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aforementioned works deal with discrete-time systems, and
correspondingly with measurements consisting of sequences
of states and inputs. To our knowledge, the only works dealing
with continuous-time systems do so on the basis of discretized
measurements, see e.g., [9]–[12]. In line with this, [13] derives
a variant of Willems’ lemma for continuous-time systems on
the basis of samples. Moreover, many real-world phenomena
take place in continuous time and as such, the examples of
[14]–[17] are found by discretizing a continuous-time system.

Statement of contributions: We deal with the model class of
continuous-time linear systems and investigate the informativ-
ity of data for stabilization. First, we provide conditions for
stabilizability with measurements in the form of continuous-
time trajectories and noise models given in terms of integrals
of the noise signal. Complementarily, we also derive condi-
tions of when sampled data are informative for continuous-
time stabilization. Through an example, we show how no
connection between the two notions can be established without
additional assumptions on the noise model, motivating our
consideration of square Lipschitzness and bounded total square
variation noise models. These notions allow us to establish sev-
eral connections between the continuous and discrete domains,
culminating in sufficient conditions to synthesize a stabilizing
controller for the true continuous-time system on the basis
of sampled data. Finally, we study the role of the sampling
stepsize, provide a bound on it to guarantee the informativity
of the sampled data and a criterion that enables us to remove
a portion of the measurements without losing informativity.
Simulations illustrate our results.

II. PROBLEM FORMULATION

Consider1 the continuous-time system

ẋ(t) = Asx(t) +Bsu(t) + w(t), (1)

where x(t) ∈ Rn is the state, u(t) ∈ Rm is the input, and
w(t) ∈ Rn is a disturbance. Here As : Rn → Rn and Bs :
Rn → Rm are unknown linear maps, and the sub-index s is
used to denote the true system matrices. Given a finite-time
horizon T > 0, we are interested in absolutely continuous
state trajectories x of (1) on the interval [0, T ].

1We denote by Z>0 and R the set of positive integer and real numbers,
respectively. For a vector v ∈ Rn and a matrix A ∈ Rn×n, ‖v‖ and ‖A‖
denote the Euclidean norm and induced Euclidean norm, resp. The Moore-
Penrose pseudo-inverse of A is denoted A†. We let In denote the n × n
identity matrix. A property holds for almost all t ∈ [0, T ] if the set for which
the property does not hold has Lebesgue measure 0. A function z : [0, T ]→
Rn is L-Lipschitz if ‖z(t1) − z(t2)‖ 6 L|t1 − t2| for t1, t2 ∈ [0, T ]. If
z is differentiable, this is equivalent to ‖z′(t)‖ 6 L for all t ∈ [0, T ]. z is
absolutely continuous if there is an integrable function ẑ : [0, T ]→ Rn such
that z(t) = z(0)+

∫ t
0 ẑ(τ)dτ. Note that this means that z has a derivative ẑ

almost everywhere. We denote the set of square-integrable functions by L2.
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Since As and Bs are unknown, we take a data-driven
approach to determine properties of the system and control it.
We consider continuous-time measurements over the interval
[0, T ]. Specifically, we consider measured state x : [0, T ] →
Rn and input u : [0, T ] → Rm trajectories. We assume that
the associated disturbance w : [0, T ] → Rn satisfies a noise
model, denoted ∆, defined as follows: for 0 ≤ Q ∈ Rn×n,
w ∈ ∆ if and only if∫ T

0

w(t)w(t)>dt 6 Q. (2)

Taking the trace of both sides, we see that (2) implies∫ T
0
w(t)>w(t)dt 6 tr(Q), and therefore ∆ ⊆ L2.

This noise model captures the behavior of common assump-
tions on noise signals. For instance, if for almost all t ∈ [0, T ],

w(t)w(t)> 6 1
TQ, (3)

then (2) holds. Moreover, if there is a bound on the norm of
the values of the disturbance signal, this can be brought into
the form above by observing that

w(t)>w(t) 6 k ⇐⇒ w(t)w(t)> 6 kIn,

We make the following assumption on the measurements.
Assumption 1 (Well-behavedness of the measurements). The
measurement signals x : [0, T ]→ Rn, u : [0, T ]→ Rm satisfy
• The state signal x is absolutely continuous;
• The input signal u is square integrable;
• The corresponding noise signal w : [0, T ]→ Rn belongs

to ∆ as defined by (2);
• The triplet (x, u, w) satisfies (1) for almost all t ∈ [0, T ].

This assumption is mild but necessary for our ensuing
analysis. Since x is absolutely continuous on the compact
interval [0, T ], it is bounded. As a consequence, x ∈ L2. This,
together with the fact that (1) holds almost everywhere and
∆ ⊆ L2, implies that ẋ ∈ L2 too.

Underlying the informativity approach is the observation
that, on the basis of measurements, one can only conclude a
property of interest of the true system (As, Bs) if all systems
compatible with the measurements have such property. As
such, we consider the set of all systems compatible with the
measurement and noise model as defined by

Σ = {(A,B) ∈ Rn×n × Rn×m | ẋ−Ax−Bu ∈ ∆}.

