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Abstract

This paper introduces the Koopman Control Family (KCF), a mathematical framework for modeling general discrete-time
nonlinear control systems with the aim of providing a solid theoretical foundation for the use of Koopman-based methods
in systems with inputs. We demonstrate that the concept of KCF captures the behavior of nonlinear control systems on a
(potentially infinite-dimensional) function space. By employing a generalized notion of subspace invariance under the KCF,
we establish a universal form for finite-dimensional models, which encompasses the commonly used linear, bilinear, and linear
switched models as specific instances. In cases where the subspace is not invariant under the KCF, we propose a method for
approximating models in general form and characterize the model’s accuracy using the concept of invariance proximity. We
end by discussing how the proposed framework naturally lends itself to data-driven modeling of control systems.

1 Introduction

The Koopman operator approach to dynamical systems
has gained widespread attention in recent years. While tra-
ditional state-space methods for nonlinear systems rely on
the description of system trajectories, the Koopman view-
point provides an equivalent formulation of the system be-
havior using a linear operator acting on a vector space of
functions. The Koopman operator framework yields bene-
ficial algebraic constructions that can be leveraged for ef-
ficient computational learning and prediction. These ben-
efits have motivated researchers to consider extending the
framework to control systems. However, unlike the case of
autonomous systems 1 , this has proven difficult due to the
fact that the role of input is fundamentally different from
the state’s role: without a priori knowledge of the input sig-
nal, there is not enough information to predict the system’s
trajectories since the choice of input can drastically alter
the system behavior. Our aim here is to provide a compre-
hensive mathematical framework for Koopman operator-
based modeling of control systems.

Literature Review: The Koopman operator [20] provides an
alternative description of nonlinear autonomous systems
that encodes the system behavior through the evolution of
functions (a.k.a., observables) belonging to a vector space.
Even though the system might be nonlinear, the Koop-
man operator is always linear. This inherent linearity gives
rise to favorable algebraic properties, leading to powerful
tools to analyze complex dynamical systems [7, 28, 35] for
which typical state-space and geometric methods are cum-
bersome. However, linearity comes at the expense of the
infinite–dimensional nature of the operator. To make pos-
sible its direct and efficient implementation on digital com-
puters, one needs to develop finite-dimensional descriptions

⋆ This work was supported by ONR Award N00014-23-1-2353
and NSF Award IIS-2007141.
1 Consistent with the literature on the Koopman operator, we
use the term “autonomous” to describe systems without input.

for it. This generally relies on the concept of subspace in-
variance [6]. If a finite-dimensional subspace is invariant
under the operator, then one can restrict the operator to
the subspace and represent its action with a matrix given
a chosen basis. This has led to a search for invariant sub-
spaces through a variety of techniques, including the di-
rect identification of eigenfunctions (which span invariant
subspaces) [18, 23], optimization and neural network-based
methods [19, 25, 31, 32, 42, 43, 47], and efficient algebraic
searches [12, 13].

Even without a finite-dimensional invariant subspace avail-
able, one can still approximate the action of the Koopman
operator on any finite-dimensional subspace via an orthog-
onal projection. Prominent data-driven methods in this
category are Dynamic Mode Decomposition (DMD) [36,
44] and its variant, Extended Dynamic Mode Decomposi-
tion (EDMD) [22, 46]. For such methods, criteria that must
be balanced to choose the finite-dimensional space are the
relevance of the dynamical information captured by the
subspace and the accuracy of the resulting approximation.
The work [15] provides a tight upper bound on the worst-
case prediction error on a subspace, providing a measure of
the quality of the subspace independently of the chosen ba-
sis. The works [24, 30] provide several error bounds for ac-
curacy of DMD, EDMD, and extensions to Koopman-based
control models. The work [14] provides an algebraic algo-
rithm to approximate Koopman-invariant subspaces of an
arbitrary finite-dimensional space with tunable accuracy.

The algebraic properties of the Koopman operator have
been used in a myriad applications, including fluid dy-
namics [35], stability analysis [8, 27, 48, 49], reachability
analysis [1, 2, 37, 45], safety-critical control [3, 9, 50], and
robotics [5, 26, 38]. The fact that the Koopman operator
is only formally defined for autonomous systems has not
been an obstacle for the development of many data-based
methods inspired by it to construct low-complexity repre-
sentations of control systems. Many advances do not di-
rectly require an operator-theoretic approach for the open
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control system, but instead rely on the Koopman oper-
ator of the unforced system and address control design
based on control Lyapunov functions [29, 51] or feedback
linearization [10]. A significant amount of attention has
been devoted to deriving finite-dimensional forms by lift-
ing to higher dimensions. Due to their simplicity, lifted lin-
ear models are the most popular in the literature [6, 21]
and lead to highly efficient computational algorithms. Such
models, however, are not capable of capturing certain struc-
tures, such as terms containing the products of inputs and
states, which are prevalent in control-affine nonlinear sys-
tems. For these, the works [11, 16, 34, 41] propose the use of
bilinear lifted models based on geometric arguments rely-
ing on the control-affine structure. The work [17] proposes
a different lifted form based on invariant subspaces for the
Koopman operator associated with the unforced system.
An interesting alternative is to model the system by switch-
ing between several Koopman operators, each associated
with the system under a different constant [4, 33] or piece-
wise constant [39, 40] input signal. The work [21] takes a
different approach and considers the system behavior un-
der all possible infinite input sequences, defining a Koop-
man operator for the control system on a function space
whose members’ domain is the Cartesian product of the
state space and all possible input sequences. This is perhaps
the most direct approach in terms of an operator-theoretic
viewpoint for controls systems. However, given the reliance
on infinite input sequences, working with finite-time re-
strictions should be done with care. Here, we take a differ-
ent operator-theoretic approach to capture the behavior of
control systems that we find easier to work with on finite-
dimensional subspaces with only finitely many input steps
available.

Statement of Contributions: Our goal here is to provide a
solid theoretical framework to model general discrete-time
nonlinear control systems based on Koopman operator the-
ory. The starting point of our approach is the observation
made in the literature that if the input is a constant sig-
nal, then the control system becomes an autonomous dy-
namics. Therefore, any Koopman-theoretic model for the
control system must reduce to the conventional Koopman
operator associated with the corresponding autonomous
system. Motivated by this, we define the concept of Koop-
man control family (KFC) as the collection of all Koop-
man operators associated with constant-input autonomous
dynamics derived from the control system. We show that
the KCF can completely capture the control system’s be-
havior on a potentially infinite-dimensional function space.
Since dealing with infinite-dimensional operators is com-
putationally intractable, we provide a theoretical struc-
ture for finite-dimensional models whose construction is
based on projection operators, analogous to the case of
autonomous systems. To find a general finite-dimensional
form for Koopman-based models for the control system, we
rely on a generalized notion of subspace invariance. Specif-
ically, we show that on a common-invariant subspace for
the KCF, the finite-dimensional model always has a spe-
cific “input-state separable” form. Remarkably, the linear,
bilinear, and switched linear models commonly used in the
literature are all special cases of the input-state separa-
ble form. Since KCF contains uncountably many operators
(given the infinite choices for the constant input signal),
directly finding a common invariant subspace is challeng-
ing. To tackle this, we parametrize the KCF with one op-

erator, termed augmented Koopman operator, and show
that invariant subspaces under this augmented operator
lead to common invariant subspaces for the KCF. As a re-
sult, the problem of working with uncountably many op-
erators simplifies to working with a single linear opera-
tor on an extended function space. Similarly to the case
of autonomous systems, finding an exact and informative
finite-dimensional common invariant subspace for the KCF
is generally challenging and in some cases might not even
exist. To address this, we define the concept of invariance
proximity under an operator, which enables us to extended
our results to approximations on non-invariant subspaces
and provide a bound on the accuracy of the resulting ap-
proximated models for the control system. Our final con-
tribution shows how the results of the paper can directly
be used in data-driven modeling applications.

Notation: The symbols N, R, and C, represent the sets of
natural, real, and complex numbers, respectively. Given
A ∈ Cm×n, we denote its transpose, pseudo-inverse, con-
jugate transpose, Frobenius norm and range space by AT ,
A†, AH , ∥A∥F , and R(A), respectively. If A is square, A−1

and Tr(A) denote its inverse and trace respectively. When
all eigenvalues of A are real, λmin(A) and λmax(A) denote
the smallest and largest eigenvalues of A. We use Im and
0m×n to denote the m×m identity matrix and m×n zero
matrix (we drop the indices when appropriate). We denote
the 2-norm of the vector v ∈ Cn by ∥v∥2. Given sets S1 and
S2, their union and intersection are represented by S1 ∪S2

and S1∩S2, respectively. Also, S1 ⊆ S2 and S1 ⊊ S2 mean
that S1 is a subset and proper subset of S2, respectively.
Given the vector space V defined on the field C, dimV de-
notes its dimension. Given a set S ⊆ V, span(S) is a vector
space comprised of all linear combinations of elements in
S. Given vector spaces V1 and V2, we define V1 + V2 :=
{v1 + v2 | v1 ∈ V1, v2 ∈ V2}. Given functions f and g with
appropriate domains and co-domains, f ◦ g denotes their
composition. Let f : A×B → C be amultivariable function
yielding f(a, b) for (a, b) ∈ A×B. Then, f↾b=b∗ : A→ C is
defined as f↾b=b∗ (a) := f(a, b∗) for a ∈ A. If F consists of
multivariable functions of the form f : A × B → C, then
F ↾b=b∗ := {f ↾b=b∗ | f ∈ F}. Given a positive measure µ
on a set A and functions f, g : A → C, we define their L2

inner product as ⟨f, g⟩L2(µ) :=
∫
A
f(x)ḡ(x)dµ(x), where ḡ

is the complex conjugate of g. The L2 norm of f is defined
as ∥f∥L2(µ) =

√
⟨f, f⟩L2(µ). We drop the dependency on

the measure µ when the context is clear.

2 Preliminaries

In this section, we review notions and results regarding the
Koopman operator, Extended Dynamic Mode Decomposi-
tion, and the concept of consistency index.

