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Data-Driven Distributed Spectrum Estimation for
Linear Time-Invariant Systems

Shenyu Liu Jorge Cortés Sonia Martı́nez

Abstract—This paper tackles spectrum estimation of a linear
time-invariant system by a multi-agent network using data. We
consider a group of agents that communicate over a strongly
connected, aperiodic graph and do not have any knowledge of the
system dynamics. Each agent only measures some signals that are
linear functions of the system states or inputs, and does not know
the functional form of this dependence. The proposed distributed
algorithm consists of two steps that rely on the collected data: (i)
the identification of an unforced trajectory of the system and (ii)
the estimation of the coefficients of the characteristic polynomial
of the system matrix using this unforced trajectory. We show that
each step can be formulated as a problem of finding a common
solution to a set of linear algebraic equations which are amenable
to distributed algorithmic solutions. We prove that, under mild
assumptions on the collected data, when the initial condition
of the system is random, the proposed distributed algorithm
accurately estimates the spectrum with probability 1.

I. INTRODUCTION

System identification and spectral analysis find numer-
ous applications, including signal processing [1], power sys-
tems [2], process control [3], and structural engineering [4],
[5]. Despite the fact that algorithms for spectrum estimation
of linear time-invariant (LTI) systems are theoretically well-
established [6], the problem becomes practically challenging
in the case when the global network topology or the overall
dynamics are not accessible to a central agent performing
the analysis, either due to bandwidth limitations, geographical
constraints, privacy considerations, or other specifications. As
a result, the spectral analysis cannot be performed by a central-
ized method and distributed algorithms become more suitable.
In addition, distributed algorithms can offer added benefits,
such as scalability with the size of the system and robustness
against single points of failure. These considerations lead us
to the problem of collaborative estimation of the spectrum by
a group of agents, where any individual agent only has partial
measurements of the data generated by the system and can
only communicate locally with others.

Literature review: Spectral analysis approaches for LTI
systems have been available for a long time. The classical Ho-
Kalman algorithm [7] employs the so-called system Markov
parameters to estimate an equivalent representation of the
system matrices. The work [8] builds on this to develop the
Eigensystem Realization Algorithm (ERA), which can deal
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with faulty sensors or incomplete unit-pulse-response data.
The main limitation of the Ho-Kalman algorithm and ERA
is that their inputs must be unit impulses. Instead, subspace-
based state-space system identification (4SID) methods [9],
[10] can be used to estimate the eigenvalues of an LTI system
when inputs are arbitrary. All the aforementioned methods are
centralized, relying on singular value decomposition (SVD)
and matrix multiplications. In addition, 4SID methods rely on
oblique projections, which represent a challenge for distributed
implementation. Additional centralized system identification
techniques can be found in [6].

Building on frequency domain analysis techniques [11] for
system identification, [12], [13] propose distributed algorithms
based on Fast Fourier Transforms (FFT) to perform spectral
clustering of the nodes of networks and estimate the eigen-
values of their Laplacian matrices. The work [14] presents
a decentralized algorithm for computing eigenvectors of a
symmetric matrix building on the Power Method [15, Chapter
4.1.1]. The Power Method has also been used for distributed
estimation of the algebraic connectivity of undirect [16] and
direct [17] graphs. The work [18] provides distributed tests
for stability of large-scale interconnected systems. Particularly
relevant to our work are [19], which proposes a discrete-
time, distributed algorithm for spectrum estimation and [20],
which finds eigenvalues and eigenvectors at the same time. The
recent work [21] further extends these methods to determine
eigenvectors of matrices on spatially distributed networks.
Nevertheless, all these works have in common the constraint
that the matrix whose spectral properties are to be analyzed
needs to be the weighted adjacency matrix of the network
and the fact that the algorithms rely on state information
generated by autonomous systems. Our problem formulation is
different and, in particular, we allow the system to be subject
to arbitrary inputs. Our spectrum estimation algorithm is data-
driven, in the sense that the analysis is based on both input
and output data. Our approach relies on the body of work
that designs distributed algorithms to solve linear algebraic
equations (LAEs) [22], [23], [24], [25], [26] and distributed
optimization problems [27], [28], [29].

Statement of contributions: We design a data-driven dis-
tributed algorithm for spectrum estimation of unknown linear
time-invariant systems by a multi-agent network. Our setup
does not assume that agents can measure partial states of the
system or have knowledge of the plant’s parameters, and in
that sense is more general than those previously considered in
the literature. Instead, each agent has access to a signal that
is a linear transformation of the system’s state and/or input.
However, agents have no knowledge of the functional form of
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these linear transformations or the system dynamics.
Our solution strategy proceeds in two steps: first, agents

compute an unforced output trajectory of the system based
on their measured data. Using this unforced output trajectory,
agents then compute the characteristic polynomial of the
system matrix, which in turn allows them to estimate the
spectrum. We show how each of these steps can be cast
as solving a system of linear-algebraic equations, for which
employ a distributed algorithm. To study the convergence
properties of our desigm we assume mild assumptions on
joint system observability and joint input reconstrutability by
the multi-agent network. When the collected data is gen-
erated by arbitrary inputs and the algorithm is randomly
initialized according to a generic distribution, we provide
sufficient conditions to show that the proposed distributed
algorithmic procedure accurately estimates the spectrum with
probability 1. We also particularize our treatment to the case
when inputs are generated by another LTI system and provide
conditions for accurate estimation in terms of the spectrum
of the system matrices. Simulations on a mass/spring/damper
system illustrate our results.

Organization: The paper is organized as follows. Sec-
tion II provides prelimaries on linear algebra and distributed al-
gorithmic solutions to systems of LAEs. Section III introduces
our assumptions on the multi-agent network and formulates the
distributed spectrum estimation problem. Section IV presents
our two-phase algorithm design and Section V establishes its
correctness, paying attention to the identification of sufficient
conditions that guarantee the accurate estimation of the system
spectrum. We analyze two cases: when the inputs to the
system are arbitrary and when they are generated by another
LTI system. Finally, Section VI illustrates the performance of
the proposed distributed algorithm on a mass/spring/damper
system and Section VII gathers our conclusions and ideas for
future work.

II. PRELIMINARIES

This section describes the notation and basic concepts from
linear algebra, graph theory, and distributed algorithms.

Notation: We denote by N := {0, 1, 2, · · · } the set of
non-negative integers, R the set of real numbers, Rn the
n-dimensional real space, and Rn×m the space of n × m
real matrices. In particular, 0n×m, (resp. 1n×m) denotes the
n×m-dimensional zero matrix (resp. all-ones matrix), while
In represents the n×n identity matrix. When the dimensions
are clear from the context, we remove the subindices. The
transpose of a matrix is denoted by the superscript ⊤ and
the Kronecker product by ⊗. For a given discrete-time signal
x : N → Rn and i, j ∈ N with i ≤ j, we use the shorthand
notation xi:j :=

[
x(i)⊤ x(i+ 1)⊤ · · · x(j)⊤

]⊤
. More-

over, with i, j, k ∈ N, j, k ≥ 1, we denote the Hankel matrix
Hi,j,k(x) ∈ Rnj×k by

Hi,j,k(x) :=


x(i) x(i+ 1) · · · x(i+ k − 1)

x(i+ 1) x(i+ 2) · · · x(i+ k)
...

