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Abstract

A popular way to approximate the Koopman operator’s action on a finite-dimensional subspace of functions
is via orthogonal projections. The quality of the projected model directly depends on the selected subspace,
specifically on how close it is to being invariant under the Koopman operator. The notion of invariance
proximity provides a tight upper bound on the worst-case relative prediction error of the finite-dimensional
model. However, its direct calculation is computationally challenging. This paper leverages the geometric
structure behind the definition of invariance proximity to provide a closed-form expression in terms of
Jordan principal angles on general inner product spaces. Unveiling this connection allows us to exploit
specific isomorphisms to circumvent the computational challenges associated with spaces of functions and
enables the use of existing efficient numerical routines to compute invariance proximity.
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1. Introduction

Koopman operator theory studies the behavior
of nonlinear dynamical systems through the lens
of linear operators acting on vector spaces of func-
tions. This paradigm provides a formal algebraic
structure that can be leveraged to study unstruc-
tured complex systems. However, the Koopman op-
erator is generally defined on infinite-dimensional
spaces, a major obstruction for implementation on
digital computers. A popular way to address this
is to approximate the action of the operator over
finite-dimensional subspaces. Expectedly, such ap-
proximations, often calculated via orthogonal pro-
jections, lead to model mismatch and prediction er-
ror, which makes providing accuracy measures for
such models critical. These measures can be em-
ployed both as loss functions for subspace learning
and as a tool to provide error bounds and certifi-
cates on accuracy and safety for the actual system.
This paper focuses on the computation of one such
measure: invariance proximity.
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1.1. Literature Review

Koopman operator theory [1] describes a nonlin-
ear system via the action of a linear operator on a
vector space of functions. Moreover, the value of
Koopman eigenfunctions on the system trajectories
evolve linearly. This leads to a powerful spectral
representation of nonlinear systems [2], which has
given rise to a plethora of applications, including
stability analysis [3, 4, 5], control [6, 7, 8, 9, 10, 11],
and robotics [12, 13]. In inner-product spaces,
one can approximate the action of the Koopman
operator on finite-dimensional subspaces by using
orthogonal projections. The description of the
evolution of observables under the operator nat-
urally lends itself to the incorporation of data in
producing such approximations. A notable ex-
ample is Extended Dynamic Mode Decomposition
(EDMD) [14], which uses data to approximate the
Koopman operator’s action on a predefined finite-
dimensional space spanned by a dictionary of func-
tions. The work [15] provides several convergence
results regarding EDMD’s behavior with respect to
the action of the Koopman operator as the num-
ber of data and the dictionary functions go to in-
finity. Notably, for bounded Koopman operators,
these results include convergence of EDMD opera-
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tors in strong operator topology, weak convergence
of eigenfunctions, as well as important implications
for finite horizon accurate prediction of observables
on system’s trajectories. We refer the reader to [16]
for a survey on different DMD-based methods and
their properties.
In practical applications, due to computational

constraints, one often relies on approximations on
finite-dimensional spaces. The accuracy of EDMD
and other projection-based methods directly de-
pends on the quality of the underlying finite-
dimensional subspace. If the subspace is invariant
under the Koopman operator, the resulting model
is exact. Otherwise, the approximation via projec-
tion leads to two related issues: (i) errors in the
prediction of the operator’s action and (ii) spec-
tral pollution. This has led to significant research
activity towards finding finite-dimensional spaces
that are (close to) invariant under the action of
the Koopman operator. The works [17, 18, 19]
use optimization and neural network-based meth-
ods to address this question. Other methods di-
rectly identify the spectral properties of the Koop-
man operator, including its eigenfunctions, which in
turn span invariant subspaces [20, 21]. In another
line of work [22, 23], termed Symmetric Subspace
Decomposition (SSD) algorithms, we have relied on
iteratively cleaning up a given subspace to identify
the maximal Koopman invariant subspace and all
the eigenfunctions with convergence and accuracy
guarantees. The Tunable Symmetric Subspace De-
composition (T-SSD) algorithm [24, 25] allows to
perform the clean-up with tunable accuracy. The
accuracy in T-SSD is captured via the concept of in-
variance proximity. T-SSD also gives convergence
and accuracy guarantees on the prediction of the
Koopman operator’s action for all functions (not
just the eigenfunctions) in the identified subspace.
Residual Dynamic Mode Decomposition (Res-

DMD) [26, 27, 28] is a more recent line of work
which aims at resolving the issue of spectral pol-
lution. ResDMD relies on a clean-up procedure
based on the concept of residuals to remove spu-
rious eigenfunctions and also provides methods for
approximation of Koopman operators’ psudospec-
tra accompanied by appropriate spectral bounds.
Albeit ResDMD, SSD, and T-SSD all employ some
form of clean-up procedure, it is worth noting that
the goals for which they are designed and the as-
sociated guarantees are different. The clean-up in
ResDMD is focused on the accuracy of candidate
eigenpairs, since the goal is to capture the spec-

trum. In SSD and T-SSD algorithms, the clean-up
procedure is focused on ensuring the accuracy of
prediction for Koopman operator’s action on ar-
bitrary functions (not just eigenfunctions). More-
over, the type of guarantees for ResDMD, SSD,
and T-SSD are different. ResDMD leads to spec-
tral bounds and guarantees on capturing spectra
and psuedospectra, while SSD and T-SSD lead to
bounds on the approximation of the Koopman op-
erator’s action on arbitrary functions in their iden-
tified subspace. Another notable work for spectral
bounds is [29] which studies systems with compact
and self-adjoint Koopman operators.

Given the recent interest in finite-dimensional
Koopman-based approximations, directly charac-
terizing the approximation’s accuracy of given
model is critical for the validation and refine-
ment of Koopman-based models. The work in [30]
provides probabilistic error bounds for accuracy
of EDMD based on sampled data and [31] pro-
vides a tight upper-bound for the error induced
by EDMD’s projection. However, these bounds
are only given for data-driven techniques, and not
in the larger context of Koopman operator-based
methods. Nonetheless, in system and control the-
ory, many of the applications (e.g., stability, reach-
ability, safety analysis, identification of invariant
sets) require analytical bounds at the function level,
not just on the data. We tackle this by providing
error bounds on Koopman-based projected models
over general inner product spaces.

