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Abstract— Oscillatory activity is highly prevalent in the
brain. Oscillations with specific characteristics are asso-
ciated with a variety of healthy and diseased brain func-
tions. This paper considers two mesoscale brain network
models described by linear-threshold and threshold-linear
dynamics and takes on the analytical characterization of
the emergence of oscillations. The synaptic connectivity is
described by an arbitrary network interconnection topology
that allows for self-excitatory nodes. We provide a struc-
tural characterization for the existence of stable node sets
that support asymptotically stable equilibria and identify
sufficient conditions for oscillatory behavior in competi-
tive linear-threshold and threshold-linear dynamics. Simu-
lations illustrate our results.

Index Terms— oscillations, competitive brain networks,
linear-threshold and threshold-linear dynamics

I. INTRODUCTION

The presence of oscillations in neural activity motivates the
study of the dynamical mechanisms behind their emergence.
We consider brain networks composed of nodes, each repre-
senting a populations of neurons with similar firing rate. We
consider two dynamical models that describe the evolution
of the aggregate firing rates and derive structural and input
conditions that give rise to oscillations. The first model, called
linear-threshold network (LTN), has dynamics

τ ẋ =−x+[Wx+u]m0 , (1)

where [·]m0 = max{0,min{·,m}} (operations are performed
elementwise). Here, xi represents the firing rate of a neuronal
population represented by node i ∈ {1, . . . ,N}, the synaptic
weight matrix W defines the connectivity between populations
of neurons, and u is an input to the system. The vector m
defines an upper bound on the firing rate. The second model,
called threshold-linear network (TLN) has dynamics

τ ẋ =−x+[Wx+u]+, (2)

where [·]+ = max{0, ·}. We note that if m = ∞1, the two
dynamics are the same. The parameter τ is a biological
constant that defines the timescale of the network. In this
work, we assume that the populations of neurons have similar
timescales and take τ = 1.

Literature Review: Oscillatory behavior is one of the most
commonly observed phenomena in the brain, appearing in
both healthy and pathological states. Within healthy activity,
oscillations are linked to phenomena such as cognition [1]
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and consciousness [2], while also appearing in pathological
behavior such as epileptic seizures and Parkinson’s disease [3].
Linear-threshold and threshold-linear models have been used
extensively to model a variety of phenomena in the brain,
ranging from the retinal behavior of a crab [4], to memory [5],
and epilepsy [6], [7]. These are mesoscale models where the
naturally decaying neural firing rate of a node is influenced by
the firing rates of neighboring nodes and potentially additional
background inputs. These dynamics employ piecewise-affine
nonlinearities, which generalize sigmoidal nonlinearities [8],
and are consistent with empirical descriptions of neural physi-
ology. Further, these dynamics are rich enough to generate key
properties such as mono- and multi-stability, limit cycles, and
chaotic behavior, see e.g., [7], [9], and include the celebrated
Wilson-Cowan model [10], [11] as a particular case. Of par-
ticular relevance here are works that relate network structure
with dynamical properties of the model, such as stability [12],
[13] and oscillations [14], [15]. Model expressivity and chaotic
behavior are believed to be directly related, suggesting a
small region, referred to as the edge of chaos [16], where
the transition from stability to instability and the emergence
of oscillations play a key role. It is in this region where the
computational capacities of the dynamics are maximized for
neural learning algorithms [17].

Within the study of oscillatory behavior of these dynamics,
the literature is largely divided based upon network struc-
ture. Two of the main structures are excitatory-inhibitory
networks and competitive networks (in the latter, all interneu-
ronal interactions are inhibitory). While oscillatory behav-
ior in excitatory-inhibitory networks has been studied exten-
sively [15], [18], [19] using both threshold-linear and linear-
threshold dynamics, for competitive networks the literature is
largely restricted to threshold-linear dynamics. The works [9],
[20] provide both analytic and graph-theoretic conditions for
oscillations in a general competitive network governed by
threshold-linear dynamics. The works [21], [22], [23] study
combinatorial threshold-linear networks, a specific form of
competitive networks, and provide conditions related to the
existence of dynamic attractors, including limit cycles, and
both quasi-periodic and chaotic attractors. These studies ex-
plicitly rule out node self-excitation and restrict their attention
to all-to-all connectivity structures. This is a major difference
with respect to the present manuscript, where we allow for
self-excitation and consider arbitrary network structures.