...
. . .

...
x(i+ j − 1) x(i+ j) · · · x(i+ j + k − 2)

 .

We have xi:j = Hi,j−i+1,1(x). Note that one needs j + k− 1
consecutive samples of x (from x(i) to x(i + j + k − 2))
to form the Hankel matrix Hi,j,k(x). A random variable X
has a generic probability distribution over an n-dimensional
vector space X if, for any proper subspace or affine space
Y ⊂ X with dim(Y) < dim(X ), it holds that Pr(X ∈ Y) =
0. Note that the multivariate Gaussian distribution over Rn

and uniform distribution over an n-dimensional ball in Rn are
generic.

Basic notions from linear algebra: Following [30], for
any matrix A ∈ Rn×n, denote the set of all eigenvalues of A as
spec(A). Given any matrix M ∈ Rn×m, we denote its image
and kernel as im(M) := {y ∈ Rn : y = Mx for some x ∈
Rm} and ker(M) := {x ∈ Rm : Mx = 0}. The rank
and nullity of M are denoted as rank(M) := dim(im(M))
and nullity(M) := dim(ker(M)). We have rank(M) +
nullity(M) = m. For any vector space X ⊆ Rn, denote
X⊥ := {y ∈ Rn : x⊤y = 0, ∀x ∈ X}. The orthogonal
projection matrix onto the vector space X is given by a
matrix PX ∈ Rn×n such that PXx = x, for all x ∈ X , and
PXx = 0, for all x ∈ X⊥. In particular, for any M ∈ Rn×m,
Pim(M) = MM†, where M† is the Moore-Penrose pseudo-
inverse of M .

Basic notions from graph theory: Following [31], a
directed graph G = (V, E) consists of a vertex set V :=
{1, 2, · · · , p} and an edge set E ⊆ V×V . The adjacency matrix
A of G is a p × p matrix such that Aij = 1 if (i, j) ∈ E and
Aij = 0 otherwise. A path is a sequence of vertices connected
by edges, and a cycle is a path whose first and last vertices
are the same. A directed graph is strongly connected if there
is a path between any pair of vertices. The graph is aperiodic
if there is no integer other than 1 that divides the number of
edges in every cycle. Given i ∈ V , the set of in-neighbors of i
is N in

i := {j ∈ V : (j, i) ∈ E} and the set of its out-neighbors
is N out

i := {j ∈ V : (i, j) ∈ E}. The (out-)degree di of an
vertex i ∈ V is defined as the cardinality of N out

i .
Distributed algorithmic solution to linear equations:

Consider p linear algebraic equations (LAEs)

Mizi = li, i ∈ V = {1, · · · , p}, (1)

where Mi ∈ Rni×n, li ∈ Rni are the system data and zi ∈ Rn

are the variables. A common solution z = z1 = · · · = zp ∈ Rn

to (1) corresponds to a solution z of

Mz = l, (2)

where

M :=

M1

...
Mp

 , l :=

l1...
lp

 .
A group of p agents communicating over a graph G aims

to solve (2). We assume that each agent i ∈ V
• knows the value of Mi, li and can find a solution to the
i-th equation in (1);

• can share information with its in-neighbors N in
i (exclud-

ing the values of Mi, li for privacy considerations).
Algorithm 1 presents a distributed algorithm from [24] that
solves this problem. The following result extends the asymp-
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Algorithm 1 Distributed LAE solver
Input: Mi, li for each agent i ∈ V , K
Output: zi(K) ∀i ∈ V

1: for i ∈ V do
2: Agent i computes zi(0) such that

Mizi(0) = li (3)

3: end for
4: for k = 0, 1, · · · ,K − 1 do
5: for i ∈ V do
6: Agent i broadcasts zi(k) to in-neighbors j ∈ N in

i

7: Agent i receives zj(k) from out-neighbors j ∈
N out

i

8: Agent i updates its value of zi by

zi(k+1) = zi(k)+
1

di
Pker(Mi)

∑
j∈N out

i

(zj(k)−zi(k)) (4)

9: end for
10: end for

totic convergence result of [24, Theorem 1] by providing an
explicit formula for the computed solution.

Theorem II.1 (Convergence of the distributed LAE solver).
Suppose there exists a solution to (2). Let G be strongly
connected and aperiodic graph, and denote by A its ad-
jacency matrix, D := diag(d1, · · · , dp), and w ∈ Rn the
left Perron-Frobenius eigenvector of D−1A. Then, there exists
λ ∈ (0, 1), and c ≥ 1 such that the output z(k) :=[
z1(k)

⊤ · · · zp(k)
⊤]⊤ of Algorithm 1 satisfies

|z(k)− zc| ≤ cλk ∀k ∈ N, (5)

where
zc := 1p×1 ⊗ (Pker(M)Z(0)w + zmn), (6)

with Z(0) :=
[
z1(0) · · · zp(0)

]
and zmn ∈ Rn the

minimum-norm solution of (2).

We provide the proof of Theorem II.1 in the Appendix.

Remark II.2 (Expression for the computed solution of linear
equations). The explicit formula (6) of the computed solution
zc provided in Theorem II.1 consists of two parts. The first
part Pker(M)Z(0)w is a weighted sum of the projections of
zi(0)’s onto the kernel of M . This depends on the agents’
initial guesses of a common solution and is independent of the
true solutions of (2). The second part zmn is independent of the
agents’ initial guesses. Moreover, the Kronecker product with
1 in the expression of zc implies that zi(k) will all converge
to the same vector Pker(M)Z(0)w+zmn, which is a solution to
(2). When (2) has a unique solution, that is, when ker(M) =
{0}, then Pker(M) ≡ 0 and zmn is the unique solution. •

III. PROBLEM FORMULATION

Here, we formally state the distributed spectrum estimation
problem. Consider a discrete-time LTI system

x(t+ 1) = Ax(t) +Bu(t), (7)

where x ∈ Rn is the state, u ∈ Rm is the input and A,B are
the system and input matrices of compatible dimensions. Our
setup is as follows: p agents aim to collaboratively estimate
spec(A) via a distributed algorithm over a strongly connected,
aperiodic communication graph G. In addition, each agent i ∈
V

• has no knowledge of the matrices A, B;
• can observe a signal yi(t) = Cix(t) ∈ Rny,i and a signal
vi(t) = Eiu(t) ∈ Rnv,i , but does not know the matrices
Ci, Ei either;

• can send information to its in-neighbors (excluding the
values of yi(t), vi(t) for privacy considerations).

