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Data-driven mode detection and stabilization of

unknown switched linear systems
Jaap Eising∗ Shenyu Liu∗ Sonia Martı́nez Jorge Cortés

Abstract—This paper considers the stabilization of unknown
switched linear systems using data. Instead of a full system model,
we have access to a finite number of trajectories of each of the
different modes prior to the online operation of the system. On
the basis of informative enough measurements, formally charac-
terized in terms of linear matrix inequalities, we design an online
switched controller that alternates between a mode detection
phase and a stabilization phase. Since the specific currently-active
mode is unknown, the controller employs the most recent online
measurements to determine it by implementing computationally
efficient tests that check compatibility with the set of systems
consistent with the pre-collected measurements. The stabilization
phase applies the stabilizing feedback gain corresponding to
the identified active mode and monitors the evolution of the
associated Lyapunov function to detect switches. When a switch
is detected, the controller returns to the mode-detection phase.
Under average dwell- and activation-time assumptions on the
switching signal, we show that the proposed controller guaran-
tees an input-to-state-like stability property of the closed-loop
switched system. Various simulations illustrate our results.

I. INTRODUCTION

Switched linear systems have long been of interest to the

systems and control community. Such systems consist of

several modes and a logic rule which governs the switching

between them. Many real-world applications are naturally

modeled as switched systems, where the plant switches modes

due to design specifications, recurrent environmental effects,

human behavior, or a combination of thereof. From a dynamic

perspective, switched linear systems exhibit far more complex

behavior than linear systems and this makes the design of

stabilizing controllers and their analysis challenging. Most

design approaches build on the model-based paradigm, where

a model of the system and each of its modes is available to

solve the stabilization problem. In practice, this often requires

considerable modeling effort through system identification.

Motivated by these observations, we adopt an online approach

based on data informativity to synthesize a controller that

jointly deals with the (partial) identification and (robust)

stabilization of the unknown switched system.

Literature review: The control of switched systems is a

well-studied field, the complexity of which requires a wide

range of stabilization and analysis techniques, see e.g., [2], [3].

A preliminary version of this work appeared as [1] at the IEEE Conference
on Decision and Control.
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These include system matrix-based methods [4], [5], common

Lyapunov functions [6], [7], or methods based on multiple

Lyapunov functions [8]–[10], to name a few. One relevant

benefit of Lyapunov-based methods is that they provide simple

criteria to detect unknown switches, as inspired by e.g., the

literature on fault detection [11], [12] or state estimation [13]

of switched systems. These works usually require a precise

model of the modes of the switched system. In order to address

uncertainties in the model, several works have employed robust

and adaptive techniques for stabilization. For instance, [14],

[15] develops a stabilizing controller of the switched system

regardless of the realization of certain parameters within a

given range. The work [16] proposes an alternative approach

to the same problem based on adaptive controllers. Another

relevant angle is the use of switched controllers in [17] for

robustly stabilizing non-switched systems.

Robust and adaptive methods still rely on a nominal model

and, as such, require some type of system identification.

To circumvent this, and leverage the development of new

computation and data acquisition methods, there is a growing

adoption of data-driven techniques. A number of different

types of switched systems, distinguished by the type of

switching signal, have been the focus of such efforts. The

works [18], [19] consider switched systems without external

inputs where the controlling element is the switching signal

itself. At the other side of the spectrum, [20]–[22] focus on

finding feedback control laws that stabilize a switched linear

system under arbitrary and unknown switching signals. This

requires that the modes of the system can be simultaneously

uniformly stabilized, a particularly strong assumption. Recent

work [23], [24] has also explored the data-based design of

switching controllers.

The aforementioned works are based on extending known

model-based methods to the data-driven setup. An alternative

approach that has recently gained traction is based on Willems’

fundamental lemma [25]. Within this broader context, the

work [26] proposes a stabilizing controller for an unknown

switched system, which is found only on the basis of noiseless

measurements of the currently active mode of the system. Our

treatment here leverages the informativity approach to data-

driven control, as introduced in [27] and recently extended in

[28], [29]. In simple terms, this method characterizes the set of

systems that are compatible with collected data, and produces

a robust controller that stabilizes all the systems in this class.

Within this framework, the work [30] considers the problem of

data-driven stabilization in the situation where the switching

signal is determined by the controller.

Statement of contributions: We consider the problem of
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stabilizing a switched system subject to an unknown switching

signal and whose modes are unmodeled. Given that the switch-

ing signal is unknown, we require all modes to be stabilizable.

Using the informativity framework, we first use pre-collected

measurements to determine separate robust stabilizing feed-

back gains for each mode. Our online stabilizing controller

design employs online data to switch between a mode detec-

tion phase and a stabilization phase. In the former, we use the

most recent online measurements to uniquely determine the

mode of the system currently active. We provide an algorithm

that, for each time instance, applies bounded inputs to excite

the system and evaluates if the new measurements obtained

are compatible with the set of systems consistent with the pre-

collected measurements of the assumed active mode. If this is

not the case, then the assumed mode is not currently active. We

ensure the computational efficiency of this test by providing

conservative, but efficient, outer approximations to relax the

testing of non-emptyness of the intersection of convex sets.

Once the active mode is determined, the controller switches

to the stabilization phase, which applies the corresponding

stabilizing feedback gain and monitors the evolution of the

associated Lyapunov function to detect switches. When a

switch is detected, the controller returns to the mode-detection

phase. We study the practical stability of the closed loop

of the unknown system under the proposed online switched

controller and show that, under average dwell- and activation-

time assumptions on the switching signal, it enjoys an input-to-

state-like stability property. In particular, when measurements

are noiseless, the closed loop is asymptotically stable.

We have presented preliminary results of this work in the

conference article [1], where we only considered the case of

noiseless data and established practical stability of the closed-

loop system. The consideration in the present treatment of

noisy measurements requires significant extensions to all the

ingredients of the approach, a complete generalization of the

results for the initialization step, and an entirely new set of

techniques for mode detection. These, along with refinements

in the choice of bounded inputs to excite the system, lead

to stronger practical stability results, yielding in the noise-

less case asymptotic stability of the closed-loop system. The

stronger stability results obtained here are illustrated in a novel

set of simulation results.

II. PROBLEM FORMULATION

Consider1 a discrete-time switched linear system with p
modes of the form

x(t+ 1) = Âσ(t)x(t) + B̂σ(t)u(t) + w(t), (1)

where x(t) ∈ R
n is the state, u(t) ∈ R

m is the control

input, and w(t) ∈ R
n is a noise signal. Here, σ : N →

P := {1, 2, · · · , p} is the switching signal. For all i ∈ P ,

the matrices Âi and B̂i are in R
n×n and R

n×m, respectively.

1Throughout the paper, we use the following notation. We denote by N

and R the sets of non-negative integer and real numbers, respectively. We let
R
n×m denote the space of n×m real matrices. For any M ∈ R

n×m, ‖M‖
denotes the standard 2-norm. For P ∈ R

n×n, P � 0 (resp. P ≻ 0) denotes
that P is positive semi-definite (resp. definite).

We are interested in finding a stabilizing controller for

this system on the basis of measurements. To be precise, we

assume that the dimensions n, m and the number of modes p
are known, but that the precise dynamics of the modes are not

available for design, that is, for each mode i ∈ P , the matrices

Âi and B̂i are unknown. To offset this lack of knowledge,

we have access to a finite set of measurements of the state

and input trajectories. These measurements correspond to an

unknown, but bounded noise signal. Specifically, we assume

that, before the online operation of the system, we perform an

initialization step, where we obtain measurements of each of

the individual modes (but this data is not necessarily enough to

identify the dynamics of each separate mode). After this, once

the system is running, we have access to online measurements

of the currently active mode. Our goal is formalized as follows.

Problem 1 (Online switched controller design). Given ini-

tialization and online measurements, design a control law

u : N → R
m such that the resulting interconnection (1)

is guaranteed to satisfy the following input-to-state stability

(ISS)-like property: there exist constants c > 0, ζ ∈ (0, 1) and

r > 0 (depending on a bound on the noise) such that

‖x(t)‖ 6 c ζt‖x(0)‖+ r, (2)

for all initial states x(0) ∈ R
n and all time t ∈ N.

We consider this problem in both the absence and presence

of bounded noise. Moreover, we consider two different cases

regarding the switching signal. At first, we consider the situa-

tion where the controller is aware when the systems switches

modes, but not to which mode. After this, we explore the

situation where the switching signal is completely unknown,

but where we make certain regularity assumptions on the dwell

time, that is, the frequency of switches.