1.2. Statement of Contributions

Given a general inner-product space, we con-
sider approximate Koopman-based models created
by the orthogonal projection on finite-dimensional
subspaces. To assess the accuracy of such models,
we rely on the notion of invariance proximity intro-
duced in [9], which measures the worst-case relative
error for the model’s prediction over all functions in
the subspace. Given that invariance proximity re-
quires taking a supremum over uncountably many
functions in a finite-dimensional vector space, its
direct calculation is challenging. To efficiently com-
pute invariance proximity1, we study the geomet-
ric structure between the underlying subspace and

1In this paper, we consider the problem of efficiently com-
puting invariance proximity. We refer the reader to [9] for
the theoretical properties of invariance proximity and how it
can be used to approximate Koopman-based models.
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its image under the Koopman operator. We or-
thogonally decompose these subspaces using their
corresponding Jordan principal angles and vectors.
Using this decomposition, we provide a closed-form
expression for invariance proximity as the sine of
the largest principal angle. This allows us to exploit
specific isomorphisms to reformulate on a complex
Euclidean space the problem of calculating invari-
ance proximity, enabling the use of existing efficient
numerical routines.

1.3. Notations

We use N, R, R≥0, and C to represent natu-
ral, real, non-negative real, and complex numbers.
Given the vector v ∈ Cn, we denote its complex
conjugate, norm, and transpose with v̄, ∥v∥, and
vT respectively. Given sets A and B, A ⊆ (⊂)B
means that A is a (proper) subset of B. Given the
vector space L and subspaces V,W ⊆ L, we define
their sum V + W := {v + w | v ∈ V, w ∈ W}.
Moreover, if L is equipped with an inner product,
V ⊥ W means that V is orthogonal to W. In this
case, we denote their sum with V⊕W and refer to it
as a direct sum. Given, θ ∈ R, we show its sine and
cosine by sin(θ) and cos(θ). Given the functions f1
and f2 with matched domains and co-domains, we
denote their composition by f1 ◦ f2.

2. Preliminaries

We briefly recall [32, 9] the definition of the
Koopman operator, finite-dimensional approxima-
tions, and accuracy bounds characterized through
invariance proximity.

2.1. Koopman Operator

Consider a discrete-time nonlinear system

x+ = T (x), x ∈ X , (1)

where X is the state space and T : X → X is the
dynamics map. Consider a vector space F over C
comprised of complex-valued functions with domain
X and assume it is closed under composition with
T : for all f ∈ F , we have f ◦T ∈ F . The Koopman
operator K : F → F is defined as

Kf = f ◦ T. (2)

Unlike the system (1), which acts on points in the
state space, the Koopman operator (2) acts on func-
tions in the vector space F . Importantly, the Koop-
man operator is always linear, i.e., for all g, h ∈ F

and all α, β ∈ C,

K(αg + βh) = αKg + βKh. (3)

A nonzero function ϕ ∈ F is an eigenfunction of the
Koopman operator with eigenvalue λ ∈ C if

Kϕ = λϕ. (4)

The eigenfunctions evolve linearly in time on the
system’s trajectories, i.e., ϕ(x+) = ϕ ◦ T (x) =
[Kϕ](x) = λϕ(x). The combination of the linear
temporal evolution of eigenfunctions with the lin-
earity (3) of the operator lead to computationally
efficient methods for identification and prediction of
nonlinear systems. It is crucial to note that, in gen-
eral, the space F is infinite-dimensional. For many
practical application, a finite-dimensional represen-
tation is used, as we explain next.

2.2. Koopman-Invariant Subspaces

A subspace J ⊂ F is invariant under the Koop-
man operator if Kf ∈ J for all f ∈ J . Al-
though finite-dimensional Koopman-invariant sub-
spaces capturing complete information about the
system are rare in general, their study is theoret-
ically important because the concept of subspace
invariance determines the general form of finite-
dimensional models and provides a bedrock for ap-
proximations on non-invariant subspaces. Finite-
dimensional Koopman-invariant subspaces allow for
exact representation of the Koopman operator and
enable the use of efficient numerical linear algebraic
routines. This exact representation is constructed
by restricting K to a finite-dimensional subspace J
as K↾J : J → J , where K↾J f = Kf for all f ∈ J .
Given a basis for J , one can represent the operator
K↾J by a matrix. Formally, let J : X → CdimJ be
a vector-valued map whose elements form a basis
for J . Then, there exists K ∈ CdimJ×dimJ such
that

K↾J J = KJ = J ◦ T = KJ, (5)

where the action of an operator on a vector-valued
map is defined in an element-wise manner. For any
function f ∈ J represented as f = vTf J , the action
of K↾J on f is

K↾J f = vTf KJ. (6)

Equations (5)-(6) enable fast prediction of the ac-
tion of the Koopman operator via numerical lin-
ear algebra. However, in general, finding finite-
dimensional Koopman-invariant subspaces that
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capture sufficient information is difficult (and some-
times impossible) and therefore, one settles for ap-
proximations, as we explain next.

2.3. Approximations on Non-Invariant Subspaces
To discuss approximations to the Koopman op-

erator on non-invariant subspaces, throughout the
paper we equip the space F with an inner prod-
uct ⟨·, ·⟩ : F × F → C which induces the norm
∥ · ∥ : F → R≥0. In this paper, we do not assume
the space F is complete (Hilbert) to allow for more
general settings. We aim to approximate the action
of the Koopman operator on a finite-dimensional
space S ⊂ F which is not Koopman invariant. To
tackle this, consider the orthogonal projection op-
erator PS : F → F on S, which maps a function in
F to the closest function in S. Before proceeding,
we first remark that even though F might not be
complete (Hilbert), the best approximation on the
finite-dimensional subspace S always exists and is
unique, therefore the orthogonal projection opera-
tor PS is well defined.