Note that the input u is an external signal and cannot be
customized by the agents. This means that u is arbitrary and
may not be particularly suited for spectrum estimation. Our
goal is to design a distributed spectrum estimation algorithm
that relies solely on the collected data yi(t), vi(t) from the
system (7). Figure 1 shows a graphical illustration of the
problem. We make the following assumptions.

Assumption 1 (Joint observability). The matrix pair (A,C)

is observable, where C :=
[
C⊤

1 C⊤
2 · · ·C⊤

p

]⊤
.

Assumption 2 (Joint rank condition on observed inputs). The
matrix E :=

[
E⊤

1 E⊤
2 · · ·E⊤

p

]⊤
has full column rank.

In other words, while each individual agent only has access
to partial information about the inputs and states (which,
individually, is insufficient for the spectrum estimation), the
system’s inputs are collectively known and the system is
observable to the group. These assumptions are justified by
the fact that, without them, the agents would not be able
to estimate the spectrum of A. A distributed solution to this
problem is challenging since the agents do not directly share
their collected data with neighbors.

Fig. 1: Illustration of the distributed spectrum estimation problem. The
matrices marked in red are unknown to the agents.

Remark III.1 (Agents with no measurements of inputs or
outputs). The setup described above does not rule out the
case Ci = 0 and Ei ̸= 0, and vice versa, indicating cases
where the i-th agent is capable of either measuring inputs or
outputs. It is also possible that both Ci = 0 and Ei = 0 for
some i ∈ V , representing agents which only participate in
sharing information with others but do not measure any signal
about the system. We point out that the total number of agents
measuring states is not critical and it can be as small as 1,
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provided that the observability condition of Assumption 1 is
satisfied (the spectrum of an observable linear system with no
inputs can be estimated based on a single output via the Ho-
Kalman method [7] or other techniques). On the other hand,
we do require the agents to collectively know the full input
set. This is because if some inputs are not measured at all, the
agents will be unable to distinguish if the “patterns” observed
in the states are caused by the spectral properties of the system
or by the unmeasured inputs. •

IV. TWO-PHASE DISTRIBUTED SPECTRUM ESTIMATION

We now present our distributed method for spectrum esti-
mation, which consists of two phases. First, agents compute
an unforced output trajectory in a distributed way based on
their measured data. Second, using this unforced output tra-
jectory, agents compute in a distributed way the characteristic
polynomial of the matrix A. This allows them to estimate the
spectrum as the roots of the polynomial.

A. Gathering information about an unforced trajectory
In the first phase, the system (7) evolves from time 0 to

a sufficiently large time T − 1, with T ≥ 2n. Each agent
collects data pairs yi(t), vi(t) of length T . Using the linearity
of the system (7) (see [32, Section 2]), we have for any g ∈
RT−2n+1, the linear combination[

ū0:2n−1

x̄0:2n−1

]
:=

[
H0,2n,T−2n+1(u)
H0,2n,T−2n+1(x)

]
g, (8)

is an input/state trajectory of length 2n of the system (7). If
this corresponds to an unforced trajectory, ū0:2n−1 = 0 must
hold. Therefore,

H0,2n,T−2n+1(u)g = 0. (9)

Left multiplying this equation by I2n⊗E and using the identity
vi(t) = Eiu(t), we obtain

H0,2n,T−2n+1(v)g = 0, (10)

where v :=
[
v⊤1 · · · v⊤p

]⊤
. Moreover, since E is full

column rank, cf. Assumption 2, equation (9) holds if and only
if (10) holds. Now, observe that the LAE (10) can be split into
p subsets of LAEs, one per agent, as follows

H0,2n,T−2n+1(vi)g = 0, ∀i ∈ V. (11)

Now because agent i has access to vi, this agent can set up
the corresponding LAE in (11). Thus, the problem of finding
g takes exactly the form of (1) with Mi = H0,2n,T−2n+1(vi)
and li = 0, which can be solved in a distributed way via
Algorithm 1.

At the same time, from (8), we deduce that x̄0:2n−1 =
H0,2n,T−2n+1(x)g. Left multiplying by I2n ⊗ Ci and using
the identifity yi(t) = Cix(t) yields

(ȳi)0:2n−1 = H0,2n,T−2n+1(yi)g, (12)

where ȳi(t) := Cix̄(t). In other words, after obtaining g ∈
RT−2n+1 which satisfies (9), each agent can employ (12) to
compute the corresponding unforced output trajectory ȳi using
its own original output observations yi. The second phase of
the algorithm employs these unforced output trajectories to de-
termine the characteristic polynomial of the system matrix A.

B. Calculation of the characteristic polynomial

We next show how to estimate the spectrum of A. Recall
that the eigenvalues of A are the roots of its characteristic
polynomial

pA(s) := det(sI−A) = sn+an−1s
n−1+· · ·+a1s+a0. (13)

The roots of this polynomial can be estimated numerically,
e.g., using the Aberth method [33]. Thus, each agent only
needs to determine the coefficients of pA to find the spectrum
of A. To this end, notice that it follows from the Cayley-
Hamilton theorem [34, Theorem 2.1] that

pA(A) = An + an−1A
n−1 + · · ·+ a1A+ a0I = 0. (14)

For each i ∈ V , left-multiplying this equation by Ci and right-
multiplying by x̄(t) yield the expression

ȳi(t+n)+an−1ȳi(t+n−1)+ · · ·+a1ȳi(t+1)+a0ȳi(t) = 0,
(15)

where we have used ȳi(t+r) = Cix̄i(t+r) = CiA
rx̄(t). Since

the LAE (15) holds for any t ∈ N and i ∈ V , we subtract the
term ȳi(t+ n) on both sides and stack the LAEs from t = 0
to t = n− 1 together to conclude

H0,n,n(ȳi)a = −(ȳi)n:2n−1, ∀i ∈ V, (16)

where a :=
[
a0 a1 · · · an−1

]⊤ ∈ Rn is the vector of
coefficients of pA(s) in reverse order. Note that the problem
of finding the common solution a to the LAEs (16) is in the
form of (1) with Mi = H0,n,n(ȳi) and li = −(ȳi)n:2n−1.
Hence, a can be found by the agents using the distributed
LAE solver.

Algorithm 2 presents the two-phase distributed spectrum
estimation algorithm. Because of the exponential rate of the
distributed LAE solver, cf. Theorem II.1, the convergence of
Algorithm 2 is fast and hence a relatively small number of K
timesteps is sufficient for achieving consensus on the values
of gi and ai, i ∈ V .