2.1 Koopman Operator

Here, we briefly explain the Koopman operator associated
with a dynamical system and its properties following the
terminology in [7]. Consider a discrete-time system

x+ = T (x), (1)

with state space X ⊆ Rn. Consider a linear function space
F (defined on the field C) comprised of functions form X
to C and assume it is closed under composition with T , i.e.,
f ◦ T ∈ F for all f ∈ F . We define the Koopman operator
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K : F → F as

Kf = f ◦ T. (2)

It is easy to verify that (2) is a linear operator, i.e.,

K(αf + βg) = αKf + βKg, ∀f, g ∈ F , ∀α, β ∈ C. (3)

The Koopman operator’s action on a given function can
be viewed as pushing forward the function values across all
system’s trajectories by one time step. We can repeatedly
apply theKoopman operator on a function f ∈ F to predict
its evolution on any system trajectory {x(i)}∞i=0 as

f(x(i)) = Kif(x(0)), ∀i ∈ N0. (4)

Since K is a linear operator, we can define its eigendecom-
position. We say the function ϕ ∈ F is an eigenfunction of
K with eigenvalue λ if

Kϕ = λϕ. (5)

By comparing (4) and (5), one can see that Koopman eigen-
functions evolve linearly on system trajectories,

ϕ(x(i)) = λϕ(x(i− 1)), ∀i ∈ N. (6)

We refer to (6) as temporal linear evolution of eigenfunc-
tions. This temporal linearity of eigenfunctions combined
with the linearity (3) of the operator on the spaceF enables
us to linearly predict function values on system trajecto-
ries. Specifically, given eigenfunctions {ϕk}Nkk=1 with corre-

sponding eigenvalues {λk}Nkk=1, one can write the evolution

of the function f =
∑Nk
k=1 ckϕk on the system’s trajectories

as

f(x(i)) =

Nk∑
k=1

ckλ
i
kϕk(x(0)), ∀i ∈ N0.

This equation is of utmost importance since it provides
a linear structure facilitating the prediction of nonlinear
systems [21, 23] as well as learning the system’s behavior
from data [13, 14, 35]. One should keep in mind that, in
general, to capture the full state of the system, one might
need F to be infinite dimensional since it must be closed
under composition with T .

Next, we define the concept of subspace invariance under
the Koopman operator. A subspace G ⊆ F is Koopman
invariant if Kf ∈ G for all f ∈ G. Koopman eigenfunctions
trivially span invariant subspaces.

Remark 2.1 (Simplifying Notation For Vector-Valued
Functions): For convenience, we introduce some notation
simplifying the operation of the Koopman operator on
finite-dimensional spaces. Let Ψ : X → Cs be a vector-
valued map represented as Ψ(·) = [ψ1(·), . . . , ψs(·)]T ,
where ψi : X → C for all i ∈ {1, . . . , s}. We define the span
of the elements of Ψ and action of Koopman operator on
the elements of Ψ as

span(Ψ) := span({ψ1, . . . , ψs}),
KΨ := [Kψ1, . . . ,Kψs]T = Ψ ◦ T.

Given a finite-dimensional subspace H ⊂ F , we often de-
scribe a basis for it by a vector-valued map Φ : X →
Cdim(H) satisfying H = span(Φ). □

An important property of finite-dimensional Koopman-
invariant subspaces is that one can capture the action of the
operator by a matrix once a basis is chosen. Formally, given
the invariant subspace S ⊆ F with basis Ψ : X → Cdim(S),
there exists a unique matrix K ∈ Cdim(S)×dim(S) such that

KΨ = Ψ ◦ T = KΨ. (7)

This equation combined with the linearity of the operator
allow us to easily calculate the action of the operator on
any function in S. Formally, given any function f ∈ S with
description f(·) = wTΨ(·) where w ∈ Cdim(S), one has

Kf = wTKΨ. (8)

The concept of subspace invariance is of utmost importance
since it allows us to operate on finite-dimensional subspaces
and use numerical matrix computation for prediction, as
laid out in equations (7)-(8).

Even if the subspace S ⊆ F is not invariant under K, it is
still possible to the use the notion of subspace invariance
to approximate the action of K on S. To achieve this, one
usually utilizes PS : F → F , the orthogonal projection
operator (given an inner product on F) on S. Observe that
the space S is invariant under the operator PSK : F → F ;
hence, equations (7)-(8) are valid when we substitute in
them the Koopman operatorK by PSK. LetKapprox be the
matrix calculated by applying equation (7) to the operator
PSK. Then, this matrix provides an approximation for the
action of K on S as follows

KΨ = Ψ ◦ T ≈ PSKΨ = KapproxΨ. (9)

Moreover, the analogous but approximated version of func-
tion prediction in (8) is given by

Kf ≈ PSKf = wTKapproxΨ. (10)

Remark 2.2 (General Linear Form and Subspace Invari-
ance):When dealing with the action of the Koopman oper-
ator on finite-dimensional spaces, we use linear models that
are either exact, cf. (7)-(8), or approximated, cf. (9)-(10).
Note that in either case the model has the same form. It is
in this sense that we say that the general finite-dimensional
form of Koopman-based models is linear. Note that this
general form is a consequence of the notion of subspace
invariance (whether the subspace is actually Koopman-
invariant or not). □

2.2 Extended Dynamic Mode Decomposition

In many engineering applications, the system dynamics is
unknown and we only have access to data from the system’s
trajectories. The Extended Dynamic Mode Decomposition
(EDMD) method [46] reviewed here uses data to approxi-
mate the action of the Koopman operator on a given finite-
dimensional space of functions.

Remark 2.3 (Use of Real-valued Basis Functions in Data-
Driven Applications): All the systems in this paper are de-
fined on state and input spaces with real-valued elements.
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Consequently, the Koopman operator’s action on any pair
of complex-conjugate functions leads to another complex-
conjugate pair, which can be captured by a pair of real-
valued functions. Hence, even thoughwe develop our theory
based on complex functions, in data-driven applications,
we work with bases with real-valued elements to simplify
the numerical operations, without loss of generality 2 . □

To specify the function space, EDMD uses a dictionary
comprised ofNΨ functions formX toR. Formally, we define
our dictionary as a vector-valued function

Ψ(·) = [ψ1(·), . . . , ψNΨ
(·)]T ,

where ψ1, . . . , ψNΨ ∈ F are the dictionary elements. To
approximate the behavior of the Koopman operator (and
therefore the system) on span(Ψ), EDMD uses data snap-
shots from the trajectories in two matrices X,X+ ∈ Rn×N
such that

x+i = T (xi), ∀i ∈ {1, . . . , N}, (11)

where xi and x+i are the ith columns of matrices X and
X+ respectively. For convenience, we define the action of
the dictionary on data matrix X (similarly for any data
matrix) as

Ψ(X) = [Ψ(x1),Ψ(x2), . . . ,Ψ(xn)] ∈ RNψ×N .

Note that based on (2) and (11), one can see Ψ(X+) = Ψ◦
T (X) = KΨ(X). Hence, the dictionary matrices Ψ(X) and
Ψ(X+) capture the behavior of the Koopman operator on
span(Ψ). EDMD approximates the action of the operator
by solving a least-squares problem

minimize
K

∥Ψ(X+)−KΨ(X)∥F , (12)

with the following closed-form solution

KEDMD = Ψ(X+)Ψ(X)†. (13)

Throughout this paper, we make the following assumption.

Assumption 2.4 (Full Rank Dictionary Matrices): Ψ(X)
and Ψ(X+) have full row rank. □

Note that Assumption 2.4 implies that the element of Ψ are
linearly independent. Also, it implies that data in X and
X+ are diverse enough to distinguish between functions in
span(Ψ). Moreover, if Assumption 2.4 holds,KEDMD is the
unique solution of (12).

The matrix KEDMD captures relevant information about
the system’s behavior and can be used to approximate the
action of the Koopman operator on span(Ψ). Formally, we
define the EDMD predictor of KΨ by EDMD as

PEDMD
KΨ := KEDMDΨ. (14)

Similarly, for an arbitrary function f ∈ span(Ψ) with de-
scription f(·) = wTΨ(·) for w ∈ CNΨ , one can define the

2 Given a vector-valued function Ψ with real-valued elements,
span(Ψ) contains complex-valued functions since we employ C
as the underlying field.

EDMD predictor of Kf as

PEDMD
Kf := wTKEDMDΨ. (15)

The predictors (14)-(15) are special cases of the approxi-
mations in (9)-(10), where the orthogonal projection corre-
sponds to the L2(µX) inner product, with empirical mea-
sure

µX =
1

N

N∑
i=1

δxi , (16)

where δxi is the Dirac measure defined on the ith column of
X (see e.g., [22]). The quality of predictors in (14)-(15) de-
pends on the quality of span(Ψ) in terms of being close to
invariant underK. If span(Ψ) is invariant underK, then the
predictors in (14)-(15) are exact and match equations (7)-
(8), respectively. Determining closeness to invariance ne-
cessitates an appropriate metric, which is the concept we
review next.

2.3 Consistency IndexMeasures The Dictionary’s Quality

We recall the concept of temporal forward-backward con-
sistency to measure how close a dictionary span is to be-
ing Koopman invariant. Given a dictionary Ψ with real-
valued elements and data matrices X,X+, the consistency
index [15] is

IC(Ψ, X,X+) = λmax(I −KFKB),

where KF = Ψ(X+)Ψ(X)† and KB = Ψ(X)Ψ(X+)† are
EDMD matrices applied forward and backward in time 3 .
When the context is clear, we drop the arguments and
use IC .
The intuition behind the consistency index is that when
span(Ψ) is Koopman-invariant, the forward and backward
EDMDmatricesKF andKB are inverse of each other. Oth-
erwise, their product will deviate from the identity matrix,
with the consistency index providing a measure for this de-
viation. The consistency index is easy to compute based on
data and its value only depends on the vector space, not on
the choice of particular basis. The following result states a
key property of relevance to the ensuing discussion.

Theorem 2.5 ([15, Theorem 1]:
√
IC Bounds the Relative

L2-norm error for EDMD’s Koopman Predictions): Given
Assumption 2.4 for dictionaryΨ, data matricesX,X+, and
the empirical measure (16),

√
IC(Ψ, X,X+) = max

f∈span(Ψ)

∥Kf −PEDMD
Kf ∥L2(µX)

∥Kf∥L2(µX)
,

where the maximum is taken over all functions where the
denominator is nonzero (when denominator is zero, the
EDMD prediction is exact and there is no prediction error),
and PEDMD

Kf is defined in (15). □

3 Note that this definition is equivalent but different from [15,
Definition 1]. The data matrices in this paper are transpose of
the ones in [15]; however, this transposition does not affect the
value of the consistency index.
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Theorem 2.5 provides a crucial tool for the approximation
of Koopman-invariant subspaces. The consistency index
provides a closed-form formula that can be used as a cost
function in data-driven dictionary learning. Since PEDMD

Kf
does not depend on the choice of basis for span(Ψ) (cf. [14,
Lemma 7.1]), based on Theorem 2.5, the consistency index
does not depend on the choice of the basis of span(Ψ) and
provides a tight upper bound for the relative prediction er-
ror for all (uncountably many) functions in the space 4 .