Remark 2.1. (Existence and Uniqueness of Best
Approximations on Finite-dimensional Subspaces):
Finite-dimensional subspaces of an inner product
space (on fields R or C) are Chebyshev sets, that is,
every point in the inner-product space has a unique
closest point on the finite-dimensional subspace, see
e.g., [33, Result 3.8 (3)]. This is a direct con-
sequence of the completeness of finite-dimensional
subspaces of inner-product spaces (which might not
be complete themselves) on fields R or C, which can
be derived from [34, Theorem 2.4-2]. In fact, the
closest point coincides with the orthogonal projec-
tion, which can be computed in closed form: given
the finite-dimensional subspace S ⊆ F and an arbi-
trary function f ∈ F , the orthogonal projection of
f on S can be computed as PSf =

∑n
i=1⟨f, ei⟩ei,

where {e1, . . . , en} is an orthonormal basis for S.□
To approximate the action of the Koopman op-

erator on the finite-dimensional subspace S in a
way that allows to work with matrix representa-
tions, we approximate the Koopman operator K
by Kapprox := PSK : F → F . Note that the
space S is invariant under Kapprox; hence, given a
basis for S represented by the vector-valued map
Ψ : X → Cdim(S), we can apply (5) to Kapprox (by
swapping K, J , and J with Kapprox, S, and Ψ resp.)
to approximate the action of the Koopman operator
as:

KΨ = Ψ ◦ T ≈ Kapprox↾S Ψ = KapproxΨ, (7)

where Kapprox ∈ Cdim(S)×dim(S). Moreover, simi-
larly to (6), for any function f ∈ S with represen-
tation f = vTf Ψ, one can approximate the action of
the Koopman operator on f by

Kf ≈ Kapproxf = Kapprox↾S f = vTf KapproxΨ. (8)

Remark 2.2. (Connections to Extended Dynamic
Mode Decomposition (EDMD) [14]): The EDMD
method is a special case of approximations in (7)-
(8), where Ψ is the selected dictionary and F is
the space L2 defined with respect to the empirical
measure on the data set, see e.g., [15, 35]. □

The quality of approximation in (7)-(8) directly
depends on the quality of the subspace S. If S is
invariant under the operator, equations (7)-(8) re-
duce to (5)-(6) and there is no approximation error.
Otherwise, the projection in (7)-(8) leads to infor-
mation loss and approximation error. In practical
applications, one requires bounds on the quality of
the model; therefore, it is of utmost importance to
quantify the approximation accuracy, as we discuss
next.

2.4. Invariance Proximity

Here, we present the concept of invariance prox-
imity following [9, Definition 8.5] to measure the
quality of a finite-dimensional subspace S ⊂ F in
terms of how close it is to being invariant under
the Koopman operator. Invariance proximity is for-
mally given by

IK(S) := sup
f∈S,∥Kf∦=0

∥Kf − PSKf∥
∥Kf∥

= sup
f∈S,∥Kf∦=0

∥Kf −Kapproxf∥
∥Kf∥

. (9)

This measures the worst-case relative error of the
approximation (8) of the operator’s action. It only
depends on the operator K and the subspace S
(since Kapprox = PSK only depends on K and S),
and does not depend on the choice of basis for S.
Even though out of scope of this paper, we note
that invariance proximity also provides bounds on
Koopman-based models for control systems, cf. [9].
Despite its importance, there do not exist meth-
ods to compute invariance proximity in general in-
ner product spaces. For the particular case of the
space L2 with respect to the empirical measure on
a data set, where the EDMD method operates,
cf. Remark 2.2, one can obtain [31] a closed-form
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expression for invariance proximity based on the
application EDMD forward and backward in time.
Given the important properties of invariance prox-
imity in general inner product spaces, the prob-
lem considered here is the development of efficient
methods to compute it in a general setting.

2.5. Bounding Eigenspace Residuals via Invariance
Proximity

On a first look, the ratio in the definition of in-
variance proximity might look similar to the def-
inition of residuals in ResDMD, cf. [26, Equa-
tions (3.1) and (3.4)]. However, these notions turn
out to be significantly different. Specifically, with
the notation adopted here, for a candidate eigen-
pair (λ, ϕ) of the Koopman operator, the residual
of this pair is defined as2

res(λ, ϕ) =
∥Kϕ− λϕ∥

∥ϕ∥
.

Note that both the numerator and the denomina-
tor of the residuals are different from the ratios in
the definition of invariance proximity. The numer-
ator in (9) is defined for arbitrary functions, while
residuals are only defined for a candidate eigenpair.
Even if we restrict the vector space S in invariance
proximity (9) to a one-dimensional space spanned
by an eigenfunction of Kapprox, the notions are still
different, as we explain next.
If the eigenpair is chosen based on the operator

Kapprox↾S : S → S in (7), i.e., if Kapprox↾S ϕ = λϕ,
then the residual above turns into

res(λ, ϕ) =
∥Kϕ−Kapproxϕ∥

∥ϕ∥
. (10)

Note that (10) is not a special case of invari-
ance proximity for the one-dimensional subspace
span(ϕ), since the denominator of (9) is ∥Kf∥ not
∥f∥. It is worth mentioning that the residual in (10)
is not a relative error for prediction of Kϕ and in a
general setting its value can exceed one, while in-
variance proximity is always between zero and one,
see e.g., [9, Proposition 8.6].
Invariance proximity and residuals have different

uses: invariance proximity measures the accuracy
of the model built based on the Koopman operator
on a finite-dimensional space and leads to explicit

2The residuals in [26] are defined on space L2; however,
they can easily be extended to general inner-product spaces
as long as the operators involved are well defined.

tight bounds on prediction of Koopman operator’s
action on all (uncountably many) functions in the
space, see, e.g., [24, 25] for its early use for sub-
space identification in the context of dynamic mode
decomposition (the special case of space L2 on em-
pirical measure, cf. Remark 2.2). Residuals on the
other hand, provide a way to approximate the spec-
tra and pseudospectra of the Koopman operator.
The problems of prediction of the operator’s action
on arbitrary functions and approximation of spec-
tra are different and hence require different tools to
handle.

Even though invariance proximity and residuals
are not related in a general setting, for the spe-
cial case where the Koopman operator is bounded,
invariance proximity can provide a bound for the
residuals in (10).