We are interested in finding a stabilizing controller for
(As, Bs) on the basis of the measurements x and u. This leads
to the following notion.
Definition II.1 (Informativity of continuous-time data for
quadratic stabilization). Data consisting of state x : [0, T ] →
Rn and input u : [0, T ]→ Rm trajectories are informative for
quadratic stabilization if and only if there exists K ∈ Rm×n
and P ∈ Rn×n such that P > 0 and for all (A,B) ∈ Σ:

(A+BK)P + P (A+BK)> < 0. (4)

Our first objective is to provide necessary and sufficient
conditions on the data (x, u) which ensure this notion of
informativity is satisfied. Our second objective seeks to un-
derstand when sampled versions of the continuous-time data
remain informative enough for stabilization. To formalize this

objective, assume we have access to samples of the signals
x and u at a number of discrete-time instants. We assume
that the stepsize δ is a whole fraction of the time horizon2,
that is, T

δ ∈ Z>0, which means that we consider samples
at time instances {tk = kδ}T/δ−1k=0 ⊂ [0, T ]. We collect the
measurements and samples of the noise signal into matrices

Ẋδ =
[
ẋ(0) · · · ẋ(T − δ)

]
, Xδ =

[
x(0) · · · x(T − δ)

]
, (5a)

Uδ =
[
u(0) · · · u(T − δ)

]
, Wδ =

[
w(0) · · · w(T − δ)

]
. (5b)

As before, Ẋδ , Xδ , and Uδ are known, but the samples of the
noise, collected in the matrix Wδ , are unknown. However, we
assume Wδ satisfies some noise model ∆disc. In particular, as
a special case of noise models considered in the discrete-time
informativity literature [8], we assume that for some 0 ≤ Q ∈
Rn×n, Wδ ∈ ∆disc if and only if

δWδW
>
δ 6 Q. (6)

Note this holds for example if (3) is satisfied for all t = kδ,
where k = 0, . . . , T/δ − 1. On the basis of the samples, we
seek to find a stabilizing controller for all systems in the set

Σδ = {(A,B) ∈ Rn×n×Rn×m | Ẋδ−AXδ−BUδ ∈ ∆disc}.

Our second objective can then be formalized as: provide con-
ditions on the continuous-time measurements under which we
can compare stabilizability properties of Σ and Σδ . We focus
on understanding when the continuous-time measurements
(x, u) are informative for quadratic stabilization on the basis
of sampled data and on the stepsizes that make this happen.

III. DATA INFORMATIVITY IN CONTINUOUS-TIME

Here we provide characterizations for when data, either in
the form of continuous-time trajectories or sampled versions
of it, is informative for continuous-time stabilization.

A. Informativity with continuous-time data
Here we address the first objective laid out in Section II

and characterize when continuous-time data is informative for
stabilization. We start by observing that the set Σ of systems
compatible with the data can be defined via a Quadratic
Matrix Inequality (QMI). Formally, consider measurements
x and u satisfying Assumption 1, with noise model (2). For
N = N> ∈ R(2n+m)×(2n+m), let

Z(N) :=
{

(A,B) |
[
In A B

]
N
[
In A B

]>
> 0
}
.

Then, one has Σ = Z(Ncont(Q)), where

Ncont(Q) :=

Q 0 0
0 0 0
0 0 0

− ∫ T

0

 ẋ(t)
−x(t)
−u(t)

 ẋ(t)
−x(t)
−u(t)

>dt. (7)

On the other hand, the stability condition (4) is equivalent to InA>
B>

>  0 −P −PK>
−P 0 0
−KP 0 0

 InA>
B>

 > 0, (8)

for all (A,B) ∈ Σ. This means that we are interested in
identifying conditions under which all (A,B) satisfying a QMI

2The choice of a uniform stepsize makes the notation simpler, but our
results can be easily adapted to deal with more general sampling schemes.
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(the one defined by (7)) satisfy another QMI (in this case, (8)).
The following result achieves this.

Theorem III.1 (Necessary and sufficient conditions for in-
formativity of continuous-time data). Suppose that the state
and input trajectories x : [0, T ] → Rn and u : [0, T ] → Rm
satisfy Assumption 1. Then the data (x, u) are informative for
quadratic stabilization if and only if there exists K ∈ Rm×n,
P ∈ Rn×n, and β > 0 such that P > 0 and

−

Q+ βIn P PK>

P 0 0
KP 0 0

+∫ T

0

 ẋ(t)
−x(t)
−u(t)

 ẋ(t)
−x(t)
−u(t)

>dt>0. (9)

Proof. We partition Ncont(Q) as

Ncont(Q) =:

[
N11 N12

N21 N22

]
,

where N11 ∈ Rn×n and N22 ∈ R(n+m)×(n+m). Let

M :=

 0 −P −PK>
−P 0 0
−KP 0 0

 ,
for which we consider a similar partition. To prove the result,
we need to verify the hypotheses of [8, Corollary 4.13], which
in this case take the form: N22 6 0, N11 −N12N

†
22N21 > 0,

M22 6 0, and kerN22 ⊆ kerN12. The first condition follows
from the fact that∫ T

0

(
x(t)
u(t)

)(
x(t)
u(t)

)>
dt > 0,

as it is the integral of positive semidefinite matrices. The sec-
ond immediately follows from and the fact that Z(Ncont(Q))
is nonempty (see [8, Eq. (3.5)]). The third is immediate since
M22 = 0. To show the fourth condition, we need to prove

ker

∫ T

0

(
x(t)
u(t)

)(
x(t)
u(t)

)>
dt ⊆ ker

∫ T

0

ẋ

(
x(t)
u(t)

)>
dt.