3 Motivation and Problem Statement

Consider the discrete-time control system

x+ = T (x, u), x ∈ X ⊆ Rn, u ∈ U ⊆ Rm, (17)

where x and u are the state and input vectors, and X and
U are the state and input spaces, respectively. Note that
no special structure (e.g., control affine) is assumed on the
system (17). Our goal is to provide a Koopman operator
theory description of the nonlinear control system. The
challenge for extending the concept of the Koopman oper-
ator to systems with inputs is that unlike the autonomous
system (1), the behavior of the control system (17) cannot
be determined without knowledge of the input sequence 5 .
Here, we aim to provide a rigorous mathematical descrip-
tion of how to employ the Koopman operator for control
systems in both infinite- and finite-dimensional cases, and
articulate its application in data-driven modeling of con-
trol systems. We formalize the problem next.

Problem 3.1 (Challenges Regarding the Extension of
Koopman Theory to Control Systems): We aim to provide a
mathematical framework based on the Koopman operator to

(a) capture the behavior of control system (17);
(b) provide a generalized notion of subspace invariance,

leading to a general form for finite-dimensional
Koopman-based models that
(i) encompasses commonly used linear, bilinear, and

linear switched control models;
(ii) is consistent with the linear form for autonomous

systems in (7) and (9): if we set the input to be
constant (which yields an autonomous system),
the finite-dimensional form should reduce to the
lifted linear model in (7) and (9);

(c) evaluate the accuracy of such finite-dimensional mod-
els;

(d) use for data-driven identification of control systems.

4 Koopman Control Family and General Form for
Finite-Dimensional Models

Here, we take the first step towards extending Koopman
theory to the control system case and providing a gener-
alized notion of subspace invariance. As we show below,

4 The residual error of EDMD ∥Ψ(X+)−KEDMDΨ(X)∥F de-
pends on the choice of basis and is not suitable for measuring
quality of span(Ψ). In fact, it is easy to show [15, Example 1]
that, if span(Ψ) is not invariant but contains one exact eigen-
function, then one can find a linear transformation on the dic-
tionary to make the residual error arbitrarily close to zero.
5 Given an infinite input sequence, one can determine [21] the
system’s behavior completely and define a Koopman operator
for it. Moreover, if one closes the loop by means of feedback,
the system takes the autonomous form (1) and hence has a
well-defined Koopman operator, see e.g., [18].

this ultimately leads to a finite-dimensional model that is
the extension of the linear form in (7). We start from the
observation that, if we fix the input as a constant, we get
an autonomous system in the form of (1) which admits a
well-defined Koopman operator. Motivated by this idea,
one can model the system (17) by switching between con-
stant input autonomous systems 6 . Formally, consider the
family of autonomous systems created by setting the input
as a constant signal

x+ = Tu∗(x) := T (x, u ≡ u∗), u∗ ∈ U . (18)

Note that any trajectory {xk}Lk=0 ⊂ X of system (17) gen-

erated with input sequence {uk}L−1
k=0 ⊂ U , can be generated

by applying the autonomous systems Tuk , k ∈ {0, . . . , L−
1} subsequently on the initial condition x0. Hence, we have

xk = Tuk−1
◦ · · · ◦ Tu0

(x0) (19a)

= Tuk−1
(xk−1), k ∈ {1, . . . , L}. (19b)

Noting that the members of the family {Tu∗}u∗∈U are all
autonomous, we can define Koopman operators for each of
them as in (2), leading to the following definition.

Definition 4.1 (Koopman Control Family (KCF)): Let F
be a vector space (over the field C) of complex-valued func-
tions with domain X that is closed under composition with
members of {Tu∗}u∗∈U . The associatedKoopman control
family (KCF) is the family of operators {Ku∗ : F →
F}u∗∈U where, for each u∗ ∈ U , Ku∗ defined by Ku∗f =
f ◦Tu∗ , for all f ∈ F , is the Koopman operator correspond-
ing to the dynamics Tu∗ . □

Similarly to the multi-step prediction (4) under the Koop-
man operator of an autonomous system, one can use (19a)
and the definition of KCF to provide a similar identity for
the non-autonomous case,

f(xk) = Ku0
Ku1

. . .Kuk−1
f(x0), ∀f ∈ F .

Note that the identity above is exact and general and can
be utilized for all trajectories of (17).

Even though a KCF on an appropriate function space can
completely capture the behavior of control system (17),
the infinite-dimensional nature of the function space F can
make its implementation on digital computers impossible.
To address this issue, we need finite-dimensional represen-
tations for KCF. A simple guiding observation in this re-
gard is that if we have an exact finite-dimensional represen-
tation and fix the input to be constant, then the system is
autonomous and the model should reduce to a linear finite-
dimensional case similar to equation (7). This leads us to
the concept of common invariant subspaces under KCF.

Definition 4.2 (Common Invariant Subspaces Under the
Koopman Control Family): The space L ⊆ F is a common
invariant subspace under the KCF if Kūf ∈ L, for all
Kū ∈ {Ku∗}u∗∈U and all f ∈ L. □

Finite-dimensional common invariant subspaces under the
KCF {Ku∗}u∗∈U are of utmost importance because the ac-
tion of all its members on such subspaces can be captured

6 The idea of modeling a control system via constant input
systems has already been considered several times in the liter-
ature [33, 39, 40].
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exactly by matrices. This provides a general framework
for treating control systems. Next, we show that finite-
dimensional common invariant subspaces under KCF lead
to a universal form of models that can be viewed as a gen-
eralization of (7) to the case of control systems 7 .

Theorem 4.3 (General Form on Common Invariant Sub-
spaces: Input-State Separable): The Koopman control
family has a finite-dimensional (of dimension s) common
invariant subspace if and only if there exist functions Ψ :
X → Cs and A : U → Cs×s such that for all (x, u) ∈ X ×U ,

Ψ(x+) = Ψ ◦ T (x, u) = A(u)Ψ(x). (20)

In this formulation, the common invariant subspace under
the KCF is described by span(Ψ).

PROOF. (⇒) : Let S ⊂ F , with dimS = s, be a com-
mon invariant subspace of the Koopman control family
{Ku∗}u∗∈U . Let functions {ψ1, . . . , ψs} be a basis for S and
define the vector-valued function Ψ : X → Cs as Ψ(x) =
[ψ1(x), . . . , ψs(x)]

T for all x ∈ X . Since S = span(Ψ) is
invariant under the KCF, for each u∗ ∈ U , there exists a
matrix Ku∗ ∈ Cs×s such that

Ku∗Ψ(x) = Ku∗Ψ(x), ∀x ∈ X , (21)

where we have used (7) and the notation in Remark 2.1.
Define then the matrix-valued function A : U → Cs×s as

A(u) = Ku, ∀u ∈ U .

Noting that equation (21) holds for all u∗ ∈ U , one can use
the definition of A : U → Cs×s and write

Ψ ◦ T (x, u) = KuΨ(x) = A(u)Ψ(x), ∀x ∈ X , ∀u ∈ U ,

hence proving equation (20).

(⇐) : Assume equation (20) holds. Hence, for all u∗ ∈ U ,

Ψ ◦ T (x, u ≡ u∗) = Ψ ◦ Tu∗(x) = A(u ≡ u∗)Ψ(x),∀x ∈ X .

Given thatA(u ≡ u∗) is a constant matrix, for any function
f ∈ span(Ψ) in the form of f = vTf Ψ with vf ∈ Cs, we have

Ku∗f = f ◦ Tu∗ = vTf Ψ ◦ Tu∗ = vTf A(u ≡ u∗)Ψ ∈ span(Ψ).

This equality holds for all u∗ ∈ U ; hence, span(Ψ) is invari-
ant under the Koopman control family {Ku∗}u∗∈U . 2

The input-state separable form (20) (note the composition
on the left and the matrix product on the right) can be
viewed as a generalization of (7), which describes the exact
action of the Koopman operator on an invariant subspace.
Importantly, the condition in Theorem 4.3 is necessary and
sufficient; therefore the input-state separable form is gen-
eral. In fact, as we show next, it provides a mathematical

7 Similarly to the case of autonomous systems (cf. Remark 2.2
and its preceding discussions), we rely on a notion of subspace
invariance to find a general finite-dimensional form. In the fol-
lowing sections, we also rigorously investigate approximations
on non-invariant subspaces.

framework encompassing common Koopman-inspired de-
scriptions of the control system (17). It is easy to see that
the linear switched systems used in [33] are a special case
of the input-state separable form where the input space U
contains finitely many elements. We formalize this obser-
vation in the following result that follows directly from the
definition of input-state separable form.

Lemma 4.4 (Linear Switched Form is a Special Case
of Input-State Separable Form): For system (17), let
U = {u1, . . . , ul} and assume the system has a lifted linear
switched representation of the form

Ψ(x+)=AuΨ(x), Au ∈ {Au1
, . . . , Aul} ⊂ RNΨ×NΨ , (22)

where Ψ : X → RNΨ with NΨ ∈ N and u ∈ U . Then,
span(Ψ) is a finite-dimensional common invariant subspace
under the KCF associated with the system and (22) is an
input-state separable representation. □

Next, we show that the commonly used linear and bilinear
Koopman-based models are also special cases of the input-
state separable form.

Lemma 4.5 (Linear and Bilinear Forms are Special Cases
of Input-State Separable Form): Assume the system (17)
has a finite-dimensional lifted representation of the form

ψ(x+) = Aψ(x) +

m∑
i=1

Biψ(x)ui + Cu, (23)

where ψ : X → RNψ with Nψ ∈ N. Moreover, A,Bi ∈
RNψ×Nψ for i ∈ {1, . . . ,m} and C ∈ RNψ×m wherem is the
dimension of the input vector. Then span(ψ)+ span(1X ) is
a finite-dimensional common invariant subspace under the
KCF associated with the system 8 , which has the input-state
separable representation[

ψ(x+)

1X (x+)

]
=

[
A+

∑m
i=1 uiBi Cu

0 1

][
ψ(x)

1X (x)

]
. (24)

PROOF. Using the constant function 1X , one can rewrite
the dynamics (23) as (24), which is in input-state separable
form. Therefore, based onTheorem 4.3, span(ψ)+span(1X )
is a finite-dimensional common invariant subspace under
the KCF associated with the system. 2

Remark 4.6 (Existence of Linear or Bilinear Forms Im-
plies Common Invariant Subspaces of KCF): Lemma 4.5
shows that if a system has a linear or bilinear lifted form,
then its associated KCF has a common invariant subspace.
However, the converse does not hold, as corroborated by the
necessary and sufficient condition in Theorem 4.3. There-
fore, for a system to have a linear or bilinear lifted form,
stronger conditions than the existence of common invari-
ant subspace under KCF are required. □

Note that linear and bilinear models are special cases of the
model in (23). Therefore, the input-state separable model
captures these important special cases.