Algorithm 2 Distributed spectrum estimation algorithm
Input: T,K ∈ N, each agent i ∈ V with data
{(vi)0:T−1, (yi)0:T−1}
Output: Estimated eigenvalues {λij}nj=1 for each agent i ∈ V
For each agent i ∈ V ,

1: let gi be the output of running Algorithm 1 with Mi =
H0,2n,T−2n+1(vi) and li = 0 for K timesteps

2: compute (ȳi)0:2n−2 = H0,2n−1,T−2n+1(yi)gi
3: let ai =

[
(ai)0 · · · (ai)n−1

]⊤
be the output of running

Algorithm 1 with Mi = H0,n,n(ȳi) and li = −(ȳi)n:2n−1

for K timesteps
4: compute the roots {λij}nj=1 of the polynomial sn +

(ai)n−1s
n−1 + · · ·+ (ai)1s+ (ai)0

Remark IV.1 (Preservation of local data privacy). We discuss
here the extent to which Algorithm 2 preserves the privacy
of the local data. In the first execution of the distributed
LAE solver, cf. Algorithm 1, agents aim to agree on a
common solution g ∈ RT−2n+1 to (11). For the k-th timestep,
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the data broadcasted by agent i is only a vector gi(k) ∈
ker(H0,2n,T−2n+1(vi)). As a result, the in-neighbors of agent
i can at most find the kernel space ker(H0,2n,T−2n+1(vi))
based on the received vectors gi(k), k = 0, 1, · · ·K−1, which
are not enough to uniquely determine vi. During the second
execution of Algorithm 1, agents aim to agree on a common
solution a ∈ Rn to the LAEs (16). By a similar argument,
we see that neither the measurement yi is directly transmitted
to the neighboring agents, nor can it be determined by them
based on the received data. •

V. SUFFICIENT CONDITIONS FOR SUCCESSFUL SPECTRUM
ESTIMATION

Here we characterize when the proposed distributed spec-
trum estimation algorithm correctly estimates the spectrum. In
fact, for accurate spectrum estimation, we need the LAE (10)
in the first stage of Algorithm 2 to be solved with a non-trivial
solution, and the LAE (16) in the second stage of Algorithm 2
to have a unique solution. We provide conditions on the data
initially collected by the agents that ensure these properties.
In our treatment, we consider two scenarios for generating the
data: when the inputs to the system (7) are arbitrary and when
the inputs are generated by another LTI system.

A. Non-trivial LAE solution in first stage of distributed spec-
trum estimation

Note that since the LAE (10) is homogeneous, the trivial
g = 0 is always a solution. Such solution is not use-
ful for estimating spec(A), since it corresponds to the 0-
state trajectory that is common to every linear system. The
next result shows that, when non-trivial solution exists (i.e.,
nullity(H0,n,T−n+1(v)) ̸= 0) and the initial conditions zi(0)
in Algorithm 1 are randomly chosen, then the LAE solver
almost surely obtains a non-trivial solution.

Proposition V.1 (Almost sure non-zero solution to the ho-
mogeneous LAE). Consider the LAE (2) with l = 0 and
let S1 :=

∏
i∈V ker(Mi). Let the initial condition Z(0) :=

(z1(0), z2(0), · · · , zp(0)) be a random variable with a generic
probability distribution over S1 and zc be computed according
to (6). If nullity(M) ̸= 0, then Pr(zc = 0) = 0.

Proof. Since l = 0, the minimum-norm solution to (2) is
zmn = 0. From (6), it holds that zc = 0 if and only if∑

i∈V wizi(0) ∈ ker(M)⊥. Define S2 := {(z1, · · · , zp) :∑
i∈V wizi ∈ ker(M)⊥}. Note that both S1, S2 are vec-

tor spaces. Consider the vector z∗ := (z∗1 , · · · , z∗p) with
z∗1 ∈ ker(M)\{0} and z∗i = 0, for all i ∈ V\{1}. Because
ker(M) ⊆ ker(M1), we have z∗ ∈ S1. In addition, since∑

i∈V wiz
∗
i = w1z

∗
1 ̸∈ ker(M)⊥, then z∗ ̸∈ S2. This

means that S1 ∩ S2 is a proper subspace of S1. Finally
because Z(0) has a generic probability distribution over S1,
Pr(zc = 0) = Pr(Z(0) ∈ S1 ∩ S2) = 0.

Recall that in the first stage of the distributed spectrum
estimation algorithm, we have M = H0,2n,T−2n+1(v). For
a sufficiently large T , the columns of the Hankel ma-
trix H0,2n,T−2n+1(v) become linearly dependent and hence

nullity(M) ̸= 0. Thus, a random Z(0) and sufficiently
large T ensure the existence of a non-trivial solution with
probability 1.

B. Unique LAE solution in second stage of distributed spec-
trum estimation

Finding a non-zero g in the first stage of Algorithm 1
is not enough to guarantee its correctness. The reason is
that the satisfaction of the LAEs (16) are only a necessary
condition for the vector a to correspond to the coefficients
of the characteristic polynomial (13). In other words, if these
LAEs have multiple common solutions, our algorithm may
only find one of them, which may differ from the intended
one. To address this issue, the next result provides a sufficient
condition to ensure the uniqueness of the common solution
to (16).

Lemma V.2 (Sufficient condition for a unique LAE solu-
tion). Let g ∈ ker(H0,2n,T−2n+1(v)) be such that the pair
(A,H0,1,T−2n+1(x)g) is controllable and let (ȳ)0:2n−1 =
(H0,2n,T−2n+1(y))g. Then, the coefficients of the characteris-
tic polynomial (13) of A can be uniquely determined by solving
the LAE (17).

Proof. Firstly, observe that the system of LAEs (16) is equiv-
alent to a single LAE

H0,n,n(ȳ)a = −(ȳ)n:2n−1, (17)

where ȳ =
[
ȳ⊤1 ȳ⊤2 · · · y⊤p

]⊤
. Therefore the LAEs (16)

have a unique common solution if and only if H0,n,n(ȳ) is
full column rank.1 Using the definition of Hankel matrix and
the properties of the unforced trajectory, we have

H0,n,n(ȳ) =


Cx̄(0) CAx̄(0) · · · CAn−1x̄(0)
CAx̄(0) CA2x̄(0) · · · CAnx̄(0)

...
...

. . .
...

CAn−1x̄(0) CAnx̄(0) · · · CA2n−2x̄(0)



=


C
CA

...
CAn−1

 [
x̄(0) Ax̄(0) · · · An−1x̄(0)

]
:= O(A,C)C(A, x̄(0)).

Therefore, the LAE (17) has a unique solution if the observ-
ability matrix O(A,C) is full column rank and the square
controllability matrix C(A, x̄(0)) is full rank. The former
condition is guaranteed by the observability of (A,C), cf.
Assumption 1, whereas the latter condition requires (A, x̄(0))
to be controllable. Note that, from (8), the initial condition can
be expressed as x̄(0) = H0,1,T−2n+1(x)g, so this condition is
satisfied by hypothesis.