Statement of Contributions: We study brain network neural-
mass models described by linear-threshold and threshold-linear
dynamics. Our first contribution pertains to the existence of
asymptotically stable equilibria that have non-zero activity on



only a given subset of nodes in the network for a general
linear-threshold dynamics. We provide a characterization of
this in terms of the network structure. We build on this result
in our second contribution, which characterizes the emergence
of oscillatory behavior in competitive linear-threshold and
threshold-linear dynamics. We provide sufficient conditions on
the synaptic structure and the input that ensure the network
does not have stable equilibria (a fact we use as a proxy for
the existence of oscillations). Our contributions expand on
the state of the art because of the consideration of arbitrary
network connectivity patterns and the treatment of linear-
threshold dynamics.

II. PROBLEM FORMULATION

In firing-rate models1 such as linear-threshold or threshold-
linear networks, the network structure determined by the
synaptic weight matrix W is classified based upon the proper-
ties of the interneuron connections. An interneuron connection
is excitatory if the corresponding element in the synaptic
weight matrix is positive, and is inhibitory if the entry is
negative. The diagonal elements in the synaptic weight matrix
represent the impact a node’s activity has on itself, which we
refer to as self-excitatory if the matrix value is positive, and
self-inhibitory if the matrix value is negative. A particular class
of networks to which we pay attention are competitive net-
works, which represent inhibition-based competition between
brain regions, a widely-observed phenomenon [24].

Definition 2.1 (Competitive Network): Consider a linear-
threshold (resp., threshold-linear) network defined by W. The
network is competitive if W is a Z-matrix (i.e., all interneuron
connections are inhibitory) and the nodes are either self-
excitatory or not self-connected (wii ≥ 0 for all i).

This definition generalizes the standard definition of com-
petitive network, e.g., [20], which requires all diagonal ele-
ments to be zero. As oscillations in the brain are widely asso-
ciated with inhibition [25], our goal is to determine conditions
under which oscillations arise in competitive brain networks.

The notion of neural oscillation we consider here goes be-
yond periodic trajectories to also include chaotic behavior, as
chaotic trajectories are of significant interest in computational
neuroscience [26]. Formally, we say a trajectory x(t) of the
LTN (1) or TLN (2) dynamics is oscillatory if it does not
converge asymptotically to an equilibrium. Throughout the
paper, we use the lack of stable equilibria (LoSE) as a proxy
for the existence of oscillations. This is because this criterion is
widely applicable, whereas analytic tools for directly studying
oscillations (such as Poincarè-Bendixson theory [27]) are
limited to 2-dimensional systems or ones whose behavior can

1We use the following notation. We let R, Rn, Rn×m, denote reals, real-
valued vectors and real-valued matrices, resp. Vectors and matrices are
identified by bold-faced letters. For vectors x,y∈Rn, x≤ y is the component-
wise comparison (analogously with <,>,≥). We use a similar notation for
matrices. For a vector x and set of indices α ⊆ {1, . . . ,N} we denote by
xα the vector composed of the elements of x by the indices in α . For a
set of indices α ⊆ {1, . . . ,N}, we denote by ᾱ the complement of α , that is
{1, . . . ,N}\α . For a vector x∈Rn we refer to the set of non-zero components
as the support of x, and denote it by supp(x). For a matrix W and two sets
of indices, α1,α2 we let Wα1α2 the submatrix defined by the rows indexed
α1 and columns indexed by α2. If α1 = α2 = α we will denote this principal
submatrix by Wα . The identity matrix of dimension n is In. 0n and 1n denote
the n-vector of zeros and the n-vector of ones, resp. When clear from the
context, we omit the dimensional subindex for the identity or zero matrices.

be confined to two dimensions. For the LTN dynamics, this
proxy has been shown to be tight [15]. We formalize the
problem considered as follows.

Problem statement: Consider a competitive LTN (resp.
TLN) with synaptic weight matrix W. Determine conditions
on the structure of W and the input vector u such that the
network has no stable equilibria.