In order to solve Problem 1, we employ the following multi-

pronged approach. Since unique models for each of the modes

cannot necessarily be determined, we employ the concept

of data informativity to formulate conditions under which

the initialization measurements guarantee the existence of a

stabilizing feedback controller for each of the modes. Based

on this, our switched controller operates in two phases. In the

mode detection phase, the controller selects inputs that allow

us to determine the active mode. In general this requires less

measurements than fully identifying the system. In fact, in the

absence of noise, a bound on the required number of steps can

be guaranteed by a suitable choice of inputs. Once the active

mode is identified, the controller switches to the stabilization

phase, where the controller found in the initialization step

corresponding to the mode is applied.

III. INITIALIZATION STEP

We begin our analysis with the initialization step, where

we consider the problem of finding stabilizing controllers

from pre-collected measurements of the system. To formalize

the notion of informativity, we require some notation. For

simplicity of exposition, we first consider a single linear

system, then shift our focus to switched systems.
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Consider measurements of the state and input signals x and

u of a system

x(t+ 1) = Âx(t) + B̂u(t) + w(t),

on the time interval {0, . . . , T}. We define matrices

X :=
[

x(0) · · · x(T )
]

,

X− :=
[

x(0) · · · x(T − 1)
]

,

X+ :=
[

x(1) · · · x(T )
]

,

U− :=
[

u(0) · · · u(T − 1)
]

,

W− :=
[

w(0) · · · w(T − 1)
]

.

We assume that the state and input measurements (U−, X)
are known, but that the noise signal is unknown. However, the

noise satisfies
[

In
W⊤

−

]⊤ [
Π11 Π12

Π21 Π22

] [

In
W⊤

−

]

> 0, (3)

where Π11 ∈ R
n×n and Π22 ∈ R

T×T are symmetric,

and Π12 = Π⊤
21 ∈ R

n×T . Such noise models arise in

many applications and are amenable to technical analysis, see

e.g. [28]. Throughout the paper, we assume Π22 < 0 and

Π11 − Π12Π
−1
22 Π21 > 0. These assumptions guarantee that

the set of matrices W− for which (3) holds is nonempty and

bounded [28, Theorem 3.2].

Remark III.1 (Noiseless measurements). A special case of the

previous is the case where Π22 = −IT , Π12 = 0, and Π11 = 0.

In this case, the matrix W− satisfies (3) if and only if W− = 0,

that is, the measurements are without noise. •
We can now define the set of systems consistent with the

measurements, as

Σ(U−, X) :=
{

(A,B) : X+ = AX− +BU− +W− w/ (3)
}

.

Clearly, since the measurements satisfy the noise model and

are collected from the true system, we know that (Â, B̂) is

contained in the set Σ(U−, X). If we now define the matrix

N :=





In X+

0 −X−
0 −U−





[

Π11 Π12

Π21 Π22

]





In X+

0 −X−
0 −U−





⊤

, (4)

it is straightforward to conclude that the set Σ(U−, X) can be

equivalently represented as

Σ(U−, X) =

{

(A,B) |





In
A⊤

B⊤





⊤

N





In
A⊤

B⊤



 > 0

}

. (5)

We are interested in characterizing properties of the true sys-

tem based on the measurements. However, the set Σ(U−, X)
might contain other systems in addition to the true one.

This means, for instance, that we can only conclude that

a feedback gain K stabilizes the true system if this gain

stabilizes any system whose system matrices are in Σ(U−, X).
We are interested in determining when the available data is

informative enough to allow us to accomplish this.

Definition III.2 (Informativity for uniform stabilization). The

data (U−, X) is informative for uniform stabilization by state

feedback with decay rate λ ∈ (0, 1) if there exist K ∈ R
m×n

and P ∈ R
n×n, P ≻ 0 such that

(A+BK)⊤P (A+BK) ≺ λP, ∀(A,B) ∈ Σ(U−, X). (6)

Let Ṽ (x) := x⊤Px and consider the closed loop of any

system consistent with the data and the controller u = Kx.

Then, if the data is informative,

Ṽ (x(t+ 1)) 6 λx(t)⊤Px(t) = λṼ (x(t)), (7)

for all t ∈ N. This means that, even if the matrices (A,B)
can not be identified uniquely from the measurements, the

feedback gain K stabilizes the system with Lyapunov function

Ṽ and decay rate λ.

To determine whether the data (U−, X) is informative, we

can exploit the fact that (5) and (6) are quadratic matrix

inequalities in A and B. The following result extends [28,

Theorem 5.1.(a)], which essentially considers the special case

λ = 1, to reduce the problem to that of finding matrices K
and P that satisfy a linear matrix inequality (LMI).

Theorem III.3 (Conditions for informativity for uniform

stabilization). The data (U−, X) is informative for uniform

stabilization by state feedback with decay rate λ if and only

if there exist Q ∈ R
n×n, with Q ≻ 0, L ∈ R

m×n and β > 0
such that






λQ−βIn 0 0 0

0 0 0 Q
0 0 0 L

0 Q L⊤ Q






−







In X+

0 −X−

0 −U−

0 0







[

Π11 Π12

Π21 Π22

]







In X+

0 −X−

0 −U−

0 0







⊤

� 0.

(8)

Moreover, the matrices K := LQ−1 and P := Q−1 satisfy (6).

The proof of Theorem III.3 is given in the appendix. The

characterization given in this result provides the backbone of

the initialization step for our controller design. As noted in

the problem formulation, we have access to measurements of

each of the modes in the initialization step. We denote the

measurements corresponding to mode i ∈ P by (U i
−, X

i).
We consider the corresponding matrices U i

−, Xi and a noise

model given by Πi. Since we are interested in stabilizing the

unknown switched system regardless of the switching signal,

this implies that, each of the modes must be stabilizable. This

motivates the following assumption.

Assumption 1 (Initialization step). Let λ ∈ (0, 1). For each

mode i ∈ P , the data (U i
−, X

i) is informative for uniform

stabilization by state feedback with decay rate λ.

We denote by Ki the feedback corresponding to (U i
−, X

i)
obtained from Theorem III.3. The corresponding Lyapunov

matrix is denoted by Pi. This means that we have (potentially)

different feedback and Lyapunov matrices for each mode, but

that the decay rate is uniform for all modes i ∈ P . Note that

the choice of a common decay rate across the modes does not

introduce conservatism, since if (6) holds for λ, it also holds

for any λ̄ with λ 6 λ̄ < 1.

IV. MODE DETECTION PHASE

After the initialization step, we consider the situation where

the unknown system is in operation and additional online
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Σ1

Σ2

Σ3

Σon

R
n×n × R

n×m

Figure 1: Graphical interpretation of the mode detection scheme. Initially, Σon

intersects the sets corresponding to three different modes. As more data are
collected, Σon decreases in size (cf. darker blue disks). When enough data are
available, Σon eventually becomes compatible only with mode 2. Note that
we do not need Σ

on to shrink into a singleton (system identification) before
reaching unique compatibility.

measurements, denoted by (U on
− , Xon), are collected. To be

precise, we consider measurements that are collected sequen-

tially from the system when it dwells in a single, unknown

mode. As before, we let Σ(U on
− , Xon) denote the set of all

systems compatible with the online measurements. To simplify

the exposition, we introduce for each i ∈ P the following

shorthand notation,

Σi := Σ(U i
−, X

i), Σon := Σ(U on
− , Xon).

We assume that the systems dwells in a single mode, and that

we collect the online measurements sequentially. As such, after

ℓ time instances, we can write

Σon =
ℓ−1
⋂

t=0

Σon
t ,

where Σon
t is the set of systems consistent with the measure-

ments collected at time instance t.
Our goal is to stabilize the switched system. To do this, we

could simply test whether the online measurements (U on
− , Xon)

are informative for uniform stabilization with decay rate λ.

However, the initialization data gives us additional information

that can be exploited: we know that the true system is

contained in Σi ∩ Σon for at least one i ∈ P . If we could

uniquely determine which of the p different systems has

generated the online measurements (U on
− , Xon), we can then

apply the stabilizing controller found in the initialization step.

The notion of data compatibility plays a key role in achieving

this goal.

Definition IV.1 (Data compatibility). The data pairs (U1
−, X

1)
and (U2

−, X
2) are compatible if there exists a system that is

consistent with both, that is, Σ1 ∩ Σ2 6= ∅.

We are interested in determining the active mode of the

system from the online measurements.

Definition IV.2 (Informativity for mode detection). Given

initialization data {(U i
−, X

i)}i∈P , the online measurements

(U on
− , Xon) are informative for mode detection if (U on

− , Xon)
and (U i

−, X
i) are compatible for exactly one i ∈ P .

In order for the mode detection phase to be successful, we

assume that the initialization data are pairwise incompatible.

Assumption 2 (Initialization step –cont’d). The data

{(U i
−, X

i)}i∈P are such that (U i
−, X

i) and (U j
−, X

j) are

incompatible for each pair i 6= j ∈ P .