This result provides a sufficient condition under which
the proposed distributed algorithm can estimate the coef-
ficients of the characteristic polynomial of A and, hence,

1The Hankel matrix H0,n,n(ȳ) is not square if ȳ is not scalar; nevertheless
existence of solutions when H0,n,n(ȳ) is not full row rank is guaranteed
since the vector of the coefficients of the characteristic polynomial is always
a solution.
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compute its eigenvalues. However, the controllability condition
in Lemma V.2 cannot be checked in practice since it involves
knowledge of the system matrix A and the state x, which
are both unknown. Our ensuing discussion addresses this
limitation.

C. Sufficient conditions for correct spectrum estimation when
inputs are random

Here we provide sufficient conditions that ensure correct
spectrum estimation when the inputs employed to generate
the data available to the agents are random. To this end, we
build on the controllability condition in Lemma V.2. Note that,
if A has an eigenvalue with geometric multiplicity larger than
1, then (A, b) is not controllable for any b ∈ Rn, cf. [19].
In order to rule out this possibility, we make the following
assumption.

Assumption 3 (Distinct system eigenvalues). All the eigen-
values of the matrix A are distinct.

Assumption 3 implies that A is diagonalizable, which is
generic. With this assumption, we are ready to state our main
result.

Theorem V.3 (Almost sure correctness of distributed spec-
trum estimation for arbitrary inputs). Consider a discrete-time
LTI system (7) and let Assumptions 1, 2 and 3 hold. Let
spec(A) := {λ1, λ2, · · · , λn} and denote

Λi(t) :=
[
1 λi λ2i · · · λti

]⊤
, (18)

for t ∈ N. Suppose data are collected for the system
with an initial condition x(0) which has a generic prob-
ability distribution over Rn. In addition, assume that the
initial conditions when running Algorithm 1 for finding g
are also random with a generic probability distribution over∏

i∈V ker(H0,2n,T−2n+1(vi)). If

Λi(T − 2n) ̸∈ im(H0,2n,T−2n+1(u)
⊤), ∀i = 1, · · · , n, (19)

where T ≥ 2n, then spec(A) can be accurately estimated with
probability 1 by Algorithm 2 for sufficiently large K.

Proof. Given that A is diagonalizable, cf. Assumption 3, let
Ψ :=

[
ψ1 ψ2 · · · ψn

]
∈ Rn×n be composed of right

eigenvectors of A forming a basis of Rn. Therefore, we
can express x(0) =

∑n
i=1 αiψi and, for s ∈ N, Bu(s) =∑n

i=1 γs,iψi. We then have

x(t) = Atx(0) +

t−1∑
s=0

At−1−sBu(s)

=

n∑
i=1

λtiαiψi +

t−1∑
s=0

n∑
i=1

λt−1−s
i γs,iψi

=

n∑
i=1

(
λtiαi +

t−1∑
s=0

λt−1−s
i γs,i

)
ψi

= Ψ


λt1α1 +

∑t−1
s=0 λ

t−1−s
1 γs,1

λt2α2 +
∑t−1

s=0 λ
t−1−s
2 γs,2

...
λtnαn +

∑t−1
s=0 λ

t−1−s
n γs,n

 .

From (8), we have that x̄(0) = [x(0) x(1) · · · x(T − 2n)]g.
Using the equation above, we can write

x̄(0) = Ψ


Λ1(T − 2n)⊤(α1IT−2n+1 + Γ1(T ))
Λ2(T − 2n)⊤(α2IT−2n+1 + Γ2(T ))

...
Λn(T − 2n)⊤(αnIT−2n+1 + Γn(T ))

 g, (20)

where Γi(T ) is the (T−2n+1)×(T−2n+1) upper-triangular
Toeplitz matrix given by

Γi(T ) :=


0 γ0,i γ1,i · · · γT−2n−1,i

0 γ0,i · · · γT−2n−2,i

. . . . . .
...

0 γ0,i
0

 .
Let φi be a left eigenvector of A corresponding to the eigen-
value λi. According to Lemma A.1, the pair (A, x̄(0)) is con-
trollable if and only if φ⊤

i x̄(0) ̸= 0 for all i = 1, · · · , n. The
relation between left and right eigenvectors implies φ⊤

i ψj ̸= 0
if and only if i = j. Therefore, from (20), it follows that

φ⊤
i x̄(0) = φ⊤

i Ψ


Λ1(T − 2n)⊤(α1IT−2n+1 + Γ1(T ))
Λ2(T − 2n)⊤(α2IT−2n+1 + Γ2(T ))

...
Λn(T − 2n)⊤(αnIT−2n+1 + Γn(T ))

 g
= (φ⊤

i ψi)Λi(T − 2n)⊤(αiIT−2n+1 + Γi(T ))g,

which is non-zero if and only if

Λi(T − 2n)⊤(αiIT−2n+1 + Γi(T ))g ̸= 0, (21)

for all i = 1, · · · , n. From the condition (19), we have that
Λi(T − 2n) ̸∈ ker(H0,n,T−n+1(u))

⊥. Taking the orthogonal
space on both sides, we conclude ker(H0,n,T−n+1(u)) ̸⊂
im(Λi(T − 2n))⊥ = ker(Λi(T − 2n)⊤). Hence, the dimen-
sion of ker(H0,n,T−n+1(u)) ∩ ker(Λi(T − 2n)⊤) is strictly
smaller than the dimension of ker(H0,n,T−n+1(u)). Simi-
larly to the proof of Proposition V.1, we conclude Pr(g ∈
ker(H0,n,T−n+1(u)) ∩ ker(Λi(T − 2n)⊤)) = 0, i.e., with
probability 1, (Λi(T − 2n)⊤g) ̸= 0. In such case, (21) fails if
and only if

αi = −Λi(T − 2n)⊤Γi(T )g

Λi(T − 2n)⊤g
. (22)

Recall that αi’s are the coefficients of x(0) in the basis Ψ.
Since x(0) is random, the coefficients αi match exactly the
values in (22) with probability 0. In other words, when g
is random in ker(H0,n,T−n+1(u)) and x(0) is also random
in Rn, almost surely (21) holds, for all i = 1, · · · , n.
Hence, (A, x̄(0)) is controllable with probability one and the
statement follows by applying Lemma V.2.