8 Here, 1X : X → C is the constant function defined by 1X (x) =
1 for all x ∈ X .
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Example 4.7 (Input-State Separable Form): Consider

x+1 = ax1 + bu

x+2 = cx2 + dx21 + ex1u+ fu+ g sin(u) + h (25)

where x1, x2 are the state variables and u is the input. The
system has the input-state separable form


x1

x2

x21

1


+

=


a 0 0 b u

e u c d fu+ g sin(u) + h

2ab u 0 a2 b2u2

0 0 0 1



x1

x2

x21

1

 . (26)

Note that for any constant u ≡ u∗, the system turns into
an exact lifted linear form on a Koopman invariant sub-
space (compare with the linear switched model in [33] and
Lemma 4.4). If b = g = 0, (26) turns into the following
bilinear form (cf. Lemma 4.5)


x1

x2

x21

1


+

=


a 0 0 0

0 c d h

0 0 a2 0

0 0 0 1



x1

x2

x21

1

+


0 0 0 0

e 0 0 f

0 0 0 0

0 0 0 0



x1

x2

x21

1

u.

If in addition we have e = 0, the previous equation can be
written in linear form. □

So far, we have established the KCF modeling can com-
pletely capture the behavior of the control system (17).
Moreover, we have found the general form of finite-
dimensional models on the common invariant subspaces
of KCF. However, given that, in general, the KCF con-
tains uncountably many linear operators, one needs to find
tractable ways to find or approximate finite-dimensional
common invariant subspaces under the KCF. We tackle
this task in the following sections.

5 Parameterizing the Koopman Control Family

Here we provide a way to parametrize a Koopman Con-
trol Family via a single linear operator defined on an aug-
mented function space. This allows us to provide an equiv-
alent characterization for a common invariant subspace un-
der the KCF.

5.1 Augmented Koopman Operator

To parametrize the KCF, we first parametrize the family of
constant input systems in (18) as the following augmented
dynamical system

[
x

u

]+

=

[
T (x, u)

u

]
.

For convenience, we define the following tuple notation for
the system above

(x+, u+) = T aug(x, u) := (T (x, u), u), (27)

for (x, u) ∈ X ×U . Note that in (27), u is a part of the state
vector and not an input. The next result shows that this
augmented system captures the behavior of all members of
constant-input systems defined in (18).

Lemma 5.1 (Augmented System Parametrizes the
Constant-Input Family): For the augmented system (27),
the following hold:

(a) the set X × {u∗} is forward invariant under (27) for
all u∗ ∈ U ;

(b) for any u∗ ∈ U , let {xi}∞i=1 be a trajectory of Tu∗ in (18)
with initial condition x0 ∈ X and let {(xaugi , uaugi )}∞i=1
be a trajectory of T aug starting from (xaug0 , u∗) ∈ X×U
with xaug0 = x0. Then, xi = xaugi for all i ∈ N. □

The proof of Lemma 5.1 directly follows from the definition
of system (27) and is omitted for space reasons. As a result
of Lemma 5.1(a), if we restrict the state space of (27) toX×
{u∗} for any u∗ ∈ U , we get a well-defined dynamics, which
we denote by T aug ↾X×{u∗}. Moreover, by Lemma 5.1(b),
T aug↾X×{u∗} captures the behavior of Tu∗ for all u∗ ∈ U .
It is in this sense that we say that T aug on the state space
X × U parametrizes the family of constant-input systems
{Tu∗}u∗∈U .

Since the augmented system is an autonomous dynamics in
the form of (1), we can define a Koopman operator as given
in (2). Appropriately defined, this operator would encom-
pass the KCF’s information, as supported by Lemma 5.1,
which connects the augmented system (27) to the constant-
input systems (18). Nonetheless, before making this con-
nection, we must first bridge the gap between the state-
space of constant-input systems (X ) and that of the aug-
mented system (X×U), and define a proper function space.
To do this, we first provide the following definition.

Definition 5.2 (Control-Independent Extension of Func-
tions in F to Domain X × U): Given the function ϕ ∈ F
where ϕ : X → C, we define its control-independent ex-
tension to the domain X × U as ϕe : X × U → C,

ϕe(x, u) = ϕ(x)1U (u), ∀(x, u) ∈ X × U ,

where 1U : U → C is defined as 1U (u) = 1 for all
u ∈ U . Similarly, for a vector-valued function Φ(x) =
[ϕ1(x), . . . , ϕn(x)]

T , where ϕi ∈ F for all i ∈ {1, . . . , n},
we define Φe(x, u) = [ϕ1(x)1U (u), . . . , ϕn(x)1U (u)]

T . □

One could equivalently define the control-independent ex-
tension as ϕe(x, u) = ϕ(x) for (x, u) ∈ X × U . However,
the structure of Definition 5.2 is consistent with input-state
separable forms, which is particularly convenient in our
forthcoming theoretical analysis. Next, we state straight-
forward but useful properties of control-independent ex-
tensions that follow from the definition.

Lemma 5.3 (Control-Independent Extensions’ Prop-
erties): Let ϕ : X → C and Φ : X → Cn, and let
In×nU : U → Cn×n be a constant function returning the

identity matrix, i.e., In×nU (u) = In×n for all u ∈ U . Then,
for all (x, u) ∈ X × U ,
(a) ϕe(x, u) = ϕ(x) and Φe(x, u) = Φ(x);
(b) Φe(x, u) = In×nU (u)Φ(x);
(c) for all f ∈ span(Φ) with description f = vTf Φ where

vf ∈ Cn, we have fe = vTf Φe. □
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We next define a proper function space for the Koopman
operator associated with the augmented system (27).

Definition 5.4 (Function Space for T aug): Let Faug be a
linear space (on the field C) of complex-valued functions
with domain X × U such that

(a) is closed under composition with T aug;
(b) contains f ◦ T for all f ∈ F ;
(c) contains the control-independent extension fe for all

f ∈ F ;
(d) for all u∗ ∈ U , Faug↾u=u∗= F . □

Note that, as long as we allow the function spaces F and
Faug to be infinite-dimensional, the conditions in Defini-
tion 5.4 are easy to satisfy. Also, note that at this time,
there are no inner products, norms, or metrics on these
function spaces.

With the function space in place, we define the augmented
Koopman operator Kaug : Faug → Faug as

Kaugg = g ◦ T aug, ∀g ∈ Faug. (28)

The augmented operator Kaug encodes the behavior of the
augmented system (27).

5.2 Augmented Koopman Operator Parametrizes the
Koopman Control Family

Here, we investigate the connection between the augmented
operator and the KCF, and the implications for the search
of common invariant subspaces for the KCF. The next re-
sult shows how Kaug parameterizes the KCF {Ku∗}u∗∈U .

Lemma 5.5 (Kaug Parametrizes the KCF): Let f ∈ Faug.
Then for all u∗ ∈ U we have (Kaugf)↾u=u∗= Ku∗(f↾u=u∗).
□

The proof of Lemma 5.5 directly follows from the definition
of Kaug and is omitted for space reasons. Lemma 5.5 estab-
lishes the important fact that the action of Kaug on Faug

completely captures the effect of Ku∗ on Faug ↾u=u∗= F
(cf. Definition 5.4) for all u∗ ∈ U . This shows that Kaug can
be viewed as a parametrization of the KCF, i.e., by knowing
the effect of Kaug on Faug, one can calculate the effect of
all (potentially uncountably many) members of the KCF.
The next result shows how the augmented Koopman oper-
ator can capture relevant information regarding the evolu-
tion of functions in F under the trajectories of the control
system (17).

Lemma 5.6 (Augmented Koopman Operator Predicts the
Functions Evolutions on System’s Trajectories): Let f ∈ F
and denote by f ◦T ∈ Faug the function created by pushing
the values of f one time-step forward through the trajecto-
ries of T . Let fe be the control-independent extension of f
to X × U . Then, f ◦ T = Kaugfe. □

The proof of Lemma 5.6 directly follows from the defini-
tion of Kaug and Lemma 5.3(a), and is omitted for space
reasons. Lemma 5.6 provides a crucial tool to analyze the
behavior of functions in F on the trajectories of the control
system (17) (note the similarity of the composition f ◦ T
with the definition of the Koopman operator (2) for au-
tonomous systems). In this result, observe that even though
Kaug is the Koopman operator associated with (27), its ac-
tion on control-independent function extensions leads to
the prediction of the function values on trajectories of the
actual control system (17).

The next result provides a link between the invariant sub-
spaces of Kaug and common invariant subspaces of the
KCF.

Proposition 5.7 (Invariant Subspaces ofKaug Character-
ize Common Invariant Subspaces for the KCF): Let S ⊆
Faug be an invariant subspace under Kaug. Then,

(a) for all u∗ ∈ U , S↾u=u∗ is an invariant subspace of Ku∗ ;
(b) if S↾u=u1= S↾u=u2 for all u1, u2 ∈ U , then S↾u=u∗ (for

any u∗ ∈ U) is a common invariant subspace under
the Koopman control family {Ku∗}u∗∈U .

PROOF. (a) First note that S ↾u=u∗ is a vector space
for all u∗ ∈ U . Given any u∗ ∈ U , consider an arbitrary
function g ∈ S↾u=u∗ . By definition of S↾u=u∗ , there exists
a function g̃ ∈ S such that g = g̃↾u=u∗ (note that g̃ might
not be unique). By Lemma 5.5, one can write

Ku∗g = Ku∗(g̃↾u=u∗) = (Kaugg̃)↾u=u∗∈ S↾u=u∗ ,

where we have used the fact that Kaugg̃ ∈ S because S
is invariant under Kaug. Therefore, S↾u=u∗ is an invariant
subspace of Ku∗ .