Let v ∈ ker
∫ T
0

(
x(t)
u(t)

)(
x(t)
u(t)

)>
dt. Then

0 = v>

(∫ T

0

(
x(t)
u(t)

)(
x(t)
u(t)

)>
dt

)
v

=

∫ T

0

v>
(
x(t)
u(t)

)(
x(t)
u(t)

)>
vdt.

Therefore,
(
x(t)
u(t)

)>
v = 0 for almost all t, and hence v ∈

ker
∫ T
0
ẋ
(
x(t)
u(t)

)>
dt. We can invoke then [8, Corollary 4.13]

to conclude that (8) holds for all (A,B) ∈ Σ if and only if
there exists α > 0 and β > 0 such that

M − αNcont(Q) >

[
βIn 0
0 0

]
.

Since M 6> 0, this requires α 6= 0. Therefore, we can we can
scale β and P by α, proving the statement.

As presented, the equation (9) is not a linear matrix inequal-
ity (LMI) in the variables K, P , and β. However it can be
rewritten as an LMI using the substitution L := KP . This

allows us to efficiently check for informativity by checking
feasibility of an LMI in the variables L, P , and β. Afterwards,
one can use the equation K = LP−1 to find the corresponding
stabilizing feedback.
Remark III.2 (Comparison of computational complexity with
discrete-time case). The condition (9) of Theorem III.1 takes
the form of the scalar inequality β > 0, the n×n LMI P > 0
and an LMI of dimensions (2n + m) × (2n + m). Instead,
the condition of informativity for quadratic stabilization in the
discrete-time case, cf. [8, Theorem 5.1], requires β > 0, P >
0, and an LMI of dimensions (3n+m)× (3n+m). •
Remark III.3 (General noise models). One can extend The-
orem III.1 for noise models more general than (2) without
significant additional effort. Let Π : [0, T ] → R(n+1)×(n+1)

be a matrix-valued function and partition it as

Π(t) =

[
Π11(t) Π12(t)
Π21(t) Π22(t)

]
, with Π11(t) ∈ Rn×n.

Consider the generalized noise model: w ∈ ∆ if and only if∫ T

0

[
In

w(t)>

]>
Π(t)

[
In

w(t)>

]
dt > 0.

Under more general assumptions than those made above, an
extension of Theorem III.1 can be derived analogously. •
B. Informativity with sampled data

Here, we analyze when sampled versions of continuous-time
data are sufficiently informative for stabilization. Let the state
and input trajectories x : [0, T ] → Rn and u : [0, T ] → Rm
satisfy Assumption 1. Recall the definitions of the matrices
Ẋδ , Xδ , Uδ , and Wδ in (5), and consider a noise model
∆disc as in (6). Note that the set of systems compatible with
the sampled data (Ẋδ, Xδ, Uδ) and noise model (6) can be
described by Σδ = Z(Nδ(Q)), where

Nδ(Q) :=

Q 0 0
0 0 0
0 0 0

− δ
 Ẋδ

−Xδ

−Uδ

 Ẋδ

−Xδ

−Uδ

> .
As before, we are interested in finding a stabilizing controller
for (As, Bs) on the basis of the discrete measurements, leading
to the following notion.
Definition III.4 (Informativity of discrete-time data for
quadratic stabilization, cf. [8, Def. 2.1]). The sampled data
(Ẋδ, Xδ, Uδ) are informative for continuous-time quadratic
stabilization if and only if there exists K ∈ Rm×n and
P ∈ Rn×n such that for all (A,B) ∈ Σδ:

P > 0, (A+BK)P + P (A+BK)> < 0.

We now provide a characterization for informativity of
discrete-time data for stabilization of continuous-time systems:

Theorem III.5 (Necessary and sufficient conditions for infor-
mativity of discrete-time data). Suppose the data (Ẋδ, Xδ, Uδ)
sampled from the system (1) correspond to noise model (6).
Then, the data (Ẋδ, Xδ, Uδ) are informative for continuous-
time quadratic stabilization if and only if there exists K ∈
Rm×n, P ∈ Rn×n, and β > 0 such that P > 0 and−Q− βIn −P −PK>

−P 0 0
−KP 0 0

+ δ

 Ẋδ

−Xδ

−Uδ

 Ẋδ

−Xδ

−Uδ

>> 0. (10)
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The proof of this result is similar to that of Theorem III.1
and we omit it for brevity. Note that Theorem III.5 com-
plements the result in Theorem III.1, which characterizes
informativity of continuous-time data for stabilization of
continuous-time systems. Together with [8, Thm. 5.1], which
characterizes informativity of discrete measurements for sta-
bilization of discrete systems, these paint a complete picture.

Given these characterizations, a natural question is to figure
out the relationship between continuous-time data (x, u) being
informative, as in Theorem III.1, and sampled versions of it
being informative, as in Theorem III.5. As it turns out, without
additional assumptions, there is no implication between the
two notions: data (x, u) can meet the conditions (9) but not
those in (10), and vice versa. The reason for this can be tracked
back to comparing the terms∫ T

0

 ẋ(t)
−x(t)
−u(t)

 ẋ(t)
−x(t)
−u(t)

>dt and δ

 Ẋδ

−Xδ

−Uδ

 Ẋδ

−Xδ

−Uδ

> . (11)

The issue at hand stems from the fact that, if the signal w (or
equivalently the measurement signals ẋ, x, or u) is changed on
a measure zero set, the integral on the left remains the same,
whereas the individual samples on the right might change.
The following example illustrates some of the difficulties in
comparing the quantities in (11).