Lemma 2.3. (Bounding Residuals via Invariance
Proximity): Let the Koopman operator K in (2) be
bounded. Moreover, consider the finite-dimensional
subspace S, and the operator Kapprox ↾S : S → S
in (7). Then, for any eigenpair (λ, ϕ) of Kapprox↾S
satisfying Kapprox↾S ϕ = λϕ and ∥Kϕ∥ ≠ 0, we have

res(λ, ϕ) ≤ ∥K∥IK(S).

Proof. By the definition of invariance proximity (9),
one can write

∥Kϕ−Kapproxϕ∥
∥Kϕ∥

≤ IK(S).

Moreover, since the Koopman operator is bounded
we have ∥Kϕ∥ ≤ ∥K∥∥ϕ∥, which in conjunction
with the equation above and (10) leads to

res(λ, ϕ) =
∥Kϕ−Kapproxϕ∥

∥ϕ∥

≤ ∥K∥∥Kϕ−Kapproxϕ∥
∥Kϕ∥

≤ ∥K∥IK(S),

which concludes the proof.

3. Problem Statement

The importance of invariance proximity stems
from the fact that it provides a tight upper bound
on the worst-case error induced by projecting
the action of the Koopman operator on a finite-
dimensional space. Therefore, it can be used to
find error bounds of Koopman-based models for
both data-driven and analytic prediction and con-
trol of dynamical processes. In addition, one
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can use invariance proximity as a cost function
for optimization-based subspace learning, enabling
the identification of Koopman eigenfunctions and
eigenmodes. All the aforementioned applications
are only possible if one can compute invariance
proximity in the inner-product space where the pro-
jection of the action of the Koopman operator is
done. Our aim is to efficiently compute invariance
proximity.

Problem 3.1. (Computing Invariance Proximity):
Given the system (1) and its associated Koopman
operator (2) on the general inner-product space
F , efficiently compute invariance proximity, IK(S),
for any arbitrary finite-dimensional subspace S ⊂
F . □

4. Principal Angles and Vectors

Our starting point to unveil the geometric and al-
gebraic structures behind the notion of invariance
proximity is the observation that, from (9), one can
see that it depends on the projection onto the finite-
dimensional space S of the image of S under the
Koopman operator K. Therefore, we need tools to
study the relation between two subspaces with re-
spect to each other and provide algebraic decom-
positions which simplify working with projections.
To do so, we rely on the well-known notion of prin-
cipal angles between vector spaces, initially defined
by Jordan [36] and later formalized in [37]. Our
problem setting here is slightly different from exist-
ing notions in the literature because we are inter-
ested in finite-dimensional subspaces of an infinite-
dimensional complex inner product space, which is
not necessarily Hilbert. Given this difference, we
cannot directly use the existing results, and there-
fore provide the necessary definitions and results for
our problem setting. In our exposition, we keep the
terminology close to [38], which studies principal
angles in finite-dimensional complex spaces3.

Definition 4.1. (Principal Angles Between Sub-
spaces): Consider4 two finite-dimensional sub-
spaces U, V ⊆ F and, without loss of generality,
assume m1 := dim(U) ≥ dim(V ) =: m2. Then, the

3One could indirectly use the structure in [38] via (un-
countably many) isomorphisms: however, we avoid this route
for ease of exposition.

4All results in the paper are valid if F is defined over the
field R provided that one replaces the inner product with a
real-valued inner product.

(Jordan) principal angles 0 ≤ θ1 ≤ · · · ≤ θm2 ≤
π
2 and their corresponding principal unit vectors,
{ui}m2

i=1 ⊂ U and {vi}m2
i=1 ∈ V are defined itera-

tively as:

cos(θi) :=max
u∈U

max
v∈V

|⟨u, v⟩| =: ⟨ui, vi⟩ (11)

subject to: ⟨u, uk⟩ = 0, ⟨v, vk⟩ = 0, ∀k ∈ {1, . . . , i− 1}
∥u∥ = 1, ∥v∥ = 1. □

Principal angles depend on the maximum value
of the cost function in (11) and therefore are unique.
However, principal vectors depend on the maximiz-
ers and are not unique (e.g., u can be replaced with
−u).

Remark 4.2. (Rotation of Principal Vectors): In
Definition 4.1, the first set of constraints is empty
for i = 1. Note that uis and vis are chosen such
that their inner product is real, despite being de-
fined on the field of complex numbers. Such vectors
always exists since, if u and v are a solution for the
optimization problem (11), then one can rotate u
by multiplying with ejγ given an appropriate γ to
ensure ⟨ejγu, v⟩ = |⟨u, v⟩|. Since |ejγ | = 1, we can
choose ejγu as ui and v as vi. □

We state several useful properties of principal
vectors.

Lemma 4.3. (Orthonormality of Principal Vec-
tors): Given Definition 4.1, for all i, j ∈
{1, . . . ,m2}, we have ⟨ui, uj⟩ = δij and ⟨vi, vj⟩ =
δij, where δij is the Kronecker delta. □

The proof of this result trivially follows from the
constraints in (11). As a consequence of Lemma 4.3,
{v1, . . . , vm2

} is an orthonormal basis for V . More-
over, if m1 = m2, then {u1, . . . , um2

} is an or-
thonormal basis for U . In case m1 > m2, we
can always add vectors {um2+1, . . . , um1} such that
{u1, . . . , um1} is an orthonormal basis for U . We
use this convention throughout the paper.

Next, we state an important property regarding
the inner product of principal vectors and the cor-
responding angles.

Proposition 4.4. (Inner Product of Principal Vec-
tors of Subspaces): The principal vectors satisfy
⟨ui, vj⟩ = δij cos(θi) for all i ∈ {1, . . . ,m1} and
j ∈ {1, . . . ,m2}.

Proof. For the case i = j ∈ {1, . . . ,m2}, the equal-
ity ⟨ui, vj⟩ = cos(θi) is a direct consequence of Defi-
nition 4.1. Hence, we only need to prove ⟨ui, vj⟩ = 0
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when i ̸= j. We do this by contradiction. Suppose
that ⟨ui, vj⟩ = c ̸= 0. Consider

pj =
uj + c̄ui√
1 + |c|2

∈ U.