(b) This is a direct consequence of part (a) and the defini-
tion of common invariant subspace for the KCF. 2

Proposition 5.7 provides a tool for the identification of com-
mon invariant subspaces under KCF based on the invariant
subspaces of the augmented Koopman operator. However,
checking the condition in Proposition 5.7(b) requires one
to compare different vector spaces, which can be cumber-
some. In the following section, we provide more direct con-
ditions that can be checked easily and lead to input-state
separable models, as laid out in Theorem 4.3.

6 Input-State Separable Forms via the Aug-
mented Koopman Operator

Here, we aim to build on Proposition 5.7 and Theorem 4.3
to provide more specific practical criteria to identify com-
mon invariant subspaces of the KCF and derive input-state
separable models. Based on Theorem 4.3 we know that on
a common invariant subspace, function composition with
T leads to functions that can be written as a linear combi-
nation of separable functions in x and u. For convenience,
we provide the following definition.

Definition 6.1 (Input-State Separable Functions and
Their Linear Combinations): A function f ∈ Faug is
input-state separable if there exist g : U → C and
h : X → C such that f(x, u) = g(u)h(x) for all x ∈ X
and u ∈ U . A function J is an input-state separable
combination (or separable combination for short) if it
can be written as a finite linear combination of input-state
separable functions. □

Next, we show a property of the bases for spaces of sepa-
rable combinations.

Proposition 6.2 (Spaces of Separable Combinations
Have Separable Bases): Let S ⊆ Faug be a finite-
dimensional (of dimension s ∈ N) subspace comprised of
input-state separable combinations. Then, for any arbi-
trary basis {ϕ1, . . . , ϕs} of S, the vector-valued function
Φ(x, u) = [ϕ1(x, u), . . . , ϕs(x, u)]

T can be decomposed as
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the product of two functions as follows

Φ(x, u) = G(u)H(x), ∀(x, u) ∈ X × U . (29)

where G : U → Cs×l and H : X → Cl for some l ∈ N.

PROOF. By hypothesis, for each i ∈ {1, . . . , s}, there
exists ni such that

ϕi(x, u) =

ni∑
ji=1

piji(u)q
i
ji(x), ∀(x, u) ∈ X × U . (30)

for some functions piji : U → C, qiji : X → C. Now, consider
the space

Q = span{qiji : X → C | i ∈ {1, . . . , s}, ji ∈ {1, . . . , ni}}.

By construction,Q is finite dimensional, with l := dimQ ≤∑s
i=1 ni. Let {h1, . . . , hl} be a basis for Q and construct

the vector-valued function H : X → Cl as

H(·) = [h1(·), . . . , hl(·)]T .

By construction of Q, all functions qiji can be written as
linear combinations of {h1, . . . , hl}. Hence, there exist vec-
tors viji ∈ Cl such that

qiji(·) = (viji)
TH(·), ∀i ∈ {1, . . . , s}, ji ∈ {1, . . . , ni}.

(31)

Now, based on (30)-(31), for all i ∈ {1, . . . , s}, one can write

ϕi(x, u) =

ni∑
ji=1

piji(u)(v
i
ji)

TH(x), ∀(x, u) ∈ X × U . (32)

Defining the function G : U → Cs×l as

G(u) =


∑n1

j1=1 p
1
j1
(u)(v1j1)

T

...∑ns
js=1 p

s
js
(u)(vsjs)

T

 , ∀u ∈ U ,

it follows from (32) that Φ(x, u) = G(u)H(x). 2

With this result in place, we can show how to obtain a
common invariant subspace of the KCF using the invariant
subspaces of the augmented Koopman operator.

Theorem 6.3 (Rank Condition for Identification of Com-
mon Invariant Subspaces of KCF via Kaug): Let S ⊆ Faug

be a finite-dimensional (of dimension s ∈ N) subspace com-
prised of input-state separable combinations that is invari-
ant underKaug and letΦ(x, u) = G(u)H(x) be a decomposi-
tion of a basis for S, where G : U → Cs×l and H : X → Cl.
If G(u) has full column rank for all u ∈ U , then the space
H = span(H) is a common invariant subspace for the KCF.

PROOF. Since S is a finite-dimensional invariant sub-
space under Kaug, given the basis Φ, one can represent the
action of Kaug on S by a matrix A ∈ Cs×s as

KaugΦ = AΦ, (33)

where we have used the compact notation in Remark 2.1.
Using this and the decomposition Φ(x, u) = G(u)H(x),

Kaug
(
G(·)H(·)

)
= AG(·)H(·).

With this compact description, in order to invoke Proposi-
tion 5.7(b), we need to show that

[
span(G(u)H(·))

]
↾u=u∗=

span(G(u∗)H) is the same for all u∗ ∈ U . We show this by
establishing

span(G(u∗)H) = span(H), ∀u∗ ∈ U . (34)

To show the inclusion from left to right, consider g : X → C
with g ∈ span(G(u∗)H). Hence, there is a vector vg ∈ Cs
such that g(·) = vTg G(u

∗)H(·). Defining wg = G(u∗)T vg ∈
Cl, one can write g(·) = wTg H(·) ∈ span(H), proving

span(G(u∗)H) ⊆ span(H), ∀u∗ ∈ U . (35)

To prove the inclusion from right to left, consider
p : X → C with p ∈ span(H). Hence, there is a vector
vp ∈ Cl such that p(·) = vTp H(·). For a given u∗, we need
to show that there exists a vector wp ∈ Cs such that
p(·) = wTp G(u

∗)H(·). In other words, we have to show the
following linear equation holds for some wp ∈ Cs

G(u∗)Twp = vp. (36)

Given that G(u∗) has full column rank, equation (36) al-
ways have at least one solution, which might not be unique.
Therefore, p(·) = wTp G(u

∗)H(·) ∈ span(G(u∗)H) and con-
sequently

span(H) ⊆ span(G(u∗)H), ∀u∗ ∈ U . (37)

Combining (35) and (37) yields the subspace equality (34).
By Proposition 5.7(b), we conclude that span(H) = H is a
common invariant subspace for the KCF. 2

Theorem 6.3 provides an algebraic rank condition that is
far easier to check than the condition in Proposition 5.7.

Remark 6.4 (ANote on Rank Condition in Theorem 6.3):
In Theorem 6.3, if the matrixG(u) is column-rank deficient
only for some u ∈ U , one might be able to use the result
with a slight relaxation. In particular, define

Ũ := {u ∈ U | G(u) has full column rank}.

If the control system (17) exhibits favorable control prop-
erties, e.g., controllability, reachability, or stabilizability,
etc., on Ũ , then one can restrict the input space to Ũ and
apply Theorem 6.3. A notable example of this restriction
is the case of switched linear modeling, see e.g., [33], that

only requires Ũ to contain finitely many predetermined in-
puts. □
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Example 6.5 (Revisiting Example 4.7 – Invariant Sub-
space for Kaug): For the system (25), one can derive a lifted
linear form on an invariant subspace of Kaug as



x1

x2

x21

1

x1u

u

u2

sin(u)



+

=



a 0 0 0 0 b 0 0

0 c d h e f 0 g

0 0 a2 0 2ab 0 b2 0

0 0 0 1 0 0 0 0

0 0 0 0 a 0 b 0

0 0 0 0 0 1 0 0

0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 1





x1

x2

x21

1

x1u

u

u2

sin(u)


.

Note that the evolution is based on the augmented sys-
tem (27), which does not evolve u. One can decompose
the basis Φ(x, u) = [x1, x2, x

2
1, 1, x1u, u, u

2, sin(u)]T as

Φ(x, u) = G(u)H(x), with G(u) = [I4×4, G̃(u)
T ]T where

H(x) =


x1

x2

x21

1

 and G̃(u) =


u 0 0 0

0 0 0 u

0 0 0 u2

0 0 0 sin(u)

 .

In this decomposition, the rank condition in Theorem 6.3
holds (note the presence of I4×4 in G(u)). Hence, span(H)
is a common invariant subspace for the KCF, which is in
agreement with Example 4.7. □

According to Theorem 4.3, a common invariant subspace
for the KCF comes with an associated input-state separable
model for the control system (17). The next result specifies
how to obtain it under the conditions of Theorem 6.3.

Proposition 6.6 (Deriving Input-State Separable Models
using Invariant Subspaces of Kaug): Let S ⊆ Faug be a
finite-dimensional (of dimension s ∈ N) subspace com-
prised of input-state separable combinations that is invari-
ant under Kaug and Φ : X × U → Cs a basis of S. Let A ∈
Cs×s be 9 such that KaugΦ = AΦ. Let Φ(x, u) = G(u)H(x)
be a decomposition of a basis for S, where G : U → Cs×l
andH : X → Cl. IfG(u) has full column rank for all u ∈ U ,
then the matrix-valued map A : U → Cl×l given by

A(u) = G(u)†AG(u) =
(
G(u)HG(u)

)−1
G(u)HAG(u),

turns the common-invariant subspace H = span(H) for the
KCF into the input-state separable form of Theorem 4.3,
i.e., for all (x, u) ∈ X × U

H(x+) = H ◦ T (x, u) = A(u)H(x).

PROOF. Using the definition of T aug, cf. equation (27),
one canwriteKaugΦ(x, u) = Φ◦T aug(x, u) = Φ(T (x, u), u) =
AΦ(x, u) for all (x, u) ∈ X × U . Now, by using Φ(x, u) =

9 The existence of this matrix is a direct consequence of the
fact that S is invariant under Kaug.

G(u)H(x),

G(u)H(T (x, u)) = AG(u)H(x), ∀(x, u) ∈ X × U .

Keeping in mind that G(u) has full column rank, one
can multiply both sides from the left by G(u)† =(
G(u)HG(u)

)−1
G(u)H , use G(u)†G(u) = I, and reorder

the terms to write

H ◦ T (x, u) = H(T (x, u)) = G(u)†AG(u)H(x) = A(u)H(x),

for all (x, u) ∈ X × U . 2

Theorem 6.3 and Proposition 6.6 provide us with a way to
leverage the augmentedKoopman operatorKaug to identify
common invariant subspaces for the KCF and derive input-
state separable models for the control system.

7 Input-State Separable Forms on Normal Spaces

In this section, we turn our attention to a special case of
subspaces that are of practical significance. This focus is
motivated by examining the rank condition on G(u) pre-
sented in Theorem 6.3, and observing that the matrix-
valued function G constitutes an element of the basis de-
scription for subspace S. It becomes then clear that this
condition specifies a structural characteristic of the sub-
space S and its basis, which is independent of the operator
Kaug. Therefore, here we study a specific class of subspaces
and their bases that always satisfy the rank condition in
Theorem 6.3.