III. STABLE EQUILIBRIA IN LTN AND TLN NETWORKS

This section studies the conditions for the existence of
stable equilibria in a general network topology as a precursor
to our focus in Section IV on the study of oscillations in
competitive networks. Given the dynamics of LTN (1) and
TLN (2) networks, it is clear that the location and stability
of the equilibria depend upon the specific input. This brings
up two important observations when characterizing them: (i)
stability statements could be made for all possible inputs,
several inputs, or just one input. Here, we focus on the latter;
(ii) rather than the specific location of the equilibria, we
focus on its support. This means that we consider equivalence
classes of equilibria, as the same set of nodes could correspond
to many different actual equilibria. The following definition
makes this precise for TLN networks.

Definition 3.1: (Stable Node Set in TLN [9]): Consider a
network governed by the threshold-linear dynamics (2). A
non-empty subset of nodes σ ⊆ {1, . . . ,N} is stable if there
exists an asymptotically stable equilibrium point x∗ such that
supp(x∗) = σ for at least one input u ∈ Rn.

For LTN dynamics, since they are guaranteed to have
bounded trajectories, this definition becomes trivial: for any
subset σ , there always exists an input u ∈ Rn such that the
point (0,mσ ) is an asymptotically stable equilibrium point
(since, for u with uσ large enough and uσ̄ small enough, the
dynamics reduces to ẋσ =−xσ +mσ and ẋσ̄ =−xσ̄ ). In order
to extend our treatment of stable node sets for LTN networks,
we first consider the support of a bounded vector.

Definition 3.2: (Support of a Bounded Vector): Let x ∈
[0,m] ⊂ Rn, with m ∈ Rn

>0. The support of x is the set
σ = (σm,σm̊) ⊆ {1, . . . ,N}, where xi = mi for all i ∈ σm,
xi ∈ (0,mi) for all i ∈ σm̊ and xi = 0 for all i ∈ σ̄ .

The synaptic weight matrix can be block-partitioned accord-
ing to the the support σ as

W =

 Wσ̄ Wσ̄σm Wσ̄σm̊
Wσmσ̄ Wσm Wσmσm̊
Wσm̊σ̄ Wσm̊σm Wσm̊

 , (3)

where (σ̄ ,σm,σm̊) = {1, . . . ,N}. Next, we have the following
notion of stability of node sets in LTN networks.

Definition 3.3: (Non-trivially Stable Node Set in LTN Dy-
namics): Consider a network defined by the linear-threshold
dynamics (1). A non-empty subset of nodes σ = (σm,σm̊)⊆
{1, . . . ,N} is non-trivially stable if there exists an asymp-
totically stable equilibrium point x∗ for the dynamics with
supp(x∗) = σ = (σm,σm̊) for at least one input u ∈ Rn and
either σm̊ 6= /0 or there exists i∈σm such that (Wx∗+u)i =mi.

The key part of Definition 3.3 is that existence of the stable
equilibrium cannot be guaranteed solely on the basis of forced
saturation by the input. By requiring that either: one of the
non-zero components in the equilibrium point is not saturated



(σm̊ 6= /0); or, if it is at the saturation value, it is not over-
saturated ((Wx∗+u)i = mi), it guarantees that the equilibrium
is dependent on the structure of the network and the dynamic
behavior, rather than the input. This definition, when applied
to a TLN network reduces to Definition 3.1.

We next give a condition for the existence of non-trivially
stable equilibria. The proof is provided in the Appendix.

Theorem 3.4: (Existence of Non-trivially Stable Node Set):
Consider a network defined by either LTN or TLN dynamics
with synaptic weight matrix W and upper bound m. A subset
of nodes σ = (σm,σm̊) is non-trivially stable with associated
equilibrium x∗, with x∗i ∈ (0,mi) for all i ∈ σm̊ and x∗i = mi
for all i ∈ σm if and only if the matrix (−I+W)σm̊ is stable.