The sufficient condition (19) for the correctness of Algo-
rithm 2 in Theorem V.3 states that the vectors generated by
the powers of the eigenvalues must not be contained in the row
space of the Hankel matrix of the inputs. Informally speaking,
this condition means that the inputs do not resonate with any
of the system modes. Note that rank(H0,2n,T−2n+1(u)

⊤) ≤
2nm for any T ∈ N. Therefore, when T ≥ 2(1 + m)n,
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im(H0,2n,T−2n+1(u)
⊤) is a proper subspace of RT−2n+1,

making condition (19) generically true.
For accurate spectrum estimation, we then need the input

u to be sufficiently not “rich”, in the sense that the row
space spanned by H0,2n,T−2n+1(u) is small enough to avoid
containing Λi(T − 2n). This is in contrast to the usual
persistency of excitation conditions [35] required on the input
for unique system identification. This can be attributed to the
fact that spectrum estimation is easier to achieve than system
identification, since it can be even done with zero input (but
non-zero initial state), and the fact that our algorithm substracts
the effects of the inputs when computing the unforced output
trajectory.

We also point out an interesting observation here that
Theorem V.3 does not impose additional constraints on the
input matrix B. This means that we do not require (A,B) to be
controllable for the spectrum estimation to work (in principle,
B could even be the zero matrix, in which case the inputs
would not influence the outputs).

D. Sufficient conditions for correct spectrum estimation when
inputs are generated by another LTI system

The treatment of this section is motivated by scenarios
where the system (7) might be interconnected with other
dynamics (e.g., another component that is specifically designed
to generate an input to (7) which satisfies certain performance
optimality or operational persistently exciting specifications).
Here we consider the particular scenario where the input to
system (7) is generated by another LTI system of the form

z(t+ 1) = Azz(t), (23a)
u(t) = Czz(t), (23b)

where Az ∈ Rnz×nz , Cz ∈ Rm×nz , and initial condition
z(0) ∈ Rnz . The next result analyzes under which cases the
sufficient condition (19) on the inputs, guaranteing feasibility
of the distributed spectrum estimation, is satisfied.

Proposition V.4 (Satisfaction of the sufficient condition for
unique LAE solution as a function of spectra of system
matrices). Consider the LTI system (7) with input signal u
generated by (23). Then,

(i) If spec(A) ∩ spec(Az) = ∅ and T ≥ 2n+ nz , then the
condition (19) always holds;

(ii) If spec(A) ∩ spec(Az) ̸= ∅, let λk be a common
eigenvalue and let z(0) be a right eigenvector of Az

corresponding to λk. Further assume that Czz(0) ̸= 0.
Then, the condition (19) fails for i = k and all T ≥ 2n.

Proof. Regarding (i), note that u(t) = CzA
t
zz(0). Hence,

H0,2n,T−2n+1(u)

=

 Czz(0) CzAzz(0) · · · CzA
T−2n
z z(0)

...
...

. . .
...

CzA
2n−1
z z(0) CzA

2n
z z(0) · · · CzA

T−1
z z(0)



=


Cz

CzAz

...
CzA

2n−1
z

 [
z(0) Azz(0) · · · AT−2n

z z(0)
]
.

If Λi(T − 2n) ∈ im(H0,2n,T−2n+1(u)
⊤) for some i =

1, · · · , n, then there exists w ∈ R1×2nm such that
wH0,2n,T−2n+1(u) = Λi(T − 2n)⊤. If this is the case, let

w̃ := w


Cz

CzAz

...
CzA

2n−1
z

 ∈ R1×nz ,

and note that

w̃
[
z(0) Azz(0) · · · AT−2n

z z(0)
]
=

[
1 λi · · · λT−2n

i

]
.

This means that w̃At
zz(0) = λti for all t = 0, 1, · · · , T − 2n.

It follows from the Cayley-Hamilton theorem that

pAz
(Az) = Anz

z + anz−1A
nz−1
z + · · ·+ a0I = 0,

where pAz
is the characteristic polynomial of Az . Consider

the term corresponding to t = nz . We have

λnz
i = w̃Anz

z z(0) = −w̃
nz−1∑
t=0

atA
t
zz(0)

= −
nz−1∑
t=0

atw̃A
t
zz(0) = −

nz−1∑
t=0

aiλ
t
i.

This means that pAz
(λi) = 0, which implies λi is an

eigenvalue of Az . Therefore, if spec(Az) ∩ spec(A) = ∅, we
deduce that condition (19) always holds with T ≥ 2n+ nz .

Next we prove (ii). Let λk ∈ spec(Az) ∩ spec(A) and
z(0) be as in the statement. We have u(t) = CzA

t
zz(0) =

λtkCzz(0) for all t ∈ N. Hence

H0,2n,T−2n+1(u)

=

 Czz(0) λkCzz(0) · · · λT−2n
k Czz(0)

...
...

. . .
...

λ2n−1
k Czz(0) λ2nk Czz(0) · · · λT−1

k Czz(0)



=




1
λk
...

λ2n−1
k

 [
1 λk · · · λT−2n

k

]
⊗ (Czz(0))

= (Λk(2n− 1)Λk(T − 2n)⊤)⊗ (Czz(0)).

Let w = w1 ⊗ w2 ∈ R1×2nm, with w1 =
[
1 0 · · · 0

]
∈

R1×2n and w2 ∈ R1×m such that w2Czz(0) = 1 (which is
always possible since Czz(0) ̸= 0). From the mixed-product
property, we conclude that

wH0,2n,T−2n+1(u)

= (w1 ⊗ w2)
(
(Λk(2n− 1)Λk(T − 2n)⊤)⊗ (Czz(0))

)
=

(
w1Λk(2n− 1)Λk(T − 2n)⊤

)
⊗ (w2Czz(0))

= Λk(T − 2n)⊤,

which implies Λk(T − 2n) ∈ im(H0,2n,T−2n+1(u)
⊤).

The combination of this result with Theorem V.3 yields to
the following conclusion.
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Corollary V.5 (Almost sure correctness of distributed spec-
trum estimation for inputs generated by a LTI system). Con-
sider the LTI system (7) with input signal u generated by (23)
and let Assumptions 1, 2, and 3 hold. If spec(A)∩spec(Az) =
∅ and T ≥ 2n+nz , then spec(A) can be accurately estimated
by Algorithm 2 with probability 1.

Note that the condition on disjointness of the spectra of A
and Az in Corollary V.5 is generic. If the input-generating
system (23) is unknown, we can also estimate the spectrum
of Az via a similar approach as Algorithm 2, where now the
output is u and the input is 0. However, from our discussion in
Section V-B, we know that a correct spectrum estimation may
require Az to have distinct eigenvalues and the pair (Az, z(0))
to be controllable. Such assumptions are not required by
Corollary V.5. It is therefore interesting to note that, although
we might not be able to estimate the spectrum of Az correctly,
as long as it is not intersecting with that of A, we can almost
always correctly estimate the spectrum of the original system
by collecting data for a sufficiently long time.