Since the online measurements are generated by precisely

one of the modes i ∈ P , there must be at least one i ∈ P such

that (U on
− , Xon) and (U i

−, X
i) are compatible. By assuming

that the initial data are pairwise incompatible, we can con-

clude that once Σon becomes sufficiently “small”, the mode

i corresponding to the data (U i
−, X

i) which are compatible

with (U on
− , Xon) must be unique. Figure 1 provides a graphical

illustration.

A. Mode detection for noiseless data

First, we consider the system without noise, that is, w(t) =
0. The following result characterizes compatibility in this case.

Lemma IV.3 (Conditions for noiseless data compatibility).

Noiseless data (U1
−, X

1) and (U2
−, X

2) are compatible if and

only if

ker

[

X1
− X2

−
U1
− U2

−

]

⊆ ker
[

X1
+ X2

+

]

. (9)

Proof. Since W 1
− = W 2

− = 0, the data are compatible if and

only if there exists A and B such that: X1
+ = AX1

− + BU1
−

and X2
+ = AX2

− +BU2
−. Equivalently, we have

[

X1
+ X2

+

]

=
[

A B
]

[

X1
− X2

−
U1
− U2

−

]

.

The existence of such
[

A B
]

is equivalent to (9).

This result provides a test to check whether the online

measurements are compatible with the initialization data. At

each step, the idea is to evaluate whether the online data

are compatible with precisely one mode of the system. This

iterative procedure raises the question of how to select the

input to the unknown system appropriately at each step. In

other words, we are interested in generating online data such

that, after a bounded number of steps, Σ(U on
− , Xon) becomes

small enough for the data to be informative for mode detection.

Formally, the problem is to find a time horizon T on and inputs

uon(0), . . . , uon(T on − 1) such that the corresponding online

data (U on
− , Xon) are informative for mode detection.

To obtain such inputs, we adapt the experiment design

method of [31]. When each of the modes (Âi, B̂i) of the sys-

tem are controllable, [31, Theorem 1] gives a construction for

inputs uon(0), . . . , uon(n+m−1) such that the corresponding

set Σ(U on
− , Xon) is a singleton. Assume

rank

[

Xon
−

U on
−

]

6= n+m.

Now, either x(t) 6∈ imXon
− , in which case, take u(t) equal to

0. In the other case, [31, Theorem 1] shows that there exist

η, ξ such that η 6= 0 and

[

ξ
η

]

∈ ker

[

Xon
−

U on
−

]⊤
.
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Now, by taking any u(t) ∈ R
m such that ξ⊤x(t)+η⊤u(t) 6= 0,

it can be shown that

rank

[

Xon
−

U on
−

]

< rank

[

Xon
− x(t)

U on
− u(t)

]

.

Note that, without loss of generality, we can choose u(t) such

that ‖u(t)‖ 6 c‖x(t)‖ for any c > 0.

Clearly, after n + m repetitions, this procedure results in

a data matrix which has full row rank. This implies that

Σ(U on
− , Xon) is a singleton. As such, under Assumption 2,

the measurements up to T on = n + m are guaranteed to be

informative for mode detection. This provides a worst-case

bound as, in general, mode detection is achieved with far fewer

measurements than those required for system identification.

Algorithm 1 Mode detection for noiseless data

Input: Pmatch, {U i
−, X

i}i∈P , U
on
− , Xon, c

Output: Pmatch, U
on
− , Xon

1: if U on
− 6= [] and x(t) ∈ imXon

− \ {0} then

2: Pick

[

ξ
η

]

∈ ker

[

Xon
−

U on
−

]⊤
with η 6= 0

3: Let u(t) ∈ R
m be such that

‖u(t)‖ 6 c‖x(t)‖ and ξ⊤x(t) + η⊤u(t) 6= 0

⊲ Choose the next input

4: else

5: u(t)← 0
6: end if

7: Get the next state x(t+ 1)
8: U on

− ←
[

U on
− u(t)

]

9: Xon ←
[

Xon x(t+ 1)
]

⊲ Append the online data

10: if x(t+ 1) = 0 then ⊲ System stable for any feedback

11: Pmatch = {1}
12: else

13: for i ∈ Pmatch do

14: if the inclusion (9) is violated then

⊲ Data are incompatible with mode i
15: Pmatch = Pmatch\{i} ⊲ Eliminate mode i
16: end if

17: end for

18: end if

Algorithm 1 formalizes the mode detection procedure for

noiseless data. Note that if, at any point of the algorithm, the

state satisfies x(t) = 0 (step 10), then choosing u(t) = 0 sta-

bilizes any linear system, and therefore specifically all modes

of the system. As such, we can apply any of the feedback

gains Ki. We enforce this by setting Pmatch equal to any of the

modes. Otherwise, the algorithm checks whether (9) is violated

for each of the modes remaining in Pmatch, in which case the

corresponding mode is discarded. If |Pmatch| 6= 1, the algorithm

should be repeated and another online measurement collected.

If |Pmatch| = 1, the active mode detection is identified.

Corollary IV.4 (Algorithm 1 terminates in a finite number of

repetitions). Suppose that for each mode i ∈ P the matrix pair

(Âi, B̂i) is controllable and that Assumptions 1 and 2 hold. Let

Pmatch = P and Xon = [x(0)]. Execute Algorithm 1 iteratively,

updating Pmatch and (U on
− , Xon) at every step. Then |Pmatch| =

1 after at most n + m iterations. Moreover, the online data

(U on
− , Xon) are either informative for mode detection or such

that x(T on) = 0.

B. Mode detection for noisy data

As in the noiseless case, testing whether Σi ∩ Σon 6= ∅

amounts to checking non-emptiness of the intersection of two

convex sets. This needs to be done online, during the collection

of measurements, and hence requires to be resolved in time

with the evolution of the system. In the noiseless case, the

fact that the convex sets under consideration were affine made

solving the problem online feasible by employing Lemma IV.3.

However, this is no longer the case in the presence of noise.

Therefore, to be able to test for (in)compatibility in an online

fashion, here we develop a number of conservative, but more

computationally efficient, methods. Our exposition first shows

how to over-approximate the sets of compatible systems by

spheres. This allows us to provide simple tests for incompati-

bility after a single measurement. After this, we also propose

methods to deal with sequential measurements.

Outer approximation of set of consistent systems on the

basis of measurements: For simplicity of exposition, we first

deal with a single true linear system and a single set of

measurements (U−, X). Moreover, to further ease the notation,

we assume in the remainder of the paper that the noise models

are given in the form of a bound on the energy of the noise,

that is, W−W
⊤
− 6 Q, with Q = Q⊤ > 0. In particular, this

implies

Π :=

[

Π11 Π12

Π⊤
12 Π22

]

=

[

Q 0
0 −IT

]

. (10)

Noise models of this form are very versatile. Depending on

the choice of Q, we can model for instance, the assumption

of a signal-to-noise ratio by taking Q = γX−X
⊤
− . The noise

model also captures the case of exact measurements (Q = 0).

Assuming that

[

X−
U−

]

has full row rank, we define the center

Z of the set Σ = Σ(U−, X) of consistent systems, given as

in (5), by

Z := X+

[

X−
U−

]†
, (11)

where M† denotes the Moore-Penrose inverse of a matrix M .

Let λmin(M) and λmax(M) denote the smallest and largest

eigenvalue of M respectively, and define the radius r of Σ as

r :=

√

√

√

√

√

√

λmax(Q)

λmin

(

[

X−
U−

] [

X−
U−

]⊤
) . (12)

The following result provides an outer approximation of the

set Σ.

Lemma IV.5 (Outer approximation of set of consistent sys-

tems). Suppose that Π is given by (10) and

[

X−
U−

]

has full row

rank. Then Σ ⊆ Br(Z) =
{

(A,B) | ‖
[

A B
]

− Z‖ 6 r
}

,

where Z is the center (11) and r is the radius (12) of Σ.
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Proof. By definition (A,B) ∈ Σ if and only if

(

X+ −
[

A B
]

[

X−
U−

])(

X+ −
[

A B
]

[

X−
U−

])⊤
6 Q.

This implies that

([

A B
]

− Z
)

[

X−
U−

] [

X−
U−

]⊤
([

A B
]

− Z
)⊤

6 Q.

Since

[

X−
U−

]

has full row rank, the matrix

[

X−
U−

] [

X−
U−

]⊤
is

positive definite. Moreover, for any matrix M ∈ R
n×n such

that M > 0, we have λmin(M)In 6 M 6 λmax(M)In. This

implies that

([

A B
]

− Z
) ([

A B
]

− Z
)⊤

6 r2In,

and hence we ‖
[

A B
]

−Z‖2 6 r2 for any (A,B) ∈ Σ.