Using Lemma 4.3, note that ∥pj∥ = 1. The vectors
pj ∈ U and vj ∈ V satisfy the constraints in the jth
step of Definition 4.1 (by replacing i with j in the
cost function and constraints of (11)). Moreover,
one can write

⟨pj , vj⟩ =
1√

1 + |c|2
⟨uj + c̄ui, vj⟩ =

⟨uj , vj⟩+ |c|2√
1 + |c|2

,

(12)

where in the last equality we have used the fact that
⟨ui, vj⟩ = c. To reach our desired contradiction, we
prove that

⟨pj , vj⟩ > ⟨uj , vj⟩. (13)

The previous inequality trivially holds if ⟨uj , vj⟩ =
0. Suppose instead that ⟨uj , vj⟩ = r ̸= 0 and note,
by Definition 4.1, that

r = ⟨uj , vj⟩ = cos(θj) ∈ (0, 1].

Hence, 2r − r2 > 0 and, consequently, |c|4 + (2r −
r2)|c|2 > 0. Therefore, adding r2 + r2|c|2 to both
sides of the inequality,

|c|4 + 2r|c|2 + r2 > r2 + r2|c|2

⇒ (|c|2 + r)2 > r2(1 + |c|2)

⇒ |c|2 + r > r
√

1 + |c|2 ⇒ r + |c|2√
1 + |c|2

> r. (14)

This inequality, in conjunction with r = ⟨uj , vj⟩
and equation (12), lead to (13). However, (13) di-
rectly contradicts the fact ⟨uj , vj⟩ is the maximum
in optimization (11). Therefore, the assumption
⟨ui, vj⟩ = c ̸= 0 is false and ⟨ui, vj⟩ = 0, which
completes the proof.

An important consequence of Proposition 4.4 is
that ui ⊥ vj for i ̸= j. This leads to the following
important orthogonal decomposition for the space
U + V based on the principal vectors.

Corollary 4.5. (Orthogonal Decomposition of U+
V by Principal Vectors): For all i, j ∈ {1, . . . ,m2}
with i ̸= j, we have [span(vi) + span(ui)] ⊥

[span(vj) + span(uj)]. Therefore, the space U + V
admits the orthogonal decomposition

U + V =
( m2⊕

k=1

[span(vk) + span(uk)]
)

⊕
( m1⊕

k=m2+1

span(uk)
)
. □

The proof of this result is a direct consequence of
Lemma 4.3 and Proposition 4.4. Corollary 4.5 de-
composes the finite-dimensional subspace U + V ⊆
F into several orthogonal spaces of dimension one
or two. However, in general, ui and vi are not or-
thogonal. The next result provides two orthonor-
mal bases for the subspace span(vi)+ span(ui) and
orthogonally decomposes ui and vi with respect to
these bases.

Lemma 4.6. (Orthogonal Decomposition of Prin-
cipal Vectors): Let i ∈ {1, . . . ,m2} with θi ̸=
0. Then the subspace span(vi) + span(ui) is two-
dimensional. Consider the orthonormal bases5

{ui, u
⊥
i }, {vi, v⊥i } for the subspace. Then,

vi = cos(θi)ui + γi u
⊥
i , (15a)

ui = cos(θi)vi + µi v
⊥
i , (15b)

where |γi| = |µi| = sin(θi).

Proof. For the first part, given θi ̸= 0, we have
θi ∈ (0, π

2 ] based on Definition 4.1. Therefore,
⟨ui, vi⟩ = ⟨vi, ui⟩ = cos(θi) ̸= 1. Now, consider
a linear combination of the form αui+βvi = 0. By
taking the inner product of both sides with ui and
vi, one can write

α+ β cos(θi) = 0, α cos(θi) + β = 0.

Since cos(θi) ̸= 1, the unique solution is α = β = 0
and consequently {ui, vi} are linearly independent.
To prove (15a), consider the following expansion

vi = ηiui + γiu
⊥
i , (16)

with ηi, γi ∈ C. Taking the inner product with ui,
we get

cos(θi) = ηi. (17)

5These bases can be computed using a Gram-Schmidt
process, e.g. [39].
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Moreover, given that ui ⊥ u⊥
i , one can use (16) and

the properties of norms induced from inner prod-
ucts to write

∥vi∥2 = |ηi|2∥ui∥2 + |γi|2∥u⊥
i ∥2.

Noting that ∥vi∥ = ∥ui∥ = ∥u⊥
i ∥ = 1, this equality

combined with (16) and (17) yields |γi| = sin(θi),
which proves (15a). The proof of (15b) is analo-
gous.

5. Invariance Proximity and Principal An-
gles

This section presents the main result of the pa-
per, which provides a closed-form formula for the
invariance proximity of a subspace under the Koop-
man operator using the notion of principal angles.

Theorem 5.1. (Closed-Form Solution for Invari-
ance Proximity via Principal Angles): Let S ⊆ F
be a finite-dimensional space and let KS be the im-
age of S under K : F → F . Let 0 ≤ θ1 ≤ · · · ≤
θdim(KS) ≤ π

2 be the principal angles between S and
KS. Then, invariance proximity can be expressed
as

IK(S) = sin
(
θdim(KS)

)
. (18)

Moreover, the supremum in (9) is actually a maxi-
mum, i.e., there exists a function f∗ ∈ S such that

IK(S) =
∥Kf∗ − PSKf∗∥

∥Kf∗∥
.

Proof. To use the results in Section 4, we rely on
the following notation throughout the proof

U = S, dim(U) = m1, V = KS, dim(V ) = m2.

Note that m1 = dim(S) ≥ dim(KS) = m2 which
is consistent with the convention in Section 4. Let
then {u1, . . . um1} ⊂ U and {v1, . . . vm2} ⊂ V be
orthonormal bases of principal vectors. For con-
venience, for f ∈ S with ∥Kf∥ ̸= 0, we use the
shorthand notation

EK(f) =
∥Kf − PSKf∥

∥Kf∥
.