The characterization in Theorem 3.4 for the existence of a
stable equilibrium for an arbitrary node set under LTN and
TLN dynamics is useful for identifying and building networks
that possess such equilibria. Conversely, it can also be used
for the opposite purpose: identify and build networks that do
not. The latter is aligned with seeing the LoSE as a proxy
for the existence of oscillatory or chaotic behavior. As such,
in the ensuing discussion we focus on identifying conditions
on the network structure and the input that ensure that the
characterization of Theorem 3.4 is not satisfied.

IV. OSCILLATIONS IN COMPETITIVE NETWORKS

In this section, we focus on competitive networks and
provide conditions on the structure of the synaptic weight
matrix W and the input u such that a competitive linear-
threshold or threshold-linear network lacks stable equilibria,
thus satisfying our criteria for enabling oscillations. We tackle
the problem of LoSE by classifying equilibria by their support:
equilibria supported on two or more nodes in the interior of
[0,m]; equilibria supported on a single node; and equilibria
with components lying on the boundary m. We then provide
conditions such that all equilibria in each class is not stable.

Theorem 4.1: (Oscillations in Competitive Networks with
LTN Dynamics): Consider a network defined by the LTN
dynamics (1) with synaptic weight matrix W, upper bound
m, and constant input u ∈ Rn. Let W be a Z-matrix with at
least two diagonal elements, indexed i1, i2, such that wikik < 1
and 2|−1+wikik |> ρ(−I+W), for k ∈ {1,2}. The following
statements hold:

1) There are no stable equilibria x∗ with |supp(x∗)| ≥ 2 and
x∗i ∈ (0,m) for all i ∈ supp(x∗) if all 2× 2 principal
submatrices of −I+W are unstable;

2) There are no equilibria x∗ with |supp(x∗)|= 1 and
• x∗i = mi if, for each i ∈ {1, . . . ,N}, there exists k such

that uk >−wkimi;
• x∗i ∈ (0,mi) if, for each i∈ {1, . . . ,N} with wii 6= 1, there

exists k such that sign(ui)
uk
ui

> −sign(ui)
wki

wii−1 and for
each i ∈ {1, . . . ,N} with wii = 1 either ui 6= 0 or ∃k 6= i
such that uk >−wkimi;

3) Consider a node set σ = (σm,σm̊) with |σ | ≥ 2 and |σm| ≥
1. The following hold:
• If |σm̊| ≥ 2, then there do not exist any stable equilibria

x∗ with support σ if all 2× 2 principal submatrices of
(−I+W)σm̊ are unstable;

• If |σ |= |σm| ≥ 2, then there do not exist any equilibria
x∗ with support σ∗ if there exists i ∈ σm such that ui <
mi−∑ j∈σm wi jm j;

• If σm̊ = {i}, then there do not exist any equilibria x∗ with
support σ if u is such that one or more of the following
conditions hold:
a) There exists i ∈ σm̊ such that:

i) If wii < 1, then ui /∈ (−∑ j∈σm wi jmi,mi(1−
wii)−∑ j∈σm wi jmi), or

ii) If wii > 1, then ui /∈ (mi(1 − wii) −
∑ j∈σm wi jmi,−∑ j∈σm wi jmi), or

iii) If wii = 1, then ui 6=−∑ j∈σm wi jmi.
b) There exists k ∈ σm such that if wii 6= 1

uk < mk− ∑
j∈σm

wk jmk−
( wki

1−wii

)(
∑

j∈σm

wi jmi +ui

)
,

or if wii = 1

uk ≤mk− ∑
j∈σm

wk jm j.

c) There exists l ∈ σ̄ such that if wii 6= 1

ul >− ∑
j∈σm

wl jml−
( wli

1−wii

)(
∑

j∈σm

wi jmi +ui

)
,

or if wii = 1, ul ≥−∑ j∈σm wl jm j−wlimi.
To prove this statement, the following result guaranteeing

LoSE supported on multiple nodes is useful.
Lemma 4.2: (Conditions for Unstable Equilibria Supported

on Multiple Nodes): Consider a network defined by the LTN
dynamics (1) with a Z-matrix W. If all 2 × 2 principal
submatrices of −I+W are unstable and there exist i1, i2 with
wikik < 1 and 2|−1+wikik |> ρ(−I+W) for k ∈ {1,2}, then
the network has no stable equilibria supported on more than
one node in the interior of [0,m].