Conversely, if

[

X−
U−

]

does not have full row rank, then the

corresponding set Σ is unbounded, and there does not exist

any r and Z such that Σ ⊆ Br(Z).
Conservative tests for incompatibility using outer ap-

proximations: Here we describe how to leverage the outer

approximation on the set of systems consistent with some

given measurements to determine data incompatibility. Given

the initialization data, we define the distance between Σi and

Σj for i, j ∈ P by

dij := min
(Ai,Bi)∈Σi

(Aj ,Bj)∈Σj

‖
[

Ai −Aj Bi −Bj

]

‖.

Since the sets Σi are closed by definition, the measurements

(U i
−, X

i) and (U j
−, X

j) are incompatible if and only if dij >
0. This distance can be determined from the initialization

data and computed in the initialization step. We can give

an alternative, more computationally efficient test under the

additional assumption that the matrices

[

Xi
−

U i
−

]

have full row

rank. In this case, we can use Lemma IV.5 to efficiently bound

the distance between Σi and Σj from below. We denote by

Zi and ri, respectively, the center and radius of Σi, for each

i ∈ P . Then, we have

dij > ‖Zi − Zj‖2 − ri − rj . (13)

This can be used to formulate an efficient method of verifying

Assumption 2 as follows.

Corollary IV.6 (Ensuring Assumption 2 holds). Suppose that

Σi ⊆ Bri(Zi) for all i ∈ P . If ‖Zi − Zj‖2 > ri + rj , for all

i 6= j, then Assumption 2 holds.

The same idea can be used for the case of online measure-

ments (U on
− , Xon). Recall that these are collected sequentially,

giving rise to Σon =
⋂T on−1

t=0 Σon
t . Since the ultimate goal of

checking for incompatibility is to determine the active mode

of the switched system, after collecting each measurement, we

face the dichotomy of already using the information or wait

for the additional one provided by subsequent measurements.

As a first step towards resolving this dichotomy, we develop a

computationally efficient test to check for compatibility with

a single set Σon
t determined by a single measurement.

In the single measurement case, the noise model (10) takes

the form w(t)w(t)⊤ 6 q2In, or equivalently, ‖w(t)‖ 6 q.

Then,

Σon
t = {(A,B) | ‖

[

A B
]

(

x(t)
u(t)

)

− x(t+ 1)‖ 6 q}. (14)

The following result provides a sufficient condition for incom-

patibility with Σon
t .

Lemma IV.7 (Scalar test for incompatibility with single online

measurement). Let Σ ⊆ Br(Z) for some r and Z. For Σon
t as

in (14), if

‖Z
(

x(t)
u(t)

)

− x(t+ 1)‖ > q + r‖
(

x(t)
u(t)

)

‖, (15)

then Σ ∩ Σon
t = ∅.

Proof. Suppose that (15) holds and let Z̄ ∈ Σ. We show that

Z̄ 6∈ Σon
t . From the triangle inequality, we have

‖Z̄
(

x(t)
u(t)

)

− x(t+ 1)‖

> ‖Z
(

x(t)
u(t)

)

− x(t+ 1)‖ − ‖(Z̄ − Z)
(

x(t)
u(t)

)

‖.

Since, by assumption Z̄ ∈ Br(Z), we can write

‖(Z̄ − Z)
(

x(t)
u(t)

)

‖ 6 r‖
(

x(t)
u(t)

)

‖.

Combining this with (15), we obtain

‖Z̄
(

x(t)
u(t)

)

− x(t+ 1)‖ > q,

and hence Z̄ 6∈ Σon
t as claimed.

This result allows to check incompatibility by means of a

scalar condition, instead of finding the intersections of two

quadratic sets in R
n×(n+m). As a further benefit, we can

apply the previous reasoning to efficiently determining when

a chosen input is guaranteed to resolve the incompatibility

problem.

Corollary IV.8 (Choosing inputs for incompatibility). Let Σon
t

be as in (14) and suppose that Σi ⊆ Bri(Zi) for all i ∈ P .

Let i 6= j ∈ P and x(t) ∈ R
n. If u(t) is such that

‖(Zi − Zj)
(

x(t)
u(t)

)

‖ > (ri + rj)‖
(

x(t)
u(t)

)

‖+ 2q, (16)

then at most one of Σi ∩ Σon
t 6= ∅ or Σj ∩ Σon

t 6= ∅ holds.

Interestingly, the condition in Corollary IV.8 can be met

wherever the effect of the input on the systems in Σi and Σj

is ‘different enough’. Formally, if

‖(Zi − Zj)

[

0
Im

]

‖ > r1 + r2, (17)

then, for any x(t), there exists a large enough u(t) for

which (16) holds, allowing to discard at least one of the

systems. Equipped with these results, one can generalize

Algorithm 1 to noisy data by first outer approximating the

sets of systems compatible with the initialization data {Σi}i∈P
using Lemma IV.5 and then (assuming that (17) holds for

each pair) designing inputs guaranteed to eliminate at least one
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mode from consideration at each step, using Corollary IV.8.

The corresponding mode detection scheme takes at most p
steps. Instead of formalizing this procedure, we will take full

advantage of the information provided by multiple measure-

ments at once.

Considering incremental measurements: Treating online

measurements separately may prove restrictive. In fact, the

true system is not just contained in each Σon
t , but in their

intersection Σon =
⋂T on−1

t=0 Σon
t . To address this, we develop

here results dealing with intersections of such sets. In order

to circumvent the computational complexity associated with

considering increasing numbers of intersections of quadratic

sets, we overestimate them with a single set, which leads to

conservative, more computationally efficient tests. We employ

a set representation of the form (5), that is, we have for each

t = 0, . . . , T on − 1,

Σon
t =

{

(A,B) |





In
A⊤

B⊤





⊤

N on
t





In
A⊤

B⊤



 > 0

}

,

for some N on
t given in the form of (4), with a corresponding

noise model (10). Given α0, . . . , αT on−1 > 0, we denote

the vector α := (α0 · · ·αT on−1)
⊤ and define N on(α) :=

∑T on−1
t=0 αtN

on
t . Similarly, we let N i be the matrices corre-

sponding to the initialization sets Σi, and define N i,on(α) :=
N i +N on(α), for each i ∈ P . Consider the sets

Σon(α) :=

{

(A,B) |





In
A⊤

B⊤





⊤

N on(α)





In
A⊤

B⊤



 > 0

}

,

Σi,on(α) :=

{

(A,B) |





In
A⊤

B⊤





⊤

N i,on(α)





In
A⊤

B⊤



 > 0

}

.

Note that, if a number of quadratic matrix inequalities are

satisfied, then so is any nonnegative combination of them.

Therefore, for any α0, . . . , αT on−1 > 0,

Σon ⊆ Σon(α) and Σi ∩ Σon ⊆ Σi,on(α).

This provides over-approximations of Σon and Σi ∩ Σon in

terms of such nonnegative combinations, allowing us to state

the following result.

Lemma IV.9 (Parameterized condition for incompatibil-

ity with online measurements). Given online measurements

(U on
− , Xon) and i ∈ P , if there exist α0, . . . , αT on−1 > 0 such

that either

(i) Σi ∩ Σon(α) = ∅ or

(ii) Σi,on(α) = ∅,

then Σi ∩ Σon = ∅.

This result allows us to test intersections of multiple

quadratic sets for emptiness in terms of a parametrized inter-

section of either two such sets using Lemma IV.9(i), or even

one, using Lemma IV.9(ii). The following result provides a

way to efficiently test for the latter.

Lemma IV.10 (Spectral test for incompatibility with online

measurements). Given initialization data {(U i
−, X

i)}i∈P and

online measurements (U on
− , Xon), suppose

[

Xi
−

U i
−

]

has full row

rank for i ∈ P . For any i inP and α0, . . . , αT on−1 > 0,

Σi,on(α) 6= ∅ if and only if N i,on(α) has precisely n + m
negative eigenvalues. Equivalently, given

N i,on(α) =

[

N̄11 N̄12

N̄21 N̄22

]

,

then Σi,on(α) 6= ∅ if and only if N̄11 − N̄12N̄
−1
22 N̄21 > 0.

Proof. Given that N̄22 < 0 by construction, the statement

follows from [28, Thm. 3.2].

One can use either criteria in Lemma IV.9 to generalize Al-

gorithm 1 to noisy data in a way that integrates the information

provided by multiple measurements at once. Next, we formal-

ize this using Lemma IV.9(i), where we take α = 1 ∈ R
T on

,

the vector of all ones. Recall that, during online operation, we

collect single measurements, with each noise sample satisfying

‖w(t)‖ 6 q, for some q > 0. The set Σon
t is then described

by (14). Consider

N on(1 ) =





In X+

0 −X−
0 −U−





[

q2T onIn 0
0 −IT on

]





In X+

0 −X−
0 −U−





⊤

.