VI. ILLUSTRATION ON MASS/SPRING/DAMPER SYSTEM

In this section, we illustrate the proposed distributed spec-
trum estimation algorithm on a mass/spring/damper system.
Ten unit masses are connected in series by pairs of spring
and damper with unknown coefficients ki, di. The left-end is
connected to a stationary wall, cf. Figure 2. This mechanical
system can be viewed as a simplification of finite element
analysis (FEA) on a beam structure. We are interested in
inspecting the stiffness of the mechanical system, which can
be done via spectrum estimation. Note that it is unnecessary
to determine the spring and damper coefficients; the springs
and dampers arise from the FEA and hence have no physical
meaning.

m10 m9 · · · m2 m1

k1

d1

k2

d2

k8

d8

k9

d9

k10

d10
z1z2z9z10

Fig. 2: Illustration of the mass/spring/damper system.

Denote the horizontal displacement of the i-th unit mass
relative to its steady position as zi. Suppose a force uj is
applied to the (2j − 1)-th mass, j = 1, · · · , 5. Let x :=[
z1 · · · z10 ż1 · · · ż10

]⊤
denote the system state. The

dynamics is given by ẋ = Acx+Bcu, where the matrices take
the form

Ac =

[
010×10 I10
Kc Dc

]
, Bc =

 010×5

I5 ⊗
[
1
0

] ,

Kc =



−k1 k1 0 · · · 0

k1 −k1 − k2 k2
. . .

...

0 k2
. . . . . . 0

...
. . . . . . −k8 − k9 k9

0 · · · 0 k9 −k9 − k10


,

Dc =



−d1 d1 0 · · · 0

d1 −d1 − d2 k2
. . .

...

0 d2
. . . . . . 0

...
. . . . . . −d8 − d9 k9

0 · · · 0 d9 −d9 − d10


.

Consider a group of 10 agents that aims to collaboratively
compute the system spectrum in a distributed way. Agent
i is attached to mass mi, such that it either measures the
applied force vi = u i+1

2
if i is odd, or the displacement

yi = zi if i is even. The 10 agents form a line network;
to be precise, Agents i − 1, i + 1 are the out-neighbors of
Agent i, i = 2, 3, · · · , 9, while Agent 2 and itself are the out-
neighbors of Agent 1, Agent 9 and itself are the out-neighbors
of Agent 10. In addition, we assume that only Agent 1 has the
computation capability of finding roots of polynomials. Thus,
Agent 1 is responsible of determining the eigenvalues based
on the exchange of information and finally report them.

Suppose the measurements are taken at a sampling rate of
10Hz; moreover, assume that the input u is a zero-order-hold
signal with the same sampling rate. Then, the system can be
converted into a discrete-time LTI system in the form (7), with
system matrix and input matrix given by

A = e0.1Ac , B =

∫ 0.1

0

eActBcdt.

Assume that ki = 100, di = 0.3 for all i = 1, 2, · · · , 10.
We collect data for T = 1000, starting with a random initial
state x(0) and inputs ui(t) = 2+ 5 cos(0.02t+0.5i) +wi(t),
where wi(t) is white Gaussian noise of signal-to-noise ratio
of 5. Figures 3 and 4 show the measurements of the agents.
In this case, (19) holds and thus Theorem V.3 implies accu-
rate estimation of the spectrum. This is indeed reflected by
Figure 5, which shows a good match between the spectrum of
the true system matrix and the estimated eigenvalues computed
with the proposed distributed spectrum estimation strategy, cf.
Algorithm 2, executed with K = 2000. Figure 6 shows the
evolution of the estimation errors of Agent 1 with respect to
K, defined as e(K) :=

∑n
j=1 |λej(K) − λj |, where λej(K)

is the estimation of the j-th eigenvalue for Agent 1 after K
iterations and λj is the true j-th eigenvalue of A. One can
observe that, as more data is exchanged between the agents,
they quickly come to an agreement on the spectrum, which
in turn converges to the true spectrum of A as the algorithm
execution progresses. This observation is consistent with the
convergence result in Theorem II.1.

We also consider the case when the input is noise-free; i.e.,
ui(t) = 2 + 5 cos(0.02t + 0.5j). In this case, u(t) can also
be viewed as the output of the system (23), with nz = 15,
matrices

Az = I5⊗

cos(0.02) − sin(0.02) 0
sin(0.02) cos(0.02) 0

0 0 1

 , Cz = I5⊗
[
1 0 1

]
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Fig. 3: Plots of vi, i = 1, 3, 5, 7, 9.
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Fig. 4: Plots of yi, i = 2, 4, 6, 8, 10.
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Fig. 5: True eigenvalues (blue cross marks) and estimated eigenvalues (red
circles) of A.

and initial state

zi(0) =


5 cos(0.5k) if i = 3k − 2, k ∈ N,
0 if i = 3k − 1, k ∈ N,
2 if i = 3k, k ∈ N.

Because spec(A) ∩ spec(Az) = ∅ and T ≥ 2n + nz ,
Corollary V.5 implies that Algorithm 2 can accurately estimate
spec(A).

VII. CONCLUSIONS

We have introduced a data-driven algorithm for distributed
spectrum estimation of linear-time invariant systems. The

0 200 400 600 800 1,000 1,200 1,400 1,600 1,800 2,000
0

0.5

1

1.5

2

2.5

3

3.5

Fig. 6: Estimation error of Agent 1 vs. number of iterations.

agents have no knowledge of the system or control matrices
and no control over its inputs. They can however collectively
observe the inputs and outputs along a trajectory of the
system. Our algorithm relies on this data to compute the
characteristic polynomial of the system matrix. Our technical
approach to establish convergence relies on the formulation of
the estimation problem as suitable systems of linear equations
amenable to distributed algorithmic solutions. Future work
will explore extensions to scenarios where the dimension of
the linear system is unknown and measurement errors are
present in collected data, and employ our results in multi-agent
coordination problems involving the evaluation of network
resilience metrics in a distributed fashion.

APPENDIX

Proof of Theorem II.1. Multiply Pker(Mi)⊥ on the left on both
sides of (4) and note that Pker(Mi)⊥Pker(Mi) = 0, we
have Pker(Mi)⊥(zi(k + 1) − zi(k)) = 0. In other words
zi(k + 1) − zi(k) ∈ ker(Mi) and, recursively, we have
zi(k) − zi(0) ∈ ker(Mi). It follows from the initial condi-
tion (3) that Mizi(k) = li, for all k ∈ N, i ∈ V . In other words,
the update law (4) always gives feasible solutions to each LAE
of (1) at each time k. Let z∗ be a solution to (2). It holds that
zmn = Pker(M)⊥z

∗. For each i ∈ V , denote ei(k) := zi(k)−z∗.
We have Miei(k) =Mizi(k)−Miz

∗ = 0 so ei(k) ∈ ker(Mi).
Therefore, ei(k) = Pker(Mi)ei(k). It then follows from (4) that

ei(k + 1) = Pker(Mi)ei(k) +
1

di
Pker(Mi)

∑
j∈N out

i

(ej(k)− ei(k))

=
1

di
Pker(Mi)