Our first goal is to show that EK(f) ≤ sin(θm2
). To

achieve this, we decompose Kf ∈ V as

Kf =

m2∑
i=1

αivi. (19)

Since PS is the orthogonal projection on S, we
use (19) in conjunction with Proposition 4.4 to de-
compose PSKf as

PSKf =

m1∑
j=1

⟨Kf, uj⟩uj =

m1∑
j=1

⟨
m2∑
i=1

αivi, uj⟩uj

=

m2∑
i=1

αi cos(θi)ui. (20)

Using (19)-(20), the orthogonality of subspaces in
Corollary 4.5, and the fact that the norm is induced
by an inner product, one can write

∥Kf−PSKf∥2=∥
m2∑
i=1

αi(vi−cos(θi)ui)∥2

=

m2∑
i=1

|αi|2∥vi−cos(θi)ui∥2.

Using now (15a) in Lemma 4.6, one can write

∥Kf − PSKf∥2 =

m2∑
i=1

|αi|2 sin(θi)2, (21)

where we have used that ∥u⊥
i ∥ = 1 for i ∈

{1, . . . ,m2}. We can also use (19), the properties
of norms induced by inner products, and ∥vi∥ = 1
for i ∈ {1, . . . ,m2} to write

∥Kf∥2 = ∥
m2∑
i=1

αivi∥2 =

m2∑
i=1

|αi|2∥vi∥2 =

m2∑
i=1

|αi|2.

(22)

Based on (21)-(22), we have

(EK(f))
2 =

∑m2

i=1 |αi|2 sin(θi)2∑m2

i=1 |αi|2
. (23)

Since ∥Kf∥ ≠ 0, based on (19), we have that∑m2

i=1 |αi|2 ̸= 0. Now, since 0 ≤ θ1 ≤ · · · ≤
θm2

≤ π
2 , we can write sin(θi)

2 ≤ sin(θm2
)2 for

all i ∈ {1, . . . ,m2}. Therefore, for all f ∈ S with
∥Kf∥ ≠ 0,

(EK(f))
2 =

∑m2

i=1 |αi|2 sin(θi)2∑m2

i=1 |αi|2

≤
∑m2

i=1 |αi|2 sin(θm2)
2∑m2

i=1 |αi|2
= sin(θm2

)2.

(24)

Next, we prove that the equality in (24) holds for
some function in S. Let f∗ belong to K−1(vm2

),
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the inverse image of vm2 ∈ V = KS under K (f∗

exists since KS is the image of S under K, but is
generally not unique). Now, using (19) for Kf∗ =
vm2

, we write Kf∗ =
∑m2

i=1 α
∗
i vi, where α∗

1 = · · · =
α∗
m2−1 = 0 and α∗

m2
= 1. Hence, by applying (23)

on f∗, we have

(EK(f
∗))2 =

∑m2

i=1 |α∗
i |2 sin(θi)2∑m2

i=1 |α∗
i |2

= sin(θm2)
2,

and the result follows from the definition (9).

We offer the following geometric interpretation of
Theorem 5.1. For each function f ∈ S, note that
the projection error for approximating Kf satisfies
∥Kf − PSKf∥ = sin(θ)∥Kf∥, where θ is the angle
between Kf and PSKf (cf. Fig. 1). Theorem 5.1
states that the maximum relative error among all
the functions f in S is achieved when the angle
between Kf and PSKf is equal to the maximum
Jordan principal angle between S and its image of
the Koopman operator KS.

Figure 1: The error induced by the orthogonal projection on
subspace S is proportional to the sine of the angle between
Kf ∈ KS and PSKf ∈ S. According to Theorem 5.1, the
relative error reaches its maximum when the angle is equal
to the largest principal angle between S and KS.

Remark 5.2. (Invariance Proximity is not a Met-
ric): Note there is a difference between invari-
ance proximity and notions of metrics for subspaces
based on principal angles. Theorem 5.1 might cre-
ate the illusion that invariance proximity is a gap
metric, see e.g. [40, 41]. However, this is not gener-
ally true since the dimensions of S and KS might
be different and we only project from KS onto S.□

Theorem 5.1 provides a closed-form expression
for invariance proximity based on the well-known
concept of principal angles and vectors, providing a
direct insight into the geometry of projection-based
Koopman methods. Moreover, the algebraic de-
composition based on principal vectors paves the

way for the direct calculation of invariance proxim-
ity, which is what we discuss in the next section.

6. Numerical Computation of Invariance
Proximity

The computation of principal angles for invari-
ance proximity relies on the optimization on func-
tion spaces, which requires calculation of multi-
variable integrals. Here, we provide a transforma-
tion to compute invariance proximity using efficient
numerical linear algebra. To achieve this, we first
embed all the subspaces of interest into a larger
finite-dimensional subspace of F .

Lemma 6.1. (Finite-dimensional Subspace Em-
bedding): Let S ⊂ F be a finite-dimensional sub-
space and define W = S + KS. Then, W is finite-
dimensional and complete (in the metric induced by
the inner product).

Proof. Since both S and KS are finite dimensional,
their sum is also finite-dimensional. The second
part directly follows [34, Theorem 2.4-2].

Lemma 6.1 shows that W in its own right is a
Hilbert space. Noting that S,KS ⊂ W, we con-
nect W to a more suitable subspace for numerical
computations via an isomorphism6.

Lemma 6.2. (Isomorphism between W and
Cdim(W)): Consider7 the space Cdim(W) endowed
with the standard inner product ⟨·, ·⟩Cdim(W) . Let
{w1, . . . , wCdim(W)} and {c1, . . . , cCdim(W)} be or-
thonormal bases for W and Cdim(W), respectively.
Define the linear map Q : W → Cdim(W) such that
wi 7→ ci for all i ∈ {1, . . . ,dim(W)}. Then, Q is
an isomorphism, i.e.,

(a) Q is bijective;

(b) ⟨x, y⟩ = ⟨Qx,Qy⟩Cdim(W) , ∀x, y ∈ W;

(c) ⟨m,n⟩Cdim(W) = ⟨Q−1m,Q−1n⟩, ∀m,n ∈
Cdim(W). □

6An isomorphism between two Hilbert spaces is a linear
bijective map that preserves the inner product (and induced
norm and metric) [34, Section 3.2].