Using the Schur complement, we can conclude that (A,B) ∈
Σon(1 ) if and only if
[

q2T onI Xon
+ −AXon

− −BU on
−

(Xon
+ −AXon

− −BU on
− )⊤ I

]

> 0.

A similar LMI can be obtained to check for whether (A,B) ∈
Σi, leading to the following result.

Corollary IV.11 (LMI test for incompatibility with online

measurements). Given online single measurements obtained

sequentially, with each noise sample satisfying ‖w(t)‖ 6 q,

for some q > 0, let i ∈ P and assume the initialization data

(U i
−, X

i) has noise model (10) with Qi = q2TiI . If there are

no matrices A and B that satisfy simultaneously
[

q2T iIn Xi
+ −AXi

− −BU i
−

(Xi
+ −AXi

− −BU i
−)

⊤ IT i

]

>0,

(18a)
[

q2T onIn Xon
+ −AXon

− −BU on
−

(Xon
+ −AXon

− −BU on
− )⊤ IT on

]

>0,

(18b)

then the data are incompatible, that is, Σi ∩ Σon = ∅.

Algorithm 2 presents a mode detection procedure that

employs these LMI conditions (instead of the kernel condition

(9) in Algorithm 1) to check for incompatibility. Also, the

inputs at each step of the algorithm are chosen randomly.

V. STABILIZATION PHASE AND DETECTING SWITCHES

Having solved the mode detection problem, here we turn our

attention to the stabilization phase. At the start of this phase,

we know the mode the system is operating in. Therefore, we

simply apply the controller computed in the initialization step,

see Section III,

u = Kix,
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Algorithm 2 Mode detection for noisy data

Input: Pmatch, {U i
−, X

i}i∈P , U
on
− , Xon, c, q

Output: Pmatch, U
on
− , Xon

1: Pick a random u(t) ∈ R
m such that ‖u(t)‖ 6 c‖x(t)‖

2: Get the next state x(t+ 1)
3: U on

− ←
[

U on
− u(t)

]

4: Xon ←
[

Xon x(t+ 1)
]

⊲ Append the data

5: for i ∈ Pmatch do

6: if the pair of LMIs (18) is infeasible then

⊲ Data are incompatible with mode i
7: Pmatch = Pmatch\{i} ⊲ Eliminate mode i
8: end if

9: end for

where i ∈ P is the currently active mode. The controller

remains in the stabilization phase until a switch in the mode

of the system is detected. As mentioned in the problem

formulation, in Section II, we consider two scenarios:

• the switching signal is partially known: the controller is

aware of when the system switches modes, yet it does

not know which mode the system has switched into;

• the switching signal is completely unknown: this means

that the controller needs to implement a mechanism to

detect whether a switch has occurred.

In either case, once a switch has been detected, to determine

the current active mode, the controller will switch back to the

mode detection phase described in Section IV.

Here we describe a procedure to detect switches in the

system mode in the second scenario above. This consists of

monitoring the evolution of the Lyapunov function, Vi(x) =
x⊤Pix, computed in the initialization step, cf. Section III,

associated with the currently active mode i ∈ P . From the

triangle inequality and (6), when the system is operating in

mode i with the feedback control u = Kix, and under the

noise bound ‖w(t)‖ 6 q, we have

Vi(x(t+ 1)) = ‖P
1

2

i ((Âi + B̂iKi)x(t) + w(t))‖
6
√
λVi(x(t)) + λmax(P

1

2

i )q. (19)

The contrapositive of this statement reads as follows: if the

inequality does not hold, then the system cannot be operating

in mode i. We employ it to detect when the system has

switched between modes, that is, the controller switches to

the mode detection phase whenever

Vi(x(t+ 1)) >
√
λVi(x(t)) + λmax(P

1

2

i )q. (20)

Note that the system (1) may switch between modes while

the inequality (19) is still preserved. In this case, the controller

applies the controller corresponding to the previously detected

mode, and the mode of the system and the mode of the

controller become desynchronized. As our ensuing technical

analysis shows, this does not affect the stability properties of

the closed-loop system.

VI. STABILIZATION VIA ONLINE SWITCHED CONTROLLER

In this section, we describe our online switched controller

design and establish the asymptotic convergence properties of

the resulting closed-loop switched system.

A. Switched controller design

Our controller combines the mode detection and the stabi-

lization phases into a single design, formalized in Algorithm 3,

for the case of noisy data and an unknown switching signal.

Next, we provide an intuitive description of the pseudocode

language:

Informal description: The algorithm assumes an

initialization step satisfying Assumptions 1 and 2

has been performed. The algorithm starts in the

mode detection phase, indicated by the variable

Sphase. During this phase, Algorithm 2 is executed

for each iteration until mode detection is successful

(signaled by fdone = 1). The variable σd is then

taken to be the active mode of the system. Next,

the algorithm switches to the stabilization phase

(signaled by Sphase = 1). During this phase, the

control input u(t) = Kσd
x(t) is applied until (20)

holds. This marks the detection of a mode switch,

which leads the controller to go back to the mode

detection phase (by toggling Sphase to 0). In the

meantime, U on
− and Xon are reset to record the new

online data.

Algorithm 3 Data-driven online switched feedback controller

for noisy data with unknown switching signal

Input: P, {U i
−, X

i,Ki, Pi}i∈P , λ, c, q

1: Pmatch ← P
2: Sphase ← 0 ⊲ Initialize to mode detection phase

3: Xon ← x(0)
4: U on

− ← [] ⊲ Initialize online data

5: while the system (1) is running do

6: if Sphase = 0 then ⊲ Mode detection phase

7: Run Algorithm 2 to update U on
− , Xon, and Pmatch

8: if |Pmatch| = 1 then

9: Pick σd ∈ Pmatch ⊲ Set the controller mode

10: Sphase ← 1
⊲ Change controller to stabilization phase

11: end if

12: else ⊲ Stabilization phase

13: Apply control u(t) = Kσd
x(t)

14: Obtain the next state x(t+ 1)
15: if (20) holds then ⊲ Quit stabilization phase

16: U on
− ← u(t) ⊲ Reset the online data

17: Xon ←
[

x(t) x(t+ 1)
]

18: Pmatch ← P ⊲ Reset Pmatch

19: Sphase ← 0
⊲ Change controller to mode detection phase

20: end if

21: end if

22: t← t+ 1 ⊲ Update the time

23: end while
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Note that the closed-loop system is stable when the con-

troller is in its stabilization phase. However, during the mode

detection phase, the effect of the controller on the system

might be destabilizing because of the potential mismatch

with the system mode. Therefore, determining overall stability

properties of the form (2) relies critically on the switching

behavior, both of the system and the controller.

Remark VI.1 (Data-driven online switched feedback controller

for noiseless data and known switching signal). Algorithm 3

requires minor modifications in (i) the noiseless case or (ii)

when the switching signal is known. For (i), one replaces

Algorithm 2 in Step 7 with Algorithm 1 and takes q = 0
when evaluating (20) in Step 15. For (ii), one replaces the

check in Step 15 by the condition σ(t+ 1) 6= σ(t). •
Remark VI.2 (Appending the online data to initialization mea-

surements). Once the mode detection phase is successful, we

know that the gathered online measurements were generated

by the active mode i ∈ Pmatch. This raises the possibility of in-

corporating such online data to the initialization measurements

corresponding to the mode i ∈ Pmatch. Intuitively, this would

decrease the size of the set Σi, which means that future mode

detection phases would require fewer online measurements at

the cost of having the controller keep previous measurements

in its memory. •

B. Average dwell- and activation-time of switching signal

In this section, we introduce some assumptions on the

switching frequency of the signal σ in order to establish

stability guarantees for the closed-loop system.

Assumption 3 (Properties of the switching signal of the

controller). Let T
m := {tm1 , tm2 , · · · } be the ordered set

consisting of the initial time instants of each mode detection

phase. Similarly, let Ts := {ts1, ts2, · · · } correspond to the time

instants when the stabilization phase starts. Assume

(i) the system does not switch while the controller is in the

mode detection phase;

(ii) let N(ta, tb) be the total number of mode detection

phases over the time interval [ta, tb), that is, N(ta, tb) :=
|[ta, tb) ∩ T

m|. There exists τ and N0 > 1 such that

N(ta, tb) 6 N0+
tb − ta

τ
, ∀ta, tb ∈ N, ta < tb; (21)

(iii) let M(ta, tb) be the total time spent in mode de-

tection phases over the time interval [ta, tb), that is,

M(ta, tb) :=
∑tb−1

t=ta
1(t), where

1(t) :=

{

1 if t ∈ [tmi , tsi ) for some i ∈ N,

0 otherwise.

Then, there exists η ∈ [0, 1] and T0 > 0 such that

M(ta, tb) 6 T0+η(tb−ta) ∀ta, tb ∈ N, ta < tb. (22)

Recall that by construction, the controller alternates between

the mode detection phase and the stabilization phase. In other

words, the elements in T
m and T

s are ordered such that

tm1 < ts1 < tm2 < ts2 < . . .