Example III.6 (Comparing noise models). Consider the
continuous-time linear system with noise given by ẋ(t) =
w(t). We consider measurements of this system over the time
interval [0, 2]. Define S0 = (1, 2), S1 = (1, 2], S2 = [1, 2],
with corresponding noise signals,

wα(t) =

{
1 for t ∈ Sα
0 otherwise

,

for each α ∈ {0, 1, 2}. Note that, for each α, we have∫ 3

0
wα(t)wα(t)>dt = 1. Given initial condition x(0) = 1,

each of these noise signals leads to the same state trajec-
tory x(t). Now suppose we sample the system at t = 0, t = 1
and t = 2. Defining matrices Wα as in (5) corresponding to
the noise signals wα, respectively, we obtain

W0W
>
0 = 0, W1W

>
1 = 1, W2W

>
2 = 2.

More generally, this shows that without making further as-
sumptions on the signal w, we can not necessarily conclude
that certain bounds hold for the sampled data. •

IV. LINKING INFORMATIVITY OF CONTINUOUS AND
DISCRETE MEASUREMENTS

In this section we study the relationship between informativ-
ity for stabilization of continuous and discrete measurements.

A. Connections between noise models
As illustrated by Example III.6, we need to make additional

assumptions on the noise signal in order to link informativity
of continuous and discrete measurements. Here, we consider
two alternative models: square Lipschitzness and bounded total
square variation.
Definition IV.1 (Square Lipschitzness). For L > 0, w :
[0, T ]→ Rn is L-square Lipschitz if for all t1, t2 ∈ [0, T ]:

‖w(t1)w(t1)> − w(t2)w(t2)>‖ 6 L|t1 − t2|. (12)

This property can be guaranteed on the basis of common
assumptions on the signal w.
Lemma IV.2 (Square Lipschitzness from common assump-
tions). Let w : [0, T ] → Rn be differentiable, bounded and
Lipschitz, that is, ‖w(t)‖ 6 L1 and ‖ẇ(t)‖ 6 L2 for all
t ∈ [0, T ]. Then w is 2L1L2-square Lipschitz.

Proof. For t1, t2 ∈ [0, T ], using that w is differentiable,

w(t1)w(t1)>−w(t2)w(t2)>=

∫ t1

t2

d

dt

(
w(t)w(t)>

)
dt,

=

∫ t1

t2

ẇ(t)w(t)>+ w(t)ẇ(t)>dt.

Thus ‖w(t1)w(t1)> −w(t2)w(t2)>‖ 6
∫ t1
t2

2‖ẇ(t)w(t)>‖dt.
The result follows by noting that ‖ẇ(t)w(t)>‖ 6 L1L2.

Note that the conditions of Lemma IV.2 are not necessary.
In particular, w need not be differentiable everywhere. The
following result establishes a relationship between continuous-
and discrete-time noise models.
Lemma IV.3 (Continuous- and discrete-time noise models
under square Lipschitzness). Suppose that w : [0, T ]→ Rn is
L-square Lipschitz and δ is such that T

δ ∈ Z>0. Then

‖
∫ T

0

w(t)w(t)>dt− δWδW
>
δ ‖ 6 1

2δTL.

Proof. Note that we can write∫ T

0

w(t)w(t)>dt− δWδW
>
δ

=

T/δ−1∑
k=0

∫ (k+1)δ

kδ

(w(t)w(t)> − w(kδ)w(kδ)>)dt. (13)

Since w is L-square Lipschitz, ‖w(t)w(t)> −
w(kδ)w(kδ)>‖ 6 |t− kδ|L for t ∈ [kδ, (k + 1)δ]. Hence,

‖
∫ T

0

w(t)w(t)>dt− δWδW
>
δ ‖

6

T/δ−1∑
k=0

∫ (k+1)δ

kδ

‖w(t)w(t)> − w(kδ)w(kδ)>‖dt

6 L

T/δ−1∑
k=0

∫ (k+1)δ

kδ

|t− kδ|dt = 1
2δTL.

Square Lipschitzness requires the noise signal w to be
continuous. As an alternative, the following concept allows
us to consider discontinuous signals.
Definition IV.4 (Total square variation). Let P denote the set
of all partitions of [0, T ], that is,

P = {π = {t0, . . . , tnπ} | 0 = t0 6 . . . 6 tnπ = T}.

The total square variation of the signal w : [0, T ]→ Rn is

V T0 (w) = sup
π∈P

nπ−1∑
i=0

‖w(ti+1)w(ti+1)> − w(ti)w(ti)
>‖.

The step function is an example of a discontinuous sig-
nal that has a finite total square variation. The following
result establishes another relationship between continuous- and
discrete-time noise models.
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Lemma IV.5 (Continuous- and discrete-time noise models
under bounded total variation). Suppose that w : [0, T ]→ Rn
has V T0 (w) finite and let δ be such that T

δ ∈ Z>0. Then,

‖
∫ T

0

w(t)w(t)>dt− δWδW
>
δ ‖ 6 δV T0 (w).