This result is a generalization of [9, Corollary 4.4] to the
case of synaptic weight matrices with non-zero elements in
the diagonal. The proof is given in the appendix. We are now
ready to prove Theorem 4.1.

Proof of Theorem 4.1: We proceed by deriving condi-
tions so that each classification of equilibria by their support
contains no stable equilibria.

Statement 1): It directly follows from Lemma 4.2: if all 2×2
principal submatrices of −I+W are unstable2, then there exist
no stable equilibria supported on more than two nodes in the
interior of [0,m].

Statement 2): Without loss of generality, assume x∗ is a
potential equilibrium point supported only on node i. Then the
equilibrium equations are x∗i = [wiix∗i +ui]

mi
0 and 0 = [wkix∗i +

uk]
mk
0 , for all k 6= i. These conditions are satisfied iff wkix∗i +

uk ≤ 0 for all k 6= i. There are three possible cases for the
remaining equation:
• wiix∗i +ui ≥mi, which implies x∗i = mi;
• wiix∗i +ui ∈ (0,mi), which implies x∗i =

ui
1−wii

unless wii =
1, in which case ui = 0 and x∗i can take any value within
the interval;

• wiix∗i + ui ≤ 0, which implies x∗i = 0, contradicting the
assumption that x∗ is supported on node i.

2Lemma 1.1 provides detailed expressions for this condition to hold.



Therefore, we need to consider only the first two cases. For
the case in which x∗i = mi, x∗ is an equilibrium iff, for all
k 6= i, it holds that wkimi + uk ≤ 0. As such there is no
equilibrium supported on a single node at the boundary if for
all i∈ {1, . . . ,N} there exists k 6= i such that uk >−wkimi. For
the case where x∗i ∈ (0,mi), first consider when wii = 1. In this
case, x∗ is an equilibrium for any x∗i ∈ (0,mi) iff ui = 0 and
wkix∗i +uk ≤ 0 for all k 6= i. Rearranging these conditions, we
get that there is no equilibrium supported on a single node
x∗i ∈ (0,mi) if either ui 6= 0 or there exists k 6= i such that
uk >−wkimi. If wii 6= 1, x∗ is an equilibrium iff for all k 6= i

wki

(
ui

1−wii

)
+uk ≤ 0.

Rearranging this expression, we get that there is no equilibrium
supported on a single node with x∗i ∈ (0,mi) if, for each i ∈
{1, . . . ,N} with wii 6= 1, there exists k 6= i such that

sign(ui)
uk

ui
>−sign(ui)

wki

1−wii
.

Statement 3): Equilibria supported on two or more nodes,
with at least one taking values on the boundary m, come in
the following three cases based upon the structure of the node
set σ = (σm,σm̊): a) |σm| ≥ 1, |σm̊| ≥ 2; b) |σ |= |σm| ≥ 2; c)
|σm| ≥ 1 and |σm̊|= 1. Consequently,
a) If |σm̊| ≥ 2, these are equilibria supported on two or
more nodes in the interior of [0,m]. By Lemma 4.2, if all
2×2 principal submatrices of (−I+W) are unstable, no such
equilibrium is stable.
b) If |σ | = |σm| ≥ 2, then a point x∗ with support σ is an
equilibrium if and only if mi ≤∑ j∈σm wi jx∗j +ui for all i∈ σm.
Rearranging, we have that there is no equilibrium with this
structure if there exists i∈σm such that ui <mi−∑ j∈σm wi jm j;
c) If |σm̊|= 1 and |σm| ≥ 1, let x∗ be a candidate point with
node i supported on (0,mi) and let us identify the interval of
inputs u that would actually make x∗ an equilibrium. For x∗
to be an equilibrium, the following must hold:

x∗i = ∑
j∈σ

wi jx∗j +ui, (4a)

mk ≤ ∑
j∈σ

wk jx∗j +uk, ∀k ∈ σm, (4b)

0≥ ∑
j∈σ

wl jx∗j +ul , ∀l ∈ σ̄ . (4c)

From (4a), we get

(1−wii)x∗i = ∑
j∈σm

wi jm j +ui. (5)

To enforce x∗i ∈ (0,mi), the input ui must satisfy:
• If wii < 1, then ui ∈ (−∑ j∈σm wi jm j,mi(1 − wii) −

∑ j∈σm wi jm j);
• If wii > 1, then ui ∈ (mi(1 − wii) −

∑ j∈σm wi jm j,−∑ j∈σm wi jm j);
• If wii = 1, then ui =−∑ j∈σm wi jm j.