Now, statement (i) ensures that the collected online mea-

surements correspond to a single active mode. From Corol-

lary IV.4, the time length of each mode detection phase for

noiseless data is bounded above by n+m. In simulations, we

have observed that regardless of whether the data are noisy

or noiseless, the mode detection phase is much shorter than

this upper bound. This means that, as long as the unknown

switching signal does not switch too frequently, statement (i)

holds in general.

Statement (ii) is an average dwell-time (ADT) condi-

tion [32] on the mode detection phase. Its interpretation is that,

on average, the controller is switched to the mode detection

phase no more than once per τ time instances. Clearly, this

condition holds if τ is relatively large, or equivalently, if the

controller switches infrequently.

Finally, statement (iii) is an average activation-time (AAT)

condition [33] on the mode detection phase. Its interpretation

is that, on average, the controller dwells in the mode detection

phase for at most a fraction η of the total time. Thus state-

ment (iii) holds if the mode detection phase is, on average,

relatively short when compared to the stabilization phase. This

holds if either the mode detection phase is short or the system

switches infrequently.

Remark VI.3 (Relationship with switching of the system).

Note that Assumption 3(ii) and (iii) are formulated for the

switching signal σd associated to the controller. However, this

is directly related to the switching signal σ of the system. In

fact, let

T := {t ∈ N\{0} : σ(t) 6= σ(t− 1)},

denote the set of time instances at which a system switch

occurs. If the controller has access to these time instances,

then T = T
m. Instead, if the switching signal σ is unknown,

this will not be the case in general. Nevertheless, by definition,

a switch in the controller mode σd can occur only if a switch

in σ has occurred. (and in fact, switches in σ that do not

lead to a violation of the condition (19) do not give rise to a

switch in σd). This means that, as long as statement (i) holds,

the switching of the controller is infrequent if the system (1)

switches infrequently. •

C. Stability analysis of the closed-loop system

The following result characterizes the stability properties of

the closed-loop system.

Theorem VI.4 (Stability guarantee for the closed-loop sys-

tem). Consider initialization data (U i
−, X

i) with, for each

i ∈ P , noise model of the form (10), Qi = q2TiI , for

some q > 0, and satisfying Assumptions 1 and 2. Let online

measurements be collected sequentially, with ‖w(t)‖ 6 q at

each time t. Assume that the switching signal of the controller

satisfies Assumption 3. Let

µ := max
i,j∈P

‖P
1

2

i P
− 1

2

j ‖2, (23)
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and λu > 1 be such that for any i ∈ P , there exists ki > 0
such that





λuPi − kic
2In 0 Â⊤

i

0 kiIm B̂⊤
i

Âi B̂i P−1
i



 > 0. (24)

If the following holds
(

1− lnλu

lnλ

)

η +

(

1− lnµ

lnλ

)

1

τ
< 1, (25)

then, for all initial states x(0) ∈ R
n and each time t ∈ N,

the solution of the closed-loop system (1) with the data-

driven switching feedback controller described by Algorithm 3

satisfies

‖x(t)‖ 6 pmax

pmin
atb‖x(0)‖+ pmax

pmin

ab

(1− a)
√
λ
q, (26)

where

a :=

√

λ
(µ

λ

)
1

τ

(

λu

λ

)η

∈ (
√
λ, 1), (27a)

b :=

√

(µ

λ

)N0

(

λu

λ

)T0

, (27b)

and pmax = maxi∈P λmax(P
1

2

i ), pmin = mini∈P λmin(P
1

2

i ).

The proof of Theorem VI.4 is provided in the Appendix.

Note that, for each i ∈ P , the LMI (24) holds for sufficiently

large λu and ki. Given Assumption 1, λ < 1 is an upper

bound on the decay rate during the stabilization phase. Instead,

λu ≥ 1 is an upper bound on the growth rate during the mode

detection phase. The parameter µ corresponds to the destabi-

lizing effect introduced by each switching. The interpretation

of condition (25) is as follows: the first term quantifies the

combined effect on the growth rate of the state of the mode

detection and stabilization phases. The second term quantifies

the destabilizing effect of mode switches, which happen on

average every τ time instances. For a given switched system,

the constants µ, λ, and λu are fixed. Hence, the condition (25)

is always satisfied if τ is sufficiently large and η is sufficiently

small. This means that the ISS-like property (26) holds as long

as the system switches sufficiently infrequently and the mode

detection phases are sufficiently short.

VII. SIMULATION RESULTS

We illustrate the performance of the proposed data-driven
switching feedback controller through 4 simulation experi-
ments of an unknown switched linear system with n = 5
states, m = 3 inputs, and p = 5 modes. The system matrices

Âi, B̂i are randomly selected and given by

Â1=











−0.73 −0.68 −0.03 −1.34 −0.20
−0.26 0.27 0.18 −0.02 0.79
−0.00 −0.15 −0.09 −0.13 0.46
0.55 0.01 0.47 0.85 0.42

−0.24 0.38 −0.17 0.81 0.05











B̂1=











−0.38 0.56 0.70
−0.36 −0.91 −0.81
0.42 −1.15 0.57
0.54 −0.52 1.69
0.38 −0.80 −0.88











Â2=











0.26 −0.03 0.67 0.77 −0.00
−0.02 0.46 0.10 0.48 0.54
−0.15 −0.07 −0.17 0.51 −0.15
0.43 −0.37 −1.01 −0.36 0.32
0.00 0.21 0.90 0.11 0.12











B̂2=











1.59 1.26 −1.04
0.73 1.62 −0.42
0.96 −0.54 0.73
0.85 0.90 1.51

−0.12 −0.78 0.00











Â3=











−0.25 0.52 0.39 1.15 −0.29
0.29 0.28 −0.21 0.18 0.36

−0.19 −0.40 −0.16 1.19 −0.08
−0.03 0.72 −0.80 0.21 −0.66
0.19 0.09 −0.08 0.00 0.22











B̂3=











2.04 −0.29 0.10
0.20 −2.00 −0.19

−0.12 −2.62 0.50
0.76 0.71 0.34

−2.52 0.01 0.94











Â4=











0.18 0.22 0.16 −0.20 0.64
−0.07 0.58 0.99 −0.12 0.66
0.41 0.27 0.24 0.40 −0.36
0.36 −0.33 0.80 −0.05 0.35
0.04 0.09 −0.83 −0.21 0.04











B̂4=











0.47 0.95 −0.41
−1.07 0.37 0.53
−0.50 1.14 1.77
−0.61 0.12 −1.93
−0.99 1.88 2.02











Â5=











0.27 0.09 0.87 0.28 −0.10
−0.54 0.44 0.25 0.35 0.04
0.53 −0.37 0.00 0.36 −0.49
0.16 0.20 0.00 0.67 0.26

−0.10 −0.42 −0.08 −0.48 −0.14











B̂5=











−0.86 0.58 −1.38
1.52 −0.54 −2.46

−0.74 −1.00 0.16
−2.31 1.47 −0.55
0.44 −1.91 0.16











For all simulations, we select the same switching signal σ,

shown as the blue curve in Figure 2(a) through Figure 5(a).

On average, this signal has 1 switch per 20 units of time.

Each of the 4 simulations has as initial condition x(0) =
[

1000 0 0 0 0
]⊤

.

In the first two simulations, a noiseless data pair (U i
−, X

i)
with T i = 7 is collected in the initialization step for each mode

i ∈ P = {1, . . . , 5}. Note that n + m = 8, and hence it is

impossible to uniquely determine the dynamics of the modes

from these 7 measurements. We set λ = 0.8 as the desired

decay rate for each mode and note that both Assumptions 1

and 2 are satisfied on the initial data. Moreover, with c =
0.1, it can be computed that µ = 1.26, (see (23)), and the

LMI (24) holds with λu = 5.86. We apply our proposed data-

driven controller: in the first simulation, shown in Figure 2, the

controller is aware of when the systems switches and in the

second simulation, shown in Figure 3, the switching signal is

unknown. In both cases, we run the mode detection algorithm

for noiseless data, that is Algorithm 1.

Comparing Figure 2(a) and Figure 3(a), we observe that

the switching signals σd of the controller generated in the

two different scenarios are almost the same, meaning that the

condition (19) with q = 0 is effective in detecting switches.

When σd(t) is not equal to σ(t), the controller is operating

in the mode detection phase, as seen in Figure 2(b) and

Figure 3(b). One can see that for both simulations, σd switches

at the same rate as σ; in particular, when σ is unknown in the

second simulation, switches are always immediately detected,

implying that the controller changes to the mode detection

phase whenever σ changes value. Moreover, each instance of

the mode detection phase takes 2 units of time.