Proof. Let Vk := V
(k+1)δ
kδ (w). By definition, V T0 (w) =∑T/δ−1

k=0 Vk. Now, for any t ∈ [kδ, (k + 1)δ], consider the
partition {kδ, t, (k + 1)δ}. Then,

Vk > ‖w(t)w(t)> − w((k + 1)δ)w((k + 1)δ)>‖
+ ‖w(t)w(t)> − w(kδ)w(kδ)>‖

> ‖w(t)w(t)> − w(kδ)w(kδ)>‖.

This, combined with (13), yields the result.
Note that if w is L-square Lipschitz, then V T0 (w) 6 LT ,

and in this case the result in Lemma IV.5 (bound with δLT )
is weaker than that of Lemma IV.3 (bound with 1

2δLT ).
Lemmas IV.3 or IV.5 allow us to bound the deviation of the
continuous-time signal to its samples and draw conclusions
regarding the noise model (2) and its counterpart (6).
Corollary IV.6 (Relations between noise models). Suppose δ
is such that Tδ ∈ Z>0 and let L > 0 be such that w : [0, T ]→
Rn is either (i) L-square Lipschitz or (ii) V T0 (w) 6 1

2LT .
Then, the following two statements hold:

δWδW
>
δ 6 Q⇒

∫ T

0

w(t)w(t)>dt 6 Q+ 1
2δTLIn,∫ T

0

w(t)w(t)>dt 6 Q⇒ δWδW
>
δ 6 Q+ 1

2δTLIn.

B. Inclusions between sets of consistent systems

Here we address the second objective laid out in Sec-
tion II and compare the stabilizability properties of the sets
Z(Ncont(Q)) and Z(Nδ(Q)). To tackle this, note that the
additional assumptions on the noise signal described in Sec-
tion IV-A shrink the set of systems consistent with the data
and we formalize this next. Given state and input trajectories
x : [0, T ] → Rn and u : [0, T ] → Rm that satisfy
Assumption 1, we define the sets

ML
x,u := {(A,B) ∈ Rn×n × Rn×m | ẋ−Ax−Bu

is L-square Lipschitz},
NL
x,u := {(A,B) ∈ Rn×n × Rn×m |

V T0 (ẋ−Ax−Bu) 6 1
2LT}.

Then, the set of all systems compatible with the measurement,
the noise model (2), and for which the noise is L-square
Lipschitz is

Z(Ncont(Q)) ∩ML
x,u. (14a)

In a similar fashion, the set of all systems compatible with
the measurement, the noise model (2), and for which the total
square variation of the noise is less than or equal to 1

2LT is

Z(Ncont(Q)) ∩NL
x,u. (14b)

The true system from which the measurements are taken is
contained in the intersections in (14) if the true realization of
the noise has the corresponding property. The following result
is a consequence of Corollary IV.6.

Corollary IV.7 (Inclusion relationships between sets of con-
sistent systems). Let x : [0, T ]→ Rn and u : [0, T ]→ Rm be
state and input trajectories satisfying Assumption 1 and let δ
be such that T

δ ∈ Z>0. Then
• [L-square Lipschitz noise:]

Z(Nδ(Q)) ∩ML
x,u ⊆ Z(Ncont(Q+ 1

2δTLIn)), (15a)

Z(Ncont(Q)) ∩ML
x,u ⊆ Z(Nδ(Q+ 1

2δTLIn)). (15b)

Moreover, if the noise signal corresponding to the mea-
surements, w : [0, T ] → Rn, is L-square Lipschitz, then
the set on the left-hand side in (15b) is non-empty and
contains the true system.

• [Noise of bounded total square variation:]

Z(Nδ(Q)) ∩NL
x,u ⊆ Z(Ncont(Q+ 1

2δTLIn)), (16a)

Z(Ncont(Q)) ∩NL
x,u ⊆ Z(Nδ(Q+ 1

2δTLIn)). (16b)

Moreover, if the noise signal corresponding to the mea-
surements, w : [0, T ]→ Rn, is such that V T0 (w) 6 1

2LT ,
then the set on the left-hand side in (16b) is non-empty
and contains the true system.

Recall that stabilizing controllers for the sets in the right-
hand sides of (15) or (16) can be found using either Theo-
rems III.1 or III.5. In particular, this means that Corollary IV.7
allows us to find a stabilizing controller for all systems in (14).
Theorem IV.8 (Sufficient conditions for sampled data). Con-
sider state and input trajectories x : [0, T ] → Rn and
u : [0, T ]→ Rm such that Assumption 1 holds. Suppose there
exists K ∈ Rm×n, P ∈ Rn×n, and β > 1

2δTL such that
P > 0 and (10) is satisfied. Then, (4) holds for all (A,B) ∈
Z(Ncont(Q)) ∩ML

x,u and all (A,B) ∈ Z(Ncont(Q)) ∩NL
x,u.

This result follows from combining Corollary IV.7 and
Theorem III.5. Theorem IV.8 provides conditions under which
the true system can be stabilized and, importantly, this can
be checked with only samples of the measurements (i.e., the
conditions do not require knowledge of the continuous-time
signals themselves). In contrast, Theorem III.5 also only relies
on samples, but it only guarantees stabilization of all systems
in Σδ . As discussed, for a given δ, the set Z(Ncont) is not
necessarily contained in Σδ . Given that we cannot distinguish
the true system from any other system in Z(Ncont), this means
that Theorem III.5 might not guarantee the stabilization of
the true system. Comparing Theorems IV.8 and III.5, we note
that both require the satisfaction of the same LMI, but that
Theorem IV.8 specifies β > 1

2δTL instead of β > 0. This can
be interpreted as requiring a margin of stability, given that (10)
implies that

(A+BK)P + P (A+BK)> < −βIn < − 1
2δTLIn,

for all (A,B) ∈ Z(Nδ(Q)). Theorem IV.8 can then be restated
as follows: if the closed-loop systems resulting from all
systems compatible with the sampled measurements are stable
‘enough’, then all systems compatible with the continuous
measurements are stabilized as well.