Definition 7.1 (Vector-Valued Function of Separable
Combinations in Normal Form and Normal Spaces): Let
Φ : X × U → Cs be a vector-valued function of separa-
ble combinations. Moreover, let the set of elements of Φ
be linearly independent. Φ is in normal form if it has a
decomposition as one of the following:

Φ(x, u) =

[
I l×lU (u)

G̃(u)

]
H(x), s > l, (38a)

Φ(x, u) = I l×lU (u)H(x), s = l, (38b)

where H : X → Cl and G̃ : U → C(s−l)×l for some l ≤ s
and the elements of H are linearly independent. Moreover,
I l×lU : U → Cl×l is the constant identity function, I l×lU (u) ≡
I. A finite-dimensional space of separable combinations is
normal if it has a basis that can be written as a vector-
valued function of normal form. □

From Definition 7.1, it is clear that a basis in normal form
satisfies the rank condition in Theorem 6.3. The next result
shows a useful property of normal spaces.

Proposition 7.2 (Normal Spaces Capture Control-
Independent Functions): Let S ⊂ Faug be a finite-
dimensional space of input-state separable combinations
and let Φ(x, u) = G(u)H(x) be a decomposition of a basis
for S, where G : U → Cs×l and H : X → Cl for some l ≤ s
(here, s ∈ N is the dimension of S). Then, S is normal if
and only if he ∈ S (cf. Definition 5.2) for all h ∈ span(H).

PROOF. (⇒) : Since S is normal, it has a basis with one
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of the following forms:

Φ̂(x, u) =

[
I l×lU (u)

G̃(u)

]
H̃(x), if s > l,

Φ̂(x, u) = I l×lU (u)H̃(x), if s = l, (39)

where span(H̃) = span(H) (this is a direct consequence of

the fact that Φ and Φ̂ are bases for the same subspace).
Then, for every h ∈ span(H), there exists a vector wh ∈ Cl,
such that h(·) = wTh H̃(·). Based on (39), one can write

he(x, u) = [wTh , 01×(s−l)]Φ̂(x, u) ∈ S, if s > l,

he(x, u) = wTh Φ̂(x, u) ∈ S, if s = l.

This concludes the proof of this part.

(⇐) : LetH(·) = [h1(·), . . . , hl(·)]T . By hypothesis, we have
hi(x)1U (u) ∈ S for all i ∈ {1, . . . , l}. As a result, there exist
vectors {w1, . . . , wl} ⊂ Cs such that for all (x, u) ∈ X × U
we have

hi(x)1U (u) = wTi G(u)H(x), ∀i ∈ {1, . . . , l}. (40)

Let W = [w1, . . . , wl]
T ∈ Cl×s and consider two cases:

Case (i): Suppose s = l. Define the vector-valued function

Φ̃(·, ·) =WΦ(·, ·). This function can be written as

Φ̃(x, u) =WG(u)H(x) = I l×lU (u)H(x), ∀(x, u) ∈ X × U ,

where we have used (40). Therefore Φ̃ is a normal-form
basis and hence S is normal.

Case (ii) Suppose s > l and decompose G(u) =
[GT1 (u), G

T
2 (u)]

T , where G1 : U → Cl×l and G2 : U →
C(s−l)×l. Define the vector-valued function Φ̂ : X × U →
Cs×l,

Φ̂(x, u) =

[
W

B

]
Φ(x, u) =

[
W

B

][
G1(u)

G2(u)

]
H(x)

=

[
I l×lU (u)

G2(u)

]
H(x),

where B = [0(s−l)×l, I(s−l)×(s−l)] ∈ C(s−l)×s, and in the

third equality we have used (40). Therefore, Φ̂ is a normal-
form basis and hence S is normal. 2

Proposition 7.2 reveals a useful property of normal spaces
that allows us to directly predict the evolution of functions
in F under the system’s trajectories by applying Kaug on
control-independent extensions through Lemma 5.6, as we
explain next.

Theorem 7.3 (Identification of Common Invariant Sub-
spaces of the KCF and Input-State Separable Forms on Nor-
mal Spaces): Let S ⊂ Faug be a finite-dimensional normal
space of input-state separable combinations that is invari-
ant under Kaug. Let Φ(x, u) = G(u)H(x) be a decomposi-
tion of a basis for S where G : U → Cs×l and H : X → Cl
for some l ≤ s (here, s ∈ N is the dimension of S). Then,

(a) span(H) ⊂ F is a common invariant subspace under
the Koopman control family {Ku∗};

(b) for all h ∈ span(H) and for all (x, u) ∈ X ×U , it holds
that h(x+) = h ◦ T (x, u) = Kaughe(x, u);

(c) without loss of generally, assume Φ is in normal

form, i.e., G(u) = I l×lU (u) if l = s or G(u) =

[I l×lU (u)T , G̃(u)T ]T if s > l. Moreover, let A ∈ Cs×s
be a matrix such that KaugΦ = AΦ (note that A exists
because S is invariant under Kaug). If s > l, consider
the block-decomposition of A,

A =

[
A11 A12

A21 A22

]
,

where A11 ∈ Cl×l, A12 ∈ Cl×(s−l), A21 ∈ C(s−l)×l,
and A22 ∈ C(s−1)×(s−l). Then, the associated input-
state separable dynamics can be written as

H(x+) = H ◦ T (x, u) = A(u)H(x), (41)

where, for each u ∈ U ,

A(u) = A11 +A12G̃(u), if s > l.

A(u) = AI l×lU (u) = A, if s = l.

PROOF. (a) Since S is normal, one can do a linear trans-
formation of the basis Φ(x, u) = G(u)H(x) to put it in
normal form. Hence, there is a nonsingular square matrix
E, such that EΦ(x, u) = EG(u)H(x) is in normal form.
Therefore, by Definition 7.1, EG(u) has full column rank
for all u ∈ U . Since E is nonsingular, we deduce that G(u)
has full column rank for all u ∈ U . As a result, we can in-
voke Theorem 6.3 to deduce that span(H) ⊂ F is a com-
mon invariant subspace under the KCF.

(b) This part is the direct consequence of Lemma 5.6.

(c) Using the definition of T aug, cf. equation (27), one can
write Φ ◦ T aug(x, u) = Φ(T (x, u), u) = AΦ(x, u) for all
(x, u) ∈ X × U . Now, using Φ(x, u) = G(u)H(x),

G(u)H(x+) = G(u)H(T (x, u)) = AG(u)H(x). (42)

The case s = l is trivial since G(u) is an identity map. For
the case s > l, the proof directly follows by multiplying
both sides of (42) from the left by the matrix [Il×l, 0l×(s−l)]
and using the decompositions of G(u) and A. 2

Example 7.4 (Examples 4.7 and 6.5 Revisited): The basis
decomposition in Example 6.5 is in normal form. One can
readily use the formula in Theorem 7.3(c) with this decom-
position to calculate the input-state separable form (26).□

Theorem 7.3 has significant practical implications: not only
it connects the invariant subspaces of Kaug to common in-
variant subspaces of the KCF, but more importantly, un-
like Proposition 6.6, it provides a direct way of predicting
the evolution of observables in F under the control system
based on the application of Kaug on control-independent
extensions. This direct computation does not require tak-
ing a pseudo-inverse (cf. Proposition 6.6) and is helpful to
find accuracy bounds when we have to approximate invari-
ant subspaces of Kaug, as we explain next.
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8 Non-Invariant Subspaces, InvarianceProximity,
and Approximation Error

In the sections above we have provided results connecting
the finite-dimensional invariant subspaces of Kaug to com-
mon invariant subspaces of the Koopman control family
{Ku∗}u∗∈U , and how these can be used in predicting the
evolution of functions on the common invariant subspace
under the trajectories of the control system. In practice,
however, finding exact invariant subspaces that capture
proper information is an arduous task and one might need
to settle for an approximately invariant subspace. In such
case, three fundamental questions immediately arise:

(Q1) How can we measure the closeness of a subspace to
being invariant?

(Q2) How does this measure characterize the approxima-
tion error of the action of the operator on a non-
invariant subspace?

(Q3) How do the previous results regarding the prediction
of observables on the trajectories of the control system
extend to the case of non-invariant subspaces?

These are the questions we tackle in this section. To de-
termine whether a finite-dimensional subspace S ⊂ Faug

is invariant under Kaug we only need the concept of set in-
clusion. However, in order to quantify how close to invari-
ant a subspace is, we need to be able to measure angles,
lengths, and distances. Therefore, we equip the space Faug

with an inner product, that induces a norm and, in turn, a
metric 10 .

Definition 8.1 (Inner Product, Norm, and Metric on
Faug): An arbitrary inner product 11 ⟨·, ·⟩ : Faug ×Faug →
C on Faug induces a norm ∥ · ∥ : Faug → [0,∞) and a
metric dist : Faug ×Faug → [0,∞) as

∥f∥ =
√
⟨f, f⟩ , dist(f, g) = ∥f − g∥. □

Since we work with a finite-dimensional subspace that is
not necessarily invariant under the operator, we have to
approximate the action of the operator on the subspace.
This approximation is generally done by performing an or-
thogonal projection on the subspace, as explained next.

Definition 8.2 (Linear Predictors on Finite-Dimensional
Subspaces): Consider the finite-dimensional subspace S ⊂
Faug and let PS : Faug → Faug be the orthogonal projection
operator 12 on S. We define the predictor for the function
ψ ∈ Faug on S as

ψ ≈ PS
ψ := PSψ.

For a vector-valued function Ψ = [ψ1, . . . , ψn]
T , where ψi ∈

Faug for i ∈ {1, . . . , n}, we define the linear predictor Ψ ≈

10 Even though we aim to approximate a common invariant
subspace H ⊂ F under the Koopman control family, our end
goal is to predict the evolution of observables under the system’s
trajectories, i.e., we aim to predict h(x+) = h ◦ T (x, u) for all
h ∈ H and (x, u) ∈ X × U . Since h ◦ T ∈ Faug, we need to
reason with Faug.
11 Since we are working with finite-dimensional subspaces, we
do not require the metric space to be complete (Hilbert).
12 Given an orthonormal basis {e1, . . . , en} for S, one can cal-
culate the orthogonal projection of g ∈ Faug on S by PS(g) =∑n

i=1⟨g, ei⟩ei.