This also implies that Assumption 3 holds with parameters

τ = 20 and η = 0.1. As a result,
(

1− lnλu

lnλ

)

η +

(

1− lnµ

lnλ

)

1

τ
= 0.9942 < 1.

Therefore, the condition (25) is met and hence, by Theo-

rem VI.4, the closed-loop system (1) satisfies (26). Since the

data is noiseless (q = 0), the system is actually asymptotically

stable. This is indeed reflected by the plots of the norms of

the trajectories, as shown in Figures 2(c) and 3(c).

In the third and fourth simulations, we assume the mea-

surements are corrupted with noise of magnitude q = 0.01.

During the initialization step, a noisy data pair (U i
−, X

i) with

T i = 9 is collected for each mode. The desired decay rate is

again λ = 0.8 and it can be verified that both Assumptions 1
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Figure 2: Unknown switched linear system with 5 states, 3 inputs, and 5 modes evolving under the data-driven online switched feedback controller of
Algorithm 3. Simulations correspond to the case with noiseless data and the controller knowing when the system switches between modes. Plot (a) shows the
switching signals of the system (σ) and of the controller (σd). Meanwhile, (b) plots the active (mode detection or stabilization) phase of the controller across
time. Lastly, (c) shows the semi-logarithmic plot of the norm of the state as a function of time.
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Figure 3: Simulation results for the system considered in Figure 2 with the same noiseless data, but with a switching signal completely unknown to the
controller.
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Figure 4: Unknown switched linear system with 5 states, 3 inputs, and 5 modes evolving under the data-driven online switched feedback controller in
Algorithm 3. Simulations correspond to the case with noisy data (with measurement noise bounded by q = 0.01) and the controller knowing when the system
switches modes. Plot (a) shows the switching signals of the system (σ) and of the controller (σd). In (b) we plot the active (mode detection or stabilization)
phase of the controller across time. Lastly, (c) shows the semi-logarithmic plot of the state norm as a function of time.
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Figure 5: Simulation results for the system considered in Figure 4 with the same noisy data, but with a switching signal completely unknown to the controller.

and 2 are satisfied on the initial data. Moreover, with c = 1,

it can be computed that µ = 2.14, and the LMI (24) holds

with λu = 264. We remark that a value of c larger than in

the noiseless simulations is needed in order to distinguish the

inputs from the noise. Similar to the previous two examples,

we study the performance of the data-driven controller in the

scenarios with knowledge of when the system mode switches,

shown in Figure 4, and when the switching signal is unknown,
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shown in Figure 5. As suggested by Figures 4(b) and 5(b), the

presence of noise increases the duration of the mode detection

phase. In both simulations, we obtain η = 0.22.

Comparing Figures 5(a) and 5(b), one can see that the delay

between σ and σd is not equal to the length of the mode

detection phase. This difference precisely corresponds to the

time required to detect the switch (note that instantaneous

convergence of the states is still guaranteed by (19)). In this

case, we have
(

1− lnλu

lnλ

)

η +

(

1− lnµ

lnλ

)

1

τ
= 5.94 > 1,

i.e., the condition (25) is not met. Nevertheless, the behavior

displayed by the trajectories in Figures 4(c) and 5(c), with

oscillations (that are bounded) in the stabilization phase due

to the noise, suggests ISS-like stability with respect to q.

VIII. CONCLUSIONS

We have considered the problem of stabilizing an unknown

switched linear system on the basis of measured data. Prior to

the online operation of the switched system, we have access

to measurements of each of the individual modes. We have

derived conditions in terms of linear matrix inequalities under

which this pre-collected data is informative enough for finding

a uniformly stabilizing controller for each mode. Once the

system is running, we have access to online measurements of

the currently active mode. Our online switched controller de-

sign alternates between a phase that performs mode detection

on the basis of the online measurements and a stabilization

phase that exploits this identification. Under average dwell-

and activation-time assumptions on the switching signal, the

proposed controller guarantees an input-to-state-like stability

property of the closed-loop switched system. Our technical

exposition has dealt with both noiseless and noisy measure-

ments, and the cases when the controller knows the switching

times of the system or has complete lack of knowledge about

them. Future research will investigate methods of input design

in the presence of noise to accelerate mode detection, develop

measures of informativity of online measurements to keep the

most useful data stored and integrate it in the mode detection

phase, and exploit recently collected online measurements with

those collected before to detect switches even during the mode

detection phase.
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APPENDIX

PROOF OF THEOREM III.3

We prove the result following the arguments in the proof

of [28, Theorem 5.1.(a)] with the necessary adjustments. We

are interested in characterizing when (6) holds. Applying the

Schur complement, we see that (A+BK)⊤P (A+BK) ≺ λP
is equivalent to

[

λP (A+BK)⊤

(A+BK) P−1

]

≻ 0.

Defining Q = P−1 and using the Schur complement again

this holds if and only if

λQ− (A+BK)Q(A+BK)⊤ ≻ 0.

Define then the matrix

M :=





λQ 0 0
0 −Q −QK⊤

0 −KQ −KQK⊤



 ,

Given the above reasoning and the description of Σ(U−, X)
in (5), one has that (6) is equivalent to





In
A⊤

B⊤





⊤

N





In
A⊤

B⊤



 = 0 =⇒





In
A⊤

B⊤





⊤

M





In
A⊤

B⊤



 ≻ 0,

where N is given by (4). Using [28, Cor. 4.13], this holds if

and only if there exists α > 0 and β > 0 such that

M − αN �
[

βIn 0
0 0

]

.

Let K := LQ−1. Again using a Schur complement argument,

this is equivalent to









λQ−βIn 0 0 0
0 0 0 Q
0 0 0 L
0 Q L⊤ Q









− α

[

N 0
0 0

]

� 0.

For this to hold, it must be that α 6= 0. As such, we can scale

Q and β to arrive at (8), and this concludes the proof.

PROOF OF THEOREM VI.4

To prove Theorem VI.4, we construct two discrete timers

to deal with the ADT and AAT conditions. Using timers for

handling these conditions is a common approach in the study

of switched systems and in fact similar timers can also be

found in [34], [35]. For the ADT condition, the timer τd
provides a mechanism for keeping track of to what extent the

system behavior is in line with the assumption that we have

1/τ switches per unit time. Similarly, for the AAT condition,

the timer τa provides a mechanism for keeping track of to

what extent the system behavior is in line with the assumption

spending a fraction η of the total time in the mode detection

phase.

Lemma A.1 (Discrete timers for ADT and AAT conditions).

Assume the system does not switch while the controller is in

the mode detection phase. Then, Assumption 3(ii) implies that

there exists a timer τd : N 7→ [0, N0] such that

τd(t+ 1) = τd(t) +
1

τ
− 1 if t ∈ T

m, (28a)

τd(t+ 1) ∈
[

τd(t), τd(t) +
1

τ

]

otherwise. (28b)

Similarly Assumption 3(iii) implies that there is a timer τa :
N 7→ [0, N0] such that

τa(t+ 1) = τa(t) + η − 1 if t ∈ {tmi , · · · , tsi − 1}, i ∈ N,
(29a)

τa(t+ 1) ∈
[

τa(t), τa(t) + η] otherwise. (29b)

Proof. We study the ADT condition first. Let

nd(t) := min
s=0,...,t

{N(0, s)− s

τ
}. (30)

By definition nd(t) is non-increasing. We claim that

τd(t) := N0 + nd(t)− (N(0, t)− t

τ
)

satisfies (28). Clearly, it follows from the definition of nd(t)
that τd(t) 6 N0. Also, for s = 0, . . . , t, we have

N0 + (N(0, s)− s

τ
)− (N(0, t)− t

τ
)

= N(0, s) +
( t− s

τ
+N0

)

−N(0, t)

> N(0, s) +N(s, t)−N(0, t) = 0.

Hence the range of τd is [0, N0]. To verify that (28a) holds,

let t ∈ T
m. In this case, we have N(0, t + 1) = N(0, t) + 1.

Since τ > 1,

N(0, t+ 1)− t+ 1

τ
> N(0, t)− t

τ
> nd(t).

This implies that nd(t+ 1) = nd(t), and hence

τd(t+ 1)− τd(t)

= (nd(t+1)−nd(t))−(N(0, t+1)−N(0, t)− 1

τ
) =

1

τ
−1,

concluding (28a). We now consider the case where t 6∈ T
m.

Note that by definition N(0, t+1) = N(0, t). Direct inspection

yields

τd(t+ 1)− τd(t) = (nd(t+ 1)− nd(t)) +
1

τ
6

1

τ
. (31)
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Meanwhile, note that nd(t+1) < nd(t) if and only if N(0, t+
1)− t+1

τ
< nd(t), in which case

nd(t+ 1)− nd(t) = N(0, t+ 1)− t+ 1

τ
− nd(t)

> (N(0, t+ 1)− t+ 1

τ
)− (N(0, t)− t

τ
) = −1

τ
,

and consequently,

τd(t+ 1)− τd(t) > 0. (32)

Therefore, (28b) follows from (31) and (32).