A natural question arising from the result in Theorem IV.8
is how small should the stepsize be to ensure the samples from
the continuous-time signals remain informative. Intuitively, if
we sample very coarsely, e.g., δ = T , then this will be unlikely.
The following result settles this question.
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Corollary IV.9 (Bound on stepsize for informativity of sam-
pled data). Consider state and input trajectories x : [0, T ]→
Rn and u : [0, T ] → Rm such that Assumption 1 holds.
Assume the corresponding noise signal w is either L-square
Lipschitz or such that V T0 (w) 6 1

2LT . Suppose that (x, u)

are informative for quadratic stabilization and let β̂ be the
largest β > 0 such that there exists K ∈ Rm×n, P ∈ Rn×n,
with P > 0 and (9). If δ < 1

TL β̂, then (10) holds with
β = β̂ − 1

2δTL >
1
2δTL.

The proof of this result leverages the margin of stability
associated to informative continuous-time data (x, u) and
follows from Corollary IV.7. As a consequence, we deduce
that, under the assumptions of Corollary IV.9, there always
exists a stepsize small enough to conclude continuous-time
quadratic stabilization.

Next, we identify conditions under which we can verify,
on the basis of data, that the noise signal corresponding to
the measurements and the true system is either L-square
Lipschitz or has bounded total square variation. Even more, the
following result establishes sufficient conditions to determine
these properties for all possible noise corresponding to every
system compatible with the measurements.
Lemma IV.10 (Verifying the assumptions using data). Let the
state x : [0, T ] → Rn and input u : [0, T ] → Rm trajectories
satisfy Assumption 1. Suppose there exists λ > 1 such that

AA> +BB> < (λ− 1)In, (17)
for all (A,B) ∈ Z(Ncont(Q)),
(i) If the signal

(
ẋ> −x> −u>

)>
is L-square Lips-

chitz, then
Z(Ncont(Q)) ⊆MλL

x,u. (18)

(ii) If V T0
((
ẋ> −x> −u>

)>)
6 1

2LT , then

Z(Ncont(Q)) ⊆ N λL
x,u. (19)

Moreover, such λ exists if and only if∫ T

0

(
x(t)
u(t)

)(
x(t)
u(t)

)>
dt > 0. (20)

Proof. To prove statements (i) and (ii), let w(A,B)(t) :=
ẋ(t)−Ax(t)−Bu(t). Then, to prove that (18) hold, we need
to show that w(A,B)(t) is λL-square Lipschitz continuous for
all (A,B) ∈ Z(Ncont(Q)). Similarly, (19) is equivalent to
V T0 (w(A,B)) 6 1

2λLT for all (A,B) ∈ Z(Ncont(Q)). Note
that (17) is equivalent to InA>

B>

>  InA>
B>

 < λIn, (21)

for all (A,B) ∈ Z(Ncont(Q)). This implies that

w(A,B)(t1)w(A,B)(t1)
> − w(A,B)(t2)w(A,B)(t2)

>

=

 InA>
B>

>( ẋ(t1)
−x(t1)
−u(t1)

)(
ẋ(t1)
−x(t1)
−u(t1)

)>
−

(
ẋ(t2)
−x(t2)
−u(t2)

)(
ẋ(t2)
−x(t2)
−u(t2)

)> InA>
B>


6 λ

( ẋ(t1)
−x(t1)
−u(t1)

)(
ẋ(t1)
−x(t1)
−u(t1)

)>
−

(
ẋ(t2)
−x(t2)
−u(t2)

)(
ẋ(t2)
−x(t2)
−u(t2)

)> .

Taking the norm on both sides of this inequality, and applying
this to the definition of L-square Lipschitz continuity (resp.

total square variation) immediately yields (i) (resp. (ii)). To
prove the last statement, we apply [8, Cor. 4.13] to see that
(21) holds for all (A,B) ∈ Z(Ncont(Q)) if and only if there
exists α > 0 and β > 0 such that(λ−1−β)In−αQ 0 0

0 −In 0
0 0 −In

+α∫ T

0

 ẋ(t)
−x(t)
−u(t)

 ẋ(t)
−x(t)
−u(t)

>dt>0.

Zooming in on the right-lower block, we see that this re-
quires (20). Conversely, if (20) holds, there exists α such that

α

∫ T

0

(
x(t)
u(t)

)(
x(t)
u(t)

)>
dt > I2n.

Then, for large enough λ ≥ 1, the LMI is satisfied, concluding
the proof.

The combination of Lemma IV.10 and Theorem IV.8 yields
the following result.