PS
Ψ := [PS

ψ1
, . . . ,PS

ψn
]. We remove the superscript S when

the choice of subspace is clear from the context. □

The properties of the operator PS lead to useful properties
of the linear predictors defined in Definition 8.2.

Lemma 8.3 (Properties of Linear Predictors): Linear pre-
dictors on the finite-dimensional subspace S ⊂ Faug satisfy:

(a) Pf ∈ S is the best approximation for f ∈ Faug on S,
i.e., ∥f −Pf∥ ≤ ∥f − g∥ for all g ∈ S;

(b) Pc1f1+c2f2 = c1Pf1 + c2Pf2 for all f1, f2 ∈ Faug and
c1, c2 ∈ C;

(c) let Ψ be a vector-valued function with span(Ψ) ⊂ Faug

and let f = vTf Ψ, where vf is a complex vector of

appropriate size. Then, Pf = vTf PΨ. □

The proof of Lemma 8.3 is a direct consequence of the prop-
erties of orthogonal projections and is omitted for space
reasons. Lemma 8.3(a) states that the predictor defined in
Definition 8.2 is the best predictor on the subspace: in this
sense, we use the notation f ≈ Pf when we aim to empha-
size that we approximate f with Pf .

We next use the linear predictors to approximate the action
of the operator Kaug on a non-invariant finite-dimensional
subspace and provide a matrix notation for it.

Lemma 8.4 (Approximating an Operator’s Action using
Linear Predictors): Any finite-dimensional subspace S ⊂
Faug is invariant under PSKaug. Let Φ : X × U → Cs
be a basis for S and let Ã ∈ Cs×s be a matrix such that
PSKaugΦ = ÃΦ. Then,

(a) PKaugΦ = ÃΦ;
(b) for f ∈ S with description f = vTf Φ, where vf ∈ Cs,

we have PKaugf = vTf ÃΦ. □

Note the parallelism of Lemma 8.4 with (9)-(10). Its
proof is a direct consequence of the linearity of Kaug and
Lemma 8.3, and is omitted for space reasons. The predic-
tion error associated with the predictors in Lemma 8.4
directly depends on how close to invariant the space is
under the operator Kaug. To capture this, we define the
concept of invariance proximity under an operator.

Definition 8.5 (Invariance Proximity): The invariance
proximity of a finite-dimensional subspace S ⊂ Faug un-
der the operator Kaug, denoted IKaug(S), is

IKaug(S) = sup
f∈S,∥Kaugf∥≠0

∥Kaugf −PKaugf∥
∥Kaugf∥

. □

Invariance proximity measures the worst-case relative error
of approximation by projecting the action of Kaug on S
and provides an answer to Q2 above. Invariance proximity
does not depend on the specific basis for the subspace,
and is instead a property of the linear space S and the
operator Kaug.

Proposition 8.6 (Properties of Invariance Proximity):
Given a finite-dimensional subspace S ⊂ Faug,

(a) IKaug(S) ∈ [0, 1];
(b) IKaug(S) = 0 if 13 S is invariant under Kaug.

13 The converse also holds if ∥f − g∥ = 0 implies f = g every-
where. This might not hold for typical norms on function spaces
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PROOF. (a) Let f ∈ Faug with ∥Kaugf∥ ̸= 0. Noting
that PKaugf = PSKaugf is an orthogonal projection on S,
we can decompose Kaugf as Kaugf = PKaugf + e, where
⟨PKaugf , e⟩ = 0. Using the definition of the norm induced
by the inner product then yields ∥Kaugf∥2 = ∥PKaugf∥2 +
∥e∥2. Therefore, ∥e∥ ≤ ∥Kaugf∥ and we can write

∥Kaugf −PKaugf∥
∥Kaugf∥

=
∥e∥

∥Kaugf∥
≤ 1.

Since this inequality holds for all functions f ∈ Faug where
PKaugf ̸= 0, we deduce IKaug(S) ≤ 1. Moreover, by defini-
tion of IKaug(S) and the fact that norms are nonnegative,
we conclude IKaug(S) ≥ 0, completing the proof.

(b) If S is invariant under Kaug, we have Kaugf ∈ S and
therefore ∥Kaugf − PKaugf∥ = 0 for all f ∈ S. Hence,
IKaug(S) = 0. 2

Proposition 8.6 means that invariance proximity provides
an answer to Q1 above. The next result extends to non-
invariant subspaces the results on prediction of the evolu-
tion of functions in F under the control system (17), pro-
viding an answer to Q3.

Theorem 8.7 (Approximate Input-State Separable Form
and Accuracy Bound): Let S ⊂ Faug be a finite-dimensional
normal subspace comprised of input-state separable combi-
nations. Let Φ(x, u) = G(u)H(x) be a decomposition of a
basis for S where G : U → Cs×l and H : X → Cl for some
l ≤ s (here, s ∈ N is the dimension of S). Let He and he be
the control-independent extensions of H and h ∈ span(H)
respectively. Then,

(a) Ph◦T = PKaughe for all h ∈ span(H), and PH◦T =
PKaugHe ;

(b) without loss of generally, assume Φ is in normal

form, i.e., G(u) = I l×lU (u) if l = s or G(u) =

[I l×lU (u)T , G̃(u)T ]T if s > l. Moreover, let Ã ∈ Cs×s

be a matrix such that PSKaugΦ = ÃΦ (note that Ã
exists because S is invariant under PSKaug). If s > l,

consider the block-decomposition of Ã,

Ã =

[
Ã11 Ã12

Ã21 Ã22

]
,

where Ã11 ∈ Cl×l, Ã12 ∈ Cl×(s−l), Ã21 ∈ C(s−l)×l,
and Ã22 ∈ C(s−1)×(s−l). Then, the associated approxi-
mate input-state separable dynamics can be written as

H(x+) = H ◦ T (x, u) ≈ PH◦T (x, u) = A(u)H(x),
(43)

where, for each u ∈ U ,

A(u) = Ã11 + Ã12G̃(u), if s > l.

A(u) = Ã I l×lU (u) = Ã, if s = l.

that operate on equivalence classes and allow for violations of
equality on measure-zero sets.

(c) for all h ∈ span(H) with description h = vThH, vh ∈
Cl,

h(x+) = h ◦ T (x, u) ≈ Ph◦T (x, u) = vThA(u)H(x);

(d) for all h ∈ span(H) with ∥h ◦ T ∥ ≠ 0, the predictor’s
relative error is bounded by the invariance proximity
of S under Kaug,

∥h ◦ T −Ph◦T ∥
∥h ◦ T ∥

≤ IKaug(S).

PROOF. (a) By Definition 8.2,Ph◦T = PS(h◦T ). Using
Lemma 5.6, we have h ◦ T = Kaughe. Hence, Ph◦T =
PSKaughe = PKaughe . The statement regarding H follows
directly by applying this to each element of the equality
PH◦T = PKaugHe .

(b) We need to prove the rightmost equality in (43), since
the rest follow directly from their definitions. From part (a),
and using the vector-valued notation in Remark 2.1, we
have

PH◦T = PKaugHe = PSKaugHe. (44)

For the case s = l, we use Lemma 5.3(b) to write

Φ(x, u) = I l×lU (u)H(x) = He(x, u). Hence, noting

that PSKaugΦ = ÃΦ, we have PSKaugHe(x, u) =

ÃHe(x, u) = ÃI l×lU (u)H(x). Using (44), we can write

PH◦T (x, u) = ÃHe(x, u) = ÃI l×lU (u)H(x), which com-
pletes the proof.

Next, we turn our attention to the case s > l. Using
Lemma 5.3(b), one can write

Φ(x, u) = [He(x, u)
T , (G̃(u)H(x))T ]T . (45)

Multiplying both sides of PSKaugΦ = ÃΦ from the left
by W = [Il×l, 0l×(s−l)], and using (45), the decomposition

of Ã, the properties of the vector-valued notation in Re-
mark 2.1, and the linearity of the operator PSKaug, one
can write

PSKaugHe =WPSKaugΦ =WÃΦ

= (Ã11I
l×l
U (u) + Ã12G̃(u))H(x).

The statement then follows from equation (44) and the fact

that I l×lU (u) = I for all u ∈ U .
(c) We need to prove the rightmost equality Ph◦T (x, u) =
vThA(u)H(x), since the rest follow directly from their def-
initions. By hypothesis h ◦ T = vThH ◦ T ; hence, from
Lemma 8.3(c), we have Ph◦T = vThPH◦T . The result then
follows from (43).

(d) By Proposition 7.2, and using the definition of invari-
ance proximity, for all h ∈ span(H) with ∥h ◦ T ∥ ̸= 0, one
can write

∥Kaughe −PKaughe∥
∥Kaughe∥

≤ IKaug(S).

The statement then follows from the fact that Kaughe =
h ◦ T (cf. Lemma 5.6) and part (a). 2
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This result can be viewed as an analog of Theorem 7.3 for
non-invariant subspaces. Theorem 8.7 is a central result, as
it allows to approximate models in the input-state separa-
ble form (cf. Theorem 4.3) by approximating a single nor-
mal invariant subspace ofKaug, which is significantly easier
than working with the KCF directly. Moreover, the con-
cept of invariance proximity provides a bound for approx-
imation errors on the entire subspace. This has important
implications for the validity and approximation accuracy
of common Koopman-inspired descriptions of the control
system (17), cf. Lemmas 4.4 and 4.5.

9 Implications for Robust Data-driven Learning

In this section we illustrate how the results of the paper
can be used in data-driven modeling of control systems.
We provide an algorithmic description that specifies how
to process the data, the choice of inner product space, and
the formulation for the dictionary learning.

9.1 Gathering Data for the Augmented Koopman Opera-
tor

Our strategy for learning relies on using Theorem 8.7 to
approximate an input-state separable form and bound the
prediction error for all functions in the identified subspace.
This result employs the augmented Koopman operator as-
sociated with the augmented system (27) and, instead, we
can only collect trajectory data from the original control
system (17). This mismatch can be easily reconciled as we
explain next.