7If the function space F is defined over field R, one can
similarly build an isomorphism between W and Rdim(W) and
all the ensuing results will remain valid given this change.
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The construction of Q in Lemma 6.2 is well-
known in the literature (see e.g., the proof of [34,
Theorem 3.6-5(b)]) and the proof is a direct conse-
quence of linearity of Q and the properties of inner
products.
Based on Lemma 6.2, the spaces W and Cdim(W)

have the same structure and any algorithmic oper-
ation involving inner products (and induced norms
and metrics) has the same effect in both spaces.
Since the definition of principal angles only depends
on inner products and induced norms, they are pre-
served under the isomorphism.

Corollary 6.3. (Isomorphisms Preserve Princi-
pal Angles): Let U, V ⊂ W and Q(U) and Q(V )
be the images of U and V under the isomorphism
Q : W → Cdim(W). Then, the principal angles be-
tween U, V ⊂ W and Q(U), Q(V ) ⊂ Cdim(W) are
the same. □

Corollary 6.3 has important practical conse-
quences since it allows one to compute the principal
angles between subspaces of general inner-product
spaces using efficient numerical algorithms devel-
oped for the special case of Cdim(W). This allows
a universal formulation without the need to design
specific algorithms based the choice of inner prod-
uct space. We next use Corollary 6.3 to provide a
revised version of Theorem 5.1 that relies on com-
putations in Cdim(W).

Theorem 6.4. (Invariance Proximity via Isomor-
phisms): Let S ⊆ F be a finite-dimensional space
and KS be its image under K : F → F . Let W =
S + KS and consider the isomorphism Q : W →
Cdim(W). Also, let 0 ≤ γ1 ≤ · · · ≤ γdim(Q(KS)) ≤ π

2
be the principal angles between Q(S) and Q(KS).
Then, IK(S) = sin

(
γdim(Q(KS))

)
. □

Remark 6.5. (Numerical Computation of Invari-
ance Proximity): Based on Theorem 6.4, one can
compute invariance proximity by finding the princi-
pal angles between subspaces comprised on n-tuples
of numbers, instead of directly working with func-
tions. There exist efficient routines for this purpose,
e.g. [42], which require finding orthonormal basis
for subspaces Q(S) and Q(KS) in Theorem 6.4,
and finding the maximum singular value of a matrix
with the dimensions of order dim(Q(S)). This can
be done through truncated Singular Value Decom-
position (SVD) on matrices with time complexity of
O(dim(S)3) FLOPs (see, e.g. [43]). It is worth men-
tioning that MATLAB® has a built-in command

based on the algorithm in [42]. In case the prin-
cipal angles are small, this algorithm can struggle
due to round-off errors. The work in [44] provides a
modified algorithm to address this issue, which has
been implemented in the SciPy package. □

Next, we provide Algorithm 1 to encapsulate
how to apply the paper’s results in order to nu-
merically compute invariance proximity in general
inner-product spaces. Even though our treatment
considers complex inner-product spaces, all the re-
sults identically apply to the (simpler) case of real
inner-product spaces (one only need to replace the
complex inner-product with a real one). For this
reason, Algorithm 1 considers inner-product spaces
on field F (which can be either C or R).

In Algorithm 1, the function orth provides an
orthonormal basis for its argument, which can be
computed via a Gram-Schmidt process (e.g. [39])
and removing the redundant (linearly dependent)
terms.

We finish the section by observing that Theo-
rem 6.4 can also be used for data-driven cases.

Remark 6.6. (Computing Invariance Proximity
for Data-Driven Cases): In data-driven settings,
generally the system and its associated Koopman
operator are unknown and only data snapshots of
trajectories are available. In such cases, the inner
product is empirically defined based on the data,
e.g., the well-known EDMD method [14, 15]. Given
that such inner products only depend on the value
of functions over a data set, to apply Theorem 6.4,
one does not need full knowledge of the elements in
KS: instead, their value on the data set is enough.
Such values can be computed since, for Kg ∈ KS
with g ∈ S, we have Kg(x) = g ◦ T (x) = g(x+),
where x+ = T (x) is the next point on the trajec-
tory from x. □

7. Simulation Results

Let the system with state x = [x1, x2]
T on X =

[−1, 1]2,

x+
1 = 0.9x1

x+
2 = 0.4

(
sin(x2) + x2

1

)
+ 0.01x2

2. (25)

Consider the function space F (over R) comprised
of all real-valued continuous functions with do-
main X , equipped with the inner product ⟨f, g⟩ =

10



Algorithm 1 Computing Invariance Proximity

Inputs:
• Basis Ψ = [Ψ1, . . . ,Ψdim(S)] for subspace S
• Map T for system (1) or operator K in (2)
• Field of the function space denoted by F (ei-
ther C or R)
Output: IK(S) ▷ Invariance proximity of S

Procedure:

▽ Find a generator for KS (might not be lin-
early independent)

1: Z = [KΨ1, . . . ,KΨdim(S)]

▽ Find an orthonormal basis for KS
2: Φ = [Φ1, . . . ,Φdim(KS)] := orth(Z)

▽ Concatenate Ψ and Φ
3: [Ψ,Φ] = [Ψ1, . . . ,Ψdim(S),Φ1, . . . ,Φdim(KS)]

▽ Find an orthonormal basis for W = S +KS
4: W = [w1, . . . , wdim(W)] := orth([Ψ,Φ])

▽ Form isomorphism between W and Fdim(W)

(cf. Lemma 6.2)

5: Define Q by
∑dim(W)

i=1 αiwi 7→
∑dim(W)

i=1 αiei
▷ {e1, . . . edim(W)} is an orthonormal basis for

Fdim(W)

▽ Form matrix Qbasis
S ∈ Fdim(W)×dim(S) whose

columns span Q(S)
6: Qbasis

S = [Q(Ψ1), . . . , Q(Ψdim(S))]

▽ Form matrix Qbasis
KS ∈ Fdim(W)×dim(KS) whose

columns span Q(KS)
7: Qbasis

KS = [Q(Φ1), . . . , Q(Φdim(KS))]

▽ Compute maximum principal angle between
Q(S) and Q(KS) by applying numerical rou-
tines on Qbasis

S and Qbasis
KS (cf. Remark 6.5)

8: γdim(Q(KS)) = maximum principal angle

▽ Compute invariance proximity (Theorem 6.4)
9: IK(S) = sin(γdim(Q(KS)))

∫ ∫
X f(x)g(x)dx1dx2 for f, g ∈ F . We com-

pute the invariance proximity for subspaces8 S1 =
span{1, x1, x

2
1}, S2 = span{1, x1, x2, x

2
1}, and S3 =

span{1, x1, x2, x
2
1, x

2
2}. We explain the procedure

for building the model and finding the invariance
proximity for subspace S1. The procedure for other

8Note that the elements in the set are functions. For
example x1 represents f(x) = x1. This is a conventional
notation in the literature.

subspaces is identical.
Finding the model: (i) we first apply the Gram-

Schmidt process on the basis of S1 and create a
function Ψ : X → R3 whose elements form an or-
thonormal basis for S1; (ii) we apply the Koopman
operator on Ψ following (7) and find the matrix
Kapprox whose ijth element can be computed by
[Kapprox]ij = ⟨KΨi,Ψj⟩, where Ψi and Ψj are the
ith and jth elements of Ψ, resp.