Corollary IV.11 (Sufficient conditions for informativity). Sup-
pose that the state x : [0, T ]→ Rn and input u : [0, T ]→ Rm
trajectories satisfy Assumption 1 and that (20) holds. Take
λ > 1 such that (17) holds. Assume there exists K ∈ Rm×n,
P ∈ Rn×n, and β > 1

2δTL such that P > 0 and (10)
holds. If either (i) the signal

(
ẋ> −x> −u>

)>
is L
λ -square

Lipschitz, or (ii) V T0
((
ẋ> −x> −u>

)>)
6 1

2
L
λT , then

(x, u) are informative for quadratic stabilization.

C. Refining and coarsening sampled data

Here we examine the impact that the stepsize has on the
informativity of sampled data and its relationship with the
informativity of the continuous-time data. Indeed, as suggested
by Corollary IV.6, decreasing the stepsize brings both notions
of informativity closer together. In this section, we instead
consider increasing the stepsize and examine to what extent
the number of samples can be reduced while retaining infor-
mativity.

Let δ and γ be stepsizes satisfying T
δ ,

T
γ ∈ Z>0. Using the

triangle inequality and Lemma IV.3, we can conclude that, if
w is L-square Lipschitz,

‖δWδW
>
δ − γWγW

>
γ ‖ 6 1

2 (δ + γ)TL.

This result can be applied similarly to Corollary IV.6 to
obtain results comparing the respective noise models, in turn
linking their respective informativity properties. However, if
we instead refine (respectively, coarsen) the sampling by
multiplying the stepsize with a constant, we can obtain less
conservative bounds.

Lemma IV.12 (Bounds on noise model under different step-
sizes). Let w : [0, T ] → Rn be L-square Lipschitz, δ and γ
such that γ = (`+ 1)δ with T

δ ,
T
γ ∈ Z>0 and ` ∈ Z>0. Then

‖δWδW
>
δ − γWγW

>
γ ‖ 6 1

2 (γ − δ)TL = 1
2`δTL.

Proof. Note that

WδW
>
δ =

T/γ−1∑
k=0

∑̀
j=0

w(kγ + jδ)w(kγ + jδ)>.

On the other hand, we can expand
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(`+ 1)WγW
>
γ =

T/γ−1∑
k=0

∑̀
j=0

w(kγ)w(kγ)>.

The fact that w is L-square Lipschitz yields

‖w(kγ + jδ)w(kγ + jδ)> − w(kγ)w(kγ)>‖ 6 jδL.

Combining the above, we get

‖δWδW
>
δ − γWγW

>
γ ‖ 6 δ Tγ

(∑̀
j=0

jδL
)

= 1
2 (γ − δ)TL,

proving the result.

This result allows us to link properties of the noise models
under different sampling rates.

Corollary IV.13 (Relations between noise models with differ-
ent stepsizes). Let w : [0, T ] → Rn be L-square Lipschitz,
δ and γ such that γ = (` + 1)δ with T

δ ,
T
γ ∈ Z>0, and

` ∈ Z>0. Then

δWδW
>
δ 6 Q⇒ γWγW

>
γ 6 Q+ 1

2 (γ − δ)TLIn,
γWγW

>
γ 6 Q⇒ δWδW

>
δ 6 Q+ 1

2 (γ − δ)TLIn.

We are now ready to provide a criterion to increase the
sampling stepsize without losing informativity.

Theorem IV.14 (Coarsening measurements). Consider state
x : [0, T ] → Rn and input u : [0, T ] → Rm trajectories
such that Assumption 1 holds. Assume the corresponding
noise signal w is L-square Lipschitz. Suppose that the data
(Ẋδ, Xδ, Uδ) are informative for continuous-time quadratic
stabilization and let β̂ the largest β > 0 such that there exists
K ∈ Rm×n, P ∈ Rn×n, with P > 0 and (10). Then, the data
(Ẋγ , Xγ , Uγ) are informative for continuous-time quadratic
stabilization for γ = (`+ 1)δ, with ` < 2

δTL β̂.

Note that, under the assumptions of Theorem IV.14, the
samples (Ẋγ , Xγ , Uγ) are contained in those of (Ẋδ, Xδ, Uδ).
This means that, given informative data, the result allows to
find a subset of it which remains informative. In particular,
to determine continuous-time quadratic stabilization, we can
draw conclusions from data that contains ` times less samples.
One can derive similar results for the case of noise with
bounded total variation, but we omit them for brevity.

V. SCALAR SYSTEM WITH SQUARE LIPSCHITZ NOISE

Here, we show that nontrivial behavior arises even for
a scalar system with well-behaved noise and input signals.
Consider the scalar linear system

ẋ(t) = −x(t) + 1
10u(t) + w(t),

with initial condition x(0) = 1. The time horizon is T = 1. We
consider noise signals of the form (2) with Q = 1. We excite
the system with a uniform input u(t) = 1 and the (piecewise
linear) noise signal

w(t) = max{0, 2− 4t} =

{
0 t 6 1

2

2− 4t t > 1
2

.

0 0.2 0.4 0.6 0.8 1

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
−2

−1.5

−1

−0.5

0

Figure 1: Measured state x(t) (left) and derivative ẋ(t) (right) signals.
Together with the input u(t) = 1, these constitute the continuous-time data
considered in Section V.

It is straightforward to show that
∫ 1

0
w(t)2dt = 2

3 6 1, and
that w is 16-square Lipschitz. Solving for the dynamics yields

x(t) =

{
1
10e
−t(9 + et) t 6 1

2
1
10e
−t(9− 40

√
e+ et(61− 40t) t > 1

2

.