Let {xi}Ni=1 ⊂ X , {ui}Ni=1 ⊂ U , and {x+i }Ni=1 ⊂ X be state
and input data from trajectories of system (17) such that

x+i = T (xi, ui), ∀i ∈ {1, . . . , N}. (46)

A close look at the definition of T aug in (27) reveals that
it does not alter the input signal, i.e., if we apply it on
the state-input pair xi, ui for all i ∈ {1, . . . , N}, we get
T aug(xi, ui) = (T (xi, ui), ui) = (x+i , ui). Therefore, we al-
ready have access to all the information T aug generates: the
first element returned by T aug is exactly the action of the
control system T that we have measured in (46) and the
second element is exactly the input (without any change)
to T , again measured in (46). For convenience, we gather
these data snapshots for T aug in snapshot matrices as fol-
lows

X = [x1, . . . , xN ] ∈ Rn×N , X+ = [x+1 , . . . , x
+
N ] ∈ Rn×N ,

U = [u1, . . . , uN ] ∈ Rm×N , U+ = U. (47)

Note that even though matrix U+ does not capture addi-
tional information we have created it, since it is a part of
the corresponding state for T aug. To apply existing numer-
ical methods such as EDMD on Kaug, we gather the aug-
mented state snapshots of T aug as

Z = [XT , UT ]T ∈ R(n+m)×N ,

Z+ = [(X+)T , (U+)T ]T ∈ R(n+m)×N . (48)

9.2 Choice of Inner Product Space

The results in the previous sections can be used for sub-
space learning on any arbitrary inner product space. Here

we focus on the most popular inner product space in the
literature that is used for the EDMDmethod [22, 46]. Con-
sider the empirical measure µZ defined by

µZ =
1

N

N∑
i=1

δzi , (49)

where δzi is the Dirac measure at point zi, the ith column of
matrix Z defined in (48). We then choose the space L2(µZ)
comprised of functions on the domain X × U . Under this
choice, given any basis Φ : X × U → Rs with real-valued
elements (cf. Remark 2.3) for the finite-dimensional (with

dimension s) normal subspace S, the matrix Ã in the hy-
potheses of Theorem 8.7 is the EDMD solution applied on
dictionary Φ and data in (48) (cf. Section 2.2), i.e.,

Ã = Φ(Z+)Φ(Z)†. (50)

Moreover, under the condition that Φ(Z) and Φ(Z+) have
full row rank, the invariance proximity turns into the square
root of the consistency index (cf. Section 2.3) and has the
following closed-form expression

IKaug(S) =
√
IC(Φ, Z, Z+)

=
√
λmax

(
I − Φ(Z+)Φ(Z)†Φ(Z)Φ(Z+)†

)
. (51)

We use (51) to formulate an optimization-based learning
problem for modeling the control system.

9.3 Optimization-Based Subspace Learning

Based on Theorem 8.7(d), the invariance proximity deter-
mines the accuracy of the model provided on a given nor-
mal subspace. Hence, we formulate an optimization prob-
lem to find an accurate model by minimizing the invariance
proximity over a parametric family of normal spaces with
basis Φ in normal form (38) as

minimize
Φ∈PF

IKaug(S) ⇔ minimize
Φ∈PF

√
IC(Φ, Z, Z+) ,

(52)

where PF is the parametric family of choice (e.g., neural
networks, polynomials), S = span(Φ), and one can use the
closed-form solution of the invariance proximity in (51).
Note that depending on the choice of the parametric family,
the optimization problem (52) is generally non-convex.

We make the following observations regarding the opti-
mization problem (52) and its properties:

Alternative formulation for efficiency and numer-
ical resiliency to finite-precision errors Using the
closed-form expression for invariance proximity in (51) re-
quires calculating the maximum eigenvalue of MC = I −
Φ(Z+)Φ(Z)†Φ(Z)Φ(Z+)†. This matrix has spectrum in
[0, 1], cf. [15, Lemma 1]. Many software packages for find-
ing maximum eigenvalues rely on iterative methods that
are sensitive to the separation between the largest and sec-
ond largest eigenvalues. To avoid numerical issues, one can
use Tr(MC) instead of λmax(MC), as justified by

1

s
Tr(MC) ≤ λmax(MC) ≤ Tr(MC),
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where s is the dimension ofMC . Note that the inequalities
follow from the fact that the spectrum of MC belongs to
[0, 1].

Equivalence to robust minimax problem Based on
Theorem 2.5, the optimization problem (52) is equivalent
to the following robust minimax problem

minimize
Φ∈PF

max
f∈S,∥Kaugf∥L2(µZ ) ̸=0

∥Kaugf −PKaugf∥L2(µZ)

∥Kaugf∥L2(µZ)
,

where S = span(Φ) and µZ is defined in (49). This equiv-
alence makes it clear that optimization (52) minimizes the
worst-case error on the subspace, does not depend on the
choice of basis, and is not sensitive to the scaling of vari-
ables.

Differences with respect to minimizing residual er-
ror of EDMD A widely popular method for dictionary
learning consists of minimizing the residual error of EDMD
as

minimize
Φ∈PF

∥Φ(Z+)− ÃΦ(Z)∥F , (53)

where Ã = Φ(Z+)Φ(Z)† is the solution of EDMD ap-
plied on dictionary Φ and data Z and Z+. Note that even
though (53) might lead to reasonable accuracy for dictio-
nary elements, unlike optimization (52), it does not nec-
essarily lead to a ‘close to invariant’ subspace 14 , is sen-
sitive to the choice of basis for the subspace, and also to
the scaling of optimization variables. Similarly to (52), the
optimization problem (53) is also generally non-convex de-
pending on the choice of the parametric family.

For the readers’ convenience, Algorithm 1 summarizes the
steps described above to learn input-state separable mod-
els.

Algorithm 1 Learning Input-State Separable Models

1: Gather data according to (47)-(48)
2: Choose a parametric family of normal dictionaries (e.g.,

neural networks, polynomials) with real-valued ele-
ments in the form (38)

3: Obtain Φ∗ by solving (52) using the closed-form ex-
pression for the cost in (51)

4: Calculate Ã = Φ∗(Z+)Φ∗(Z)†

5: Find the input-state separable form via Theorem 8.7(b)

Example 9.1 (Pendulum with Nonlinear Friction and
Saturated Input): Consider the following nonlinear pendu-
lum

ẋ1 = x2,

ẋ2 = −9.81 sinx1 − x2 − 0.1x32 + 5 tanh(0.5u), (54)

where x = [x1, x2]
T is the state vector and u is the in-

put. The term tanh(0.5u) models the actuator’s nonlinear

14 [15, Example 1] provides an instance of a non-invariant sub-
space with arbitrarily close to zero residual error depending on
the choice of basis.

saturation. Note that the system is nonlinear in the input
and therefore linear and bilinear methods associated with
control-affine systems do not apply.

Data: We run 104 experiments with constant inputs and
length 2.5 seconds starting from uniformly selected initial
conditions from [−π

2 ,
π
2 ]

2 and inputs from [−6, 6]. We sam-
ple the trajectories with time step ∆t = 25 milliseconds,
resulting in a total of 106 data snapshots. Out of this data
set, we randomly selectN = 5×104 snapshots as the train-
ing data set and the same amount as the test data set.

Parametric Family: To model the normal basis in the
form (38), we choose the dimension of the normal space
s = 16 and the dimension of the input-state separable
model as l = 8. We model the functions H(x) and G̃(u)
in (38) by two feedforward neural networks, each with 5
hidden layers and 200 neuron per layer and exponentially
linear unit (ELU) activation function. We also fix the first
two elements of H(x) to be the state vector corresponding
to the system.

Training: We simultaneously train the neural networks
(whose weights and biases are randomly initialized) us-
ing the (relaxed) trace version of the consistency index
mentioned above for 2000 epochs based on the Adam
method with batch size of 500 data points and learning
rate 5 × 10−4. The final invariance proximity calculated
by (51) on the training and test data sets are 0.028 and
0.03 respectively.

Finally, we use the formula in Theorem 8.7(b) to build an
input-state separable model. To evaluate the accuracy of
the model, we create a piecewise constant random input
with time step∆t for 10s and compare themodel’s response
with the actual system trajectories generated by (54) start-
ing from three different initial conditions as illustrated in
Figure 1. As the plots show, the obtained model accurately
predicts the system behavior. □

Fig. 1. Data-driven modeling of nonlinear pendulum example.
Top left plot shows the applied piecewise random input se-
quence. The other plots compare the pendulum’s angle response
and its prediction with the input-state separable model for dif-
ferent initial conditions: x0 = [0, 0]T (top right), x0 = [1, 0]T

(bottom left), and x0 = [−1, 0]T (bottom right).

9.4 Special Case of Linear Models

In many control applications, one only requires reasonably
accurate models since, in general, the use of feedback cre-
ates robustness against model mismatches. For instance, in
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model predictive control (MPC) schemes, one only requires
models that provide reasonably accurate finite-horizon pre-
dictions. A sensible strategy in such cases is to use simpler
(and possibly less accurate) models with favorable struc-
ture to gain significant improvement in computational cost.
This renders linear lifted models, e.g., [21], a powerful tool
for predictive control applications. The next result explains
how to use the results in the paper to derive such models.

Lemma 9.2 (Normal Basis Form for Linear Models):
Consider the dictionary in normal form in (38a) with
s = m + l, where m is the dimension of the input vector.
Impose the additional structure H(x) = [Ψ(x)T , 1X (x)T ]T

and G̃(u) = [0m×(l−1), u], where Ψ : X → Rl−1 and
1X : X → R such that 1X (x) = 1 for all x ∈ X . Then, the
input-state separable model in Theorem 8.7(b) turns into
the following linear form with dimension l[

Ψ(x+)

1X (x+)

]
≈ Ã11

[
Ψ(x)

1X (x)

]
+ Ã12u. □

The proof of Lemma 9.2 is a direct calculation based on the
closed-form in Theorem 8.7(b) and the fact that u1X (x) =
u for all (x, u) ∈ X×U . Lemma 9.2 enables us to learn lifted
linear models by incorporating an additional (but simple)
structure in optimization (52) to learn lifted linear models.

10 Conclusions

We have presented the notion of Koopman Control Fam-
ily (KCF), a theoretical framework for modeling general
nonlinear control systems. We have shown that the KCF
can fully characterize the behavior of a control system on a
(potentially infinite-dimensional) function space. To build
finite-dimensional models, we have introduced a general-
ized notion of subspace invariance, leading to a universal
finite-dimensional formwhich we refer to as input-state sep-
arable. Remarkably, the commonly-used lifted linear, bilin-
ear, and switched linear models are all special cases of the
input-state separable form. We have provided a complete
theoretical analysis accompanied by discussions on usage
in data-driven applications. Future work will build on the
results of the paper to include theoretical strategies for con-
trol design as well as methods to determine reachable and
control invariant sets. We also aim to explore additional
structures that the KCF might enjoy for special classes of
nonlinear systems such as control-affine and monotone sys-
tems.
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