To study the AAT condition, we define

na(t) := min
s=0,...,t

{M(0, s)− ηs}. (33)

By definition na(t) is non-increasing. We claim that

τa(t) := T0 + na(t)− (M(0, t)− ηt)

satisfies (29). Clearly it follows from the definition of na(t)
that τa(t) 6 T0. Moreover, for s = 0, . . . , t,

T0 + (M(0, s)− ηs)− (M(0, t)− ηt)

= M(0, s) + (η(t− s) + T0)−M(0, t)

> M(0, s) +M(s, t)−N(0, t) = 0.

Hence the range of τa is indeed [0, T0]. To verify (29a), we

first assume t ∈ {tmi , · · · , tsi − 1} for some i ∈ N. In this

case we have M(0, t+1) = M(0, t)+ 1. Since η ∈ [0, 1], we

have that M(0, t+1)− η(t+1) > M(0, t)− ηt. In turn, this

implies that na(t+ 1) = na(t). Therefore we can conclude

τa(t+ 1)− τa(t)

= (na(t+1)−na(t))−(M(0, t+1))−M(0, t)−η) = η−1,

proving (29a). We move our attention to the case where t ∈
{tsi , · · · , tmi+1 − 1} for some i ∈ N. We have N(0, t + 1) =
N(0, t) and hence

τa(t+ 1)− τa(t) = (na(t+ 1)− na(t)) + η 6 η. (34)

On the other hand, note that na(t+1) < na(t) only if M(0, t+
1)− η(t+ 1) < na(t). Therefore, we can conclude

na(t+ 1)− na(t) = M(0, t+ 1)− η(t+ 1)− na(t)

> (M(0, t+ 1)− η(t+ 1))− (M(0, t)− ηt) = −η.

In turn, this implies that

τa(t+ 1)− τa(t) > 0. (35)

We can now conclude (29b) by combining (34) and (35).

We rely on Lemma A.1 to prove Theorem VI.4 next.

Proof of Theorem VI.4. Construct two timers τd : N 7→
[0, N0], τa : N 7→ [0, T0] as in Lemma A.1. Denote the

extended state at time t,

ξ(t) :=









x(t)
σd(t)
τd(t)
τa(t)









∈ R
n × P × [0, N0]× [0, T0] =: X . (36)

Further define functions U, V,W : X 7→ R>0 by

U(ξ) :=

√

(µ

λ

)τd(λu

λ

)τa
,

V (ξ) := Vσd
(x) = ‖P

1

2

σdx‖,
W (ξ) := U(ξ)V (ξ).

Note that since µ > 1, λu > 1 and 0 < λ < 1, we have

that U is increasing with respect to both τd and τa, and

a >
√
λ, where a is defined in (27a). In addition, since

τd ∈ [0, N0], τa ∈ [0, T0], we see that

U(ξ) ∈
[

1,

√

(µ

λ

)N0
(λu

λ

)T0

]

= [1, b],

where b is defined in (27b). It follows from (25) that

ln a =
1

2

(

lnλ+ (lnµ− lnλ)
1

τ
+ (lnλu − lnλ)η

)

=
lnλ

2

(

1−
(

1− lnµ

lnλ

)1

τ
−
(

1− lnλu

lnλ

)

η

)

< 0.

Therefore we have that a < 1. We now investigate the one-

step change of the function t 7→ W (ξ(t)) in three separate

cases.

1) The case t ∈ T
m; that is, a switch is detected at time t.

In this case, the controller has switched to the mode detection

phase. We apply the Schur complement on (24) to deduce that
[

λuPi 0
0 0

]

−
[

Âi B̂i

]⊤
Pi

[

Âi B̂i

]

−ki
[

c2In 0
0 −In

]

> 0.

Since ki > 0, for any x ∈ R
n, u ∈ R

m such that

[

x
u

]⊤ [
c2I 0
0 −I

] [

x
u

]

> 0, (37)

it must be that
[

x
u

]⊤([
λuPi 0
0 0

]

−
[

Âi B̂i

]⊤
Pi

[

Âi B̂i

]

) [

x
u

]

> 0.

(38)

Notice that (37) is equivalent to ‖u‖ 6 c‖x‖, which is the

condition on the control used during the mode detection phase.

On the other hand, (38) is equivalent to

(Âix+ B̂iu)
⊤Pi(Âix+ B̂iu) 6 λux

⊤Pix. (39)

Denote σd(t) = j, σd(t+ 1) = k, which are different because

of the phase switch at t ∈ T
m. It follows from the triangle

inequality that

Vσd(t+1)(x(t+ 1)) = Vk(x(t+ 1))

= ‖P
1

2

k (Âkx(t) + B̂ku(t) + w(t))‖
6
√

λu‖P
1

2

k x(t)‖+ pmaxq

6
√

λu‖P
1

2

k P
− 1

2

j ‖‖P
1

2

j x(t)‖+ pmaxq

6
√

λuµVσ(t)(x(t)) + pmaxq

This can be equivalently written as V (ξ(t + 1)) 6√
λuµV (ξ(t)) + pmaxq. On the other hand, it follows from

(28a) and (29a) that
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U(ξ(t+ 1)) =

√

(µ

λ

)τd(t)+
1

τ
−1(λu

λ

)τa(t)+η−1

=

√

(µ

λ

)
1

τ
−1(λu

λ

)η−1

U(ξ(t)) =

√

λ

λuµ
aU(ξ(t)).

Therefore,

W (ξ(t+ 1)) = U(ξ(t+ 1))V (ξ(t+ 1))

6
√
λaU(ξ(t))V (ξ(t)) +

√

λ

λuµ
U(ξ(t))apmaxq

6
√
λaW (ξ(t)) +

√

λ

λuµ
abpmaxq

and we conclude

W (ξ(t+ 1)) 6 aW (ξ(t)) + b̃q, (40)

where b̃ := ab√
λ
pmax.

2) The case where t ∈ {tmi +1, · · · , tsi −1} for some i ∈ N.

Since the controller is in the mode detection phase and σd does

not switch at t+1, we can similarly conclude from (39) as in

the previous case that

V (ξ(t+ 1)) 6
√

λuV (ξ(t)) + pmaxq.

Moreover, from (28b) and (29a) we can conclude that

U(ξ(t+ 1)) 6

√

(µ

λ

)τd(t)+
1

τ
(λu

λ

)τa(t)+η−1

=

√

(µ

λ

)
1

τ
(λu

λ

)η−1

U(ξ(t)) =
a√
λu

U(ξ(t)).

Therefore

W (ξ(t+ 1)) = U(ξ(t+ 1))V (ξ(t+ 1))

6 aU(ξ(t))V (ξ(t)) +
a√
λu

U(ξ(t))pmaxq

6 aW (ξ(t)) +
ab√
λu

pmaxq,

and again we conclude that (40) holds.

3) The case where t ∈ {tsi , · · · , tmi+1 − 1} for some i ∈ N;

that is, when the controller is in the stabilization phase. In this

case, it follows from (19) that

V (ξ(t+ 1)) 6
√
λV (ξ(t)) + pmaxq.

In turn, we can conclude from (28b) and (29b) that

U(ξ(t+ 1)) 6

√

(µ

λ

)τd(t)+
1

τ
(λu

λ

)τa(t)+η

=

√

(µ

λ

)
1

τ
(λu

λ

)η

U(ξ(t)) =
a√
λ
U(ξ(t)).

Therefore

W (ξ(t+ 1)) = U(ξ(t+ 1))V (ξ(t+ 1))

6 aU(ξ(t))V (ξ(t)) +
a√
λ
U(ξ(t))pmaxq

6 aW (ξ(t)) +
ab√
λ
pmaxq,

and we can conclude the inequality (40) again.

As a result of the above reasoning, we conclude that (40)

holds for all t ∈ N. By the comparison principle [36, Lem.

3.4], we conclude from (40) that

W (ξ(t)) 6 atW (ξ(0)) +
1− at

1− a
b̃q 6 atW (ξ(0)) +

b̃

1− a
q.

Recall the definition of the extended state ξ and the fact that

pmin‖x‖ 6 V (ξ) 6 pmax‖x‖ for any ξ ∈ X . We have

pmin‖x(t)‖ 6 V (ξ) =
W (ξ(t))

U(ξ(t))
6 W (ξ(t))

6 atW (ξ(0)) +
b̃

1− a
q

= atU(ξ(0))V (ξ(0)) +
b̃

1− a
q

6 atbpmax‖x0‖+
b̃

1− a
q.

Dividing both sides by pmin yields (26), proving the result.
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