Figure 1 shows the signal x and its derivative.
Any system, given in terms of state and input matrices

(a, b), is compatible with the measurements if and only if
(a, b) ∈ Z(Ncont(1)) ∩M16

x,u, where Ncont(1) is given in (7).
Calculating the relevant integrals yields

Ncont(1) ≈

−0.154 −0.500 −0.995
−0.500 −0.422 −0.595
−0.995 −0.595 −1

 .
Now, note that for P = 1

2 > 0, K = 2, and β = 1
10 , the

LMI (9) holds. Using Theorem III.1, this allows us to conclude
that the data (x, u) is informative for quadratic stabilization.
Indeed, the true, measured system is indeed stabilized by the
feedback gain K = 2.

Next, we turn our attention to sampling the data. We take δ
equal to 2−i, for i = 1, . . . 6, and show the corresponding ma-
trices Nδ(1) in (22). We first consider whether the samples are
informative for continuous-time quadratic stabilization. Note
that, for each i 6 3, the left-upper block of N2−i(1) is greater
than 0. This implies that (0, 0) ∈ Z(N2−i(1)), and therefore
the data cannot be informative for continuous-time quadratic
stabilization. Figure 2 illustrates this, showing the sets of
systems consistent with the continuous measurements and with
sampled data for δ = 1

2 , 1
8 , 1

16 , and 1
64 . Using Matlab with

YALMIP [18] and MOSEK, we can check the conditions in
Theorem III.5 for different values of δ. This yields that the data
are informative for continuous-time quadratic stabilization for
δ = 1

16 and smaller values. As argued above, this does not yet
allow us to conclude that the continuous-time measurements
are informative for quadratic stabilization of the true system
on the basis of sampled data. To illustrate this, recall that, on
the basis of the measurements (x, u), we cannot distinguish
the true system from any of those in Z(Ncont(1)). In Figure 2,
we see that the system (4.35,−3), for example, is compatible
with the continuous measurements, but not with any of the
sampled data, that is, (4.35,−3) 6∈ Z (Nδ(1)). This shows
that even if all systems in Z (Nδ(1)) can be stabilized, this
does not imply that the measurements (x, u) are informative
for quadratic stabilizability.
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Figure 2: The sets of systems (a, b) that are compatible with the measurements and with sampled data. In orange the set Z(Ncont(1)). In red the set Z (Nδ(1))
for δ = 1

2
, 1
8

, 1
16

, and 1
64

from left to right. In light red the set Z
(
Nδ(1 + 1

2
δTL)

)
for the same values of δ, T = 1, and L = 16. The black dots denotes

the true system (−1, 1
10

) and the (indistinguishable on the basis of the measurements) system (4.35,−3).

N 1
2

(1) ≈
[

0.446 −0.626 −0.723
−0.626 −0.709 −0.823
−0.723 −0.823 −1

]
, N 1

4

(1) ≈
[

0.171 −0.588 −0.864
−0.588 −0.557 −0.714
−0.864 −0.714 −1

]
, N 1

8

(1) ≈
[
0.0152 −0.550 −0.931
−0.550 −0.487 −0.656
−0.931 −0.656 −1

]
, (22a)

N 1
16

(1) ≈
[−0.068 −0.526 −0.963
−0.526 −0.454 −0.626
−0.963 −0.626 −1

]
, N 1

32

(1) ≈
[−0.111 −0.514 −0.979
−0.514 −0.438 −0.610
−0.979 −0.610 −1

]
, N 1

64

(1) ≈
[−0.132 −0.507 −0.987
−0.507 −0.430 −0.603
−0.987 −0.603 −1

]
. (22b)

To determine for the stepsizes for which sampled ver-
sions of the continuous-time measurements are informative
for quadratic stabilization of the true system, we employ the
additional knowledge on the noise signal and resort to Theo-
rem IV.8. In this case, the fact that w is L-square Lipschitz
with L = 16 (alternatively, a more conservative bound for L
could be obtained from Lemma IV.10). Note in particular that
the set inclusions displayed in Figure 2, where Z(Ncont(1))
is contained in each of the sets Z

(
Nδ(1 + 1

2δTL)
)
, are

consistent with (15) in Corollary IV.7.
Using Matlab, we verify that the required LMI of The-

orem IV.8 is feasible for δ = 1
64 . This guarantees the

existence of a stabilizing feedback K for all systems (a, b) ∈
Z(Ncont(1))∩ML

x,u on the basis of sampled data with δ = 1
64 .

This is consistent with the bound for the stepsize obtained in
Corollary IV.9, which guarantees samples from the continuous-
time signals are informative for δ < 1

16 β̂ ≈ 0.0096 ≈ 1
104 .

VI. CONCLUSIONS

We have studied the informativity problem for continuous-
time signals and systems. We first characterized when
continuous-time data is informative for continuous-time stabi-
lization and then focused on understanding the informativity
of sampled data. After motivating the need for additional
assumptions on the noise signal, we have introduced the
notions of square Lipschitzness and bounded total square vari-
ation. Under these noise models, we have provided sufficient
conditions to deduce stabilizability properties of the set of
systems compatible with the continuous-time measurements
on the basis of sampled data and characterized the role of the
sampling stepsize. Future research will include the investiga-
tion of necessary conditions, the study of informativity under
other noise models, and the generalization of our results to
problems beyond stabilization like H2 and H∞ performance.
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