Computing the invariance proximity: To com-
pute invariance proximity, we employ Algorithm 1.
Here, we discuss the implementation details: (i)
we find a basis for space KS1 by applying K on
the elements of a basis for S1, then performing
a Gram-Schmidt process and removing the redun-
dant (linearly dependent) terms; (ii) we find an or-
thonormal basis for W = S1 +KS1 by concatenat-
ing the basis elements of S1 and KS1, and apply-
ing the Gram-Schmidt algorithm and removing the
linearly dependent elements. We denote this ba-
sis by {w1, . . . , wdim(W)};9 (iii) we define the iso-

morphism Q : W → Rdim(W) (cf. Lemma 6.2)

by mapping
∑dim(W)

i=1 αiwi 7→
∑dim(W)

i=1 αiei =
[α1, . . . , αdim(W)]

T , where ei is the ith element of
canonical basis (ith column of the identity matrix
Idim(W)) for Rdim(W); (iv) to apply Theorem 6.4, we
find bases for subspaces Q(S1) and Q(KS1). Given
the basis Ψ of S1, we compute the action of Q
on elements of Ψ by [⟨Ψi, w1⟩, . . . , ⟨Ψi, wdim(W)⟩]T .
We concatenate these vectors into a matrix
Qbasis

S1
∈ Rdim(W)×dim(S1), whose range space is

Q(S1). Similarly, we form the matrix Qbasis
KS1

∈
Rdim(W)×dim(KS1), whose range space is Q(KS1);
(v) finally, to invoke Theorem 6.4, we use the built-
in subspace command in MATLAB® (which is
based on [42]) to compute the maximum principle
angle between range spaces of Qbasis

S1
and Qbasis

KS1
. By

Theorem 6.4, the invariance proximity equals the
sine of this angle.

Interpretation and discussion: Table 1 shows the
invariance proximity for subspaces S1, S2, and S3.
Clearly, S1 is Koopman invariant since its func-
tions are monomials of the first state variable x1

and the evolution of x1 abides by a linear dynamics
(x+

1 = 0.9x1). This is consistent with the fact that
invariance proximity of S1 is zero10. The invariance
proximity for S2 is rather small, indicating that the

9In Steps (i)-(ii), we relied on the symbolic computations
in MATLAB®. Alternatively, one can compute the inner-
product through numerical integration.

10Given that the computation is done by a digital com-
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worst-case relative function prediction error (note
that Koopman operator acts on functions) is 4.8%.
On the other hand, the worst-case relative function
prediction error for S3 is 82.3%, rendering mod-
els on S3 unreliable. This is despite the fact that
S2 ⊂ S3, which indicates that a larger subspace is
not necessarily better11.

Table 1: Invariance proximity for subspaces S1, S2, and S3.

Subspace S1 S2 S3

Invariance Proximity ∼ 0 0.048 0.823

To show how the subspace’s quality impacts the
accuracy of the linear predictor in (7) on the sys-
tem trajectories, we consider the following relative
error function given a trajectory {x(k)}k∈N0

from
the initial condition x0

Ex0
(k) =

∥Ψ(x(k))−Kk
approxΨ(x0)∥

∥Ψ(x(k))∥
× 100. (26)

In the equation above, ∥ · ∥ denoted the usual Eu-
clidean norm in Rn. Unlike invariance proximity,
which does not depend on the choice of basis, the er-
ror in (26) is influenced by the basis Ψ when it is not
orthonormal. Therefore, to make a fair portrayal,
we enforce the elements of Ψ to be orthonormal.
The error in (26) for subspace S1 is equal to zero
for all initial conditions since the subspace is Koop-
man invariant and the prediction is exact. Fig. 2
shows the error in (26) for subspaces S2 and S3 over
100 system trajectories with the length of 10 time
steps and initial conditions uniformly sampled from
X = [−1, 1]2. Fig. 2 clearly shows the superiority
of the model on S2 compared to S3. Also, it is
worth mentioning that the variance of the error is
much lower for subspace S2 since invariance prox-
imity indicates the function prediction errors over
the entire state space instead of a single or a few
initial conditions.

8. Conclusions

We have provided a closed-from description of
invariance proximity, a notion that measures the

puter, the invariance proximity is at the level of machine
precision instead of exact zero.

11This does not contradict the asymptotic results in [15].
See [25, Example 2.1] for a discussion.
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Figure 2: The median (in purple), the distance between
25% and 75% percentiles (orange box), and the entire range
(whiskers) for the relative error in (26) over 100 trajectories
with initial conditions uniformly sampled from X given the
projected models for subspaces S2 (left) and S3 (right).

worst-case relative error of Koopman-based pro-
jected models, over general complex inner-product
spaces. Our solution leverages the geometry behind
projections, subspaces, and the Koopman operator
and relies on the calculation of Jordan principal an-
gles between two finite-dimensional subspaces in an
infinite-dimensional space of functions. To avoid
the computational challenges of calculating inner
products and principal angles in such a space, we
have used specific isomorphisms to make the prob-
lem of computing invariance proximity amenable
to efficient algorithmic routines from numerical lin-
ear algebra. Future work will include using invari-
ance proximity to provide (a) performance guar-
antees on Koopman-based prediction and control
schemes, and (b) safety and stability certificates
from Koopman-based approximate models.
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