∑
j∈N out

i

ej(k). (24)

Denote by dnull := nullity(M), and define ēi(k) := Qei(k),
or in the stacked from ē(k) = (Ip ⊗ Q)e(k), where Q ∈
R(n−dnull)×n is a matrix such that ker(Q) = ker(M) =⋂

i∈V ker(Mi), and QQ⊤ = In−dnull . For each i ∈ V , define
P̄i := QPker(Mi)Q

⊤. Then it follows from [24, Lemma 1]
such that P̄i is also an orthogonal projection matrix,

QPker(Mi) = P̄iQ, (25)

and ⋂
i∈V

ker P̄i = {0}. (26)
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Also, since both Pker(Mi), P̄i are orthogonal projection matri-
ces, they are symmetric and we conclude

Pker(Mi)Q
⊤ = Q⊤P̄i (27)

by taking the transpose of (25) on both sides. Multiply Q on
the left on both sides of (24) and use the property (25), we
conclude that

ēi(k + 1) =
1

di
P̄i

∑
j∈N out

i

ēj(k), (28)

which can be compactly written as

ē(k + 1) = P̄ ((D−1A)⊗ In)ē(k), (29)

where recall the definitions of D,A in Theorem II.1, and the
matrix P̄ := diag(P̄1, · · · , P̄p). Because of (26) and the fact
that D−1A is row stochastic, we appeal to [24, Theorem 3]
and conclude that there exists λ1 ∈ (0, 1) such that∥∥(P̄ ((D−1A)⊗ I)

)k∥∥ ≤ λ
k−(p−1)2

1 .

As a result, the iterative equation (29) implies that

|ē(k)| ≤ c1λ
k
1 , (30)

where c1 := λ
−(p−1)2

1 |ē(0)|.
Lastly, define ri(k) := ei(k) − Q⊤ēi(k), or in the stacked

form r(k) := e(k) − (Ip ⊗ Q⊤)ē(k). We have Qri(k) =
Qei(k) − ēi(k) = 0. In other words, ri(k) ∈ ker(Q) =⋂

i∈V ker(Mi) so Pker(Mi)rj(k) = rj(k) for all i, j ∈ V . As
a result, it follows from (24), (27) and (28) that

ri(k + 1) = ei(k + 1)−Q⊤ēi(k + 1)

=
1

di
Pker(Mi)

∑
j∈N out

i

ej(k)−
1

di
Q⊤P̄i

∑
j∈N out

i

ēj(k)

=
1

di
Pker(Mi)

∑
j∈N out

i

(ej(k)−Q⊤ēj(k))

=
1

di
Pker(Mi)

∑
j∈N out

i

rj(k)

=
1

di

∑
j∈N out

i

rj(k),

which can be compactly written as

r(k + 1) = ((D−1A)⊗ In)r(k).

Since G is strongly connected and aperiodic, D−1A is prim-
itive. Also recall that w ∈ Rn is the left Perron-Frobenius
eigenvector of D−1A. Thus, it follows from standard results
on discrete-time consensus [36, Theorem 11.2] that there exists
λ2 ∈ (0, 1), c2 ≥ 1 such that

|r(k)− 1⊗ (R(0)w)| ≤ c2λ
k
2 ,

where

R(0) : =
[
r1(0) · · · rp(0)

]
=

[
e1(0) · · · ep(0)

]
−Q⊤ [

ē1(0) · · · ēp(0)
]

= (In −Q⊤Q)
[
e1(0) · · · ep(0)

]
= (In −Q⊤Q)(Z(0)− 1⊤ ⊗ z∗).

Moreover, from the definition of Q we have Pker(M) =
Pker(Q) = In − Pker(Q)⊥ = In − Pim(Q⊤) = In − Q⊤Q and
(1⊤ ⊗ z∗)w = z∗w⊤1 = z∗, we further conclude that∣∣r(k)− 1⊗

(
Pker(M)(Z(0)w − z∗)

)∣∣ ≤ c2λ
k
2 . (31)

Now recall the definition of zc in (6). It follows from (30) and
(31) that

|z(k)− zc|
= |z(k)− 1⊗ (Pker(M)Z(0)w + zmn)|
= |(z(k)− 1⊗ z∗) + 1⊗ (z∗ − Pker(M)Z(0)w − zmn)|
= |e(k) + 1⊗ (z∗ − Pker(M)Z(0)w − Pker(M)⊥z

∗)|
=

∣∣(Ip ⊗Q⊤)ē(k) + r(k)− 1⊗
(
Pker(M)(Z(0)w − z∗

)∣∣
≤ |ē(k)|+

∣∣r(k)− 1⊗ (Pker(M)(Z(0)w − z∗)
∣∣

≤ c1λ
k
1 + c2λ

k
2 ,

where we have used the relation between e(k), ē(k) and r(k)
and the fact that z∗ = Pker(M)z

∗ +Pker(M)⊥z
∗ for the fourth

equality, and the orthonormal property of Q such that ∥Ip ⊗
Q⊤∥ ≤ 1 for the second last line. Hence (5) is shown with
c = c1 + c2, λ = max{λ1, λ2}.

The following result is invoked in the proof of Theorem V.3.

Lemma A.1 (Controllability and left eigenvectors). Under
Assumption 3, the pair (A, b) is controllable if and only if
φ⊤
λ b ̸= 0 for any λ ∈ spec(A), where φλ is a non-zero left

eigenvector of A with respect to the eigenvalue λ.

Proof. We rely on the Popov-Belevitch-Hautus (PBH) test [34,
Corollary 4.7] for controllability, that states that the pair (A, b)
is controllable if and only if

rank(
[
A− λIn b

]
) = n

for all λ ∈ C. To prove the implication from left to right,
suppose φ⊤

λ b = 0 for some λ ∈ spec(A). Then, we have
φ⊤
λ

[
A− λI b

]
= 0, so

[
A− λI b

]
is not full rank. Thus

by the PBH test, (A, b) is not controllable.
To show the implication from right to left, assume that

φ⊤
λ b ̸= 0 for all λ ∈ spec(A). For any λ∗ ∈ C, pick

w ∈ ker
[
A− λ∗I b

]⊤
, that is,

w⊤(A− λ∗I) = 0, (32a)

w⊤b = 0. (32b)

If λ∗ ̸∈ spec(A), (32a) only holds with w = 0 since A− λ∗I
is full rank. Otherwise, if λ∗ ∈ spec(A), (32a) implies that w
must be a left eigenvector of A with respect to the eigenvalue
λ∗; in other words, w = cφλ∗ for some c ∈ R. Since φ⊤

λ b ̸= 0
for all λ ∈ spec(A), (32b) implies that c = 0; that is, w = 0.
Hence ker

[
A− λ∗I b

]⊤
= {0} for all λ∗ ∈ C, which by

the PBH test implies that (A, b) is controllable.
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