First suppose wii 6= 1, and considering (4b), by rearranging and
substituting (5), we get

uk ≥mk− ∑
j∈σm

wk jm j−
( wki

1−wii

)(
∑

j∈σm

wi jm j +ui

)
,

must be satisfied for all k ∈ σm in order for x∗ to be an
equilibrium. Similarly, from (4c),

ul ≤− ∑
j∈σm

wl jm j−
( wli

1−wii

)(
∑

j∈σm

wi jm j +ui

)
,

must be satisfied for all l ∈ σ̄ for x∗ to be an equilibrium.
If instead wii = 1, by considering (4b) and noting from (5)
that all x∗i ∈ (0,mi) are possible equilibrium values, we get
that there exists an equilibrium iff uk > mk−∑ j∈σm wk jm j is
satisfied for all k ∈ σm. In the same fashion, from (4c), there
exists an equilibrium iff ul <−∑ j∈σm wl jm j−wlimi holds for
all l ∈ σ̄ . Taking the complement of this set of conditions on
the input provides the conditions on equilibria for the case
|σm̊|= 1 and |σm| ≥ 1 given in the statement.

Theorem 4.1 is noteworthy in that it provides quantitative
conditions for the existence of oscillations in competitive
LTNs. These conditions depend both on the network structure
and the inputs, which has physiological relevance in two
ways. First, the structural conditions, in particular the pairwise
instability of the nodes, show that a small portion can pull
the network into a stable equilibrium rather than exhibiting
oscillatory behavior. This aligns with observations [28] made
of brain injuries, where a small injury can lead to significant
behavioral changes. Second, the requirements on the inputs
show that only the right ones lead to the emergence of
oscillatory behavior for a given network structure. Given that
inputs could come from other brain regions or external sources,
this illustrates that the behavior of a brain network is highly
dependent on its connections with other parts of the nervous
system. Further, the dependence on the input opens the door to
exciting design possibilities related to the robustness (or lack
thereof) of oscillatory behavior: as an example, for a given
input (resp. network structure), one might consider how to
modify the network structure (resp. input) such that oscillatory
behavior is maintained, gained, or lost.
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Fig. 1: Oscillatory behavior of a 7-node competitive network with LTN
dynamics subject to homogeneous inputs u= u17. According to Theorem 4.1,x
oscillations are possible in the input range u∈ (1.3914,1.9742), while outside
it, there exists a stable equilibrium. The panels vary based upon the system
input and illustrate how the behavior changes. In panels with u= 1 and u= 2.5,
the input lies outside of the oscillatory range and the dynamics settles to an
equilibrium. In the other panels, the same three nodes exhibit oscillations
while the remaining ones either settle to zero or saturate (albeit not shown
here, heterogeneous inputs can make different set of nodes oscillate). The
varying input values lead to settling into significantly different limit cycles.

Remark 4.3: (Oscillations in Competitive Networks with
TLN Dynamics): The result in Theorem 4.1 is also applicable
to threshold-linear networks by taking m = ∞1. In this case,
some of the conditions can be discarded right away since



no equilibria exist with components on an upper threshold:
specifically, conditions 3), along with the first component of
the condition 2) can be discarded as they become trivially sat-
isfied. This gives rise to a generalization to arbitrary networks
of [9, Theorem 2.2], which only considers the all-to-all case,
with no self-loops, and positive inputs. •

We believe the assumption in Theorem 4.1 requiring at least
two diagonal elements to be small enough is not necessary. In
simulations, we have found that oscillatory behavior still arises
without enforcing this constraint.

Example 4.4: (Oscillations in a Seven-Node Competitive
network with LTN dynamics): We consider a competitive
LTN dynamics with n = 7 nodes that exhibits oscillatory
behavior, as per the conditions identified in Theorem 4.1,
and illustrate the impact of the inputs on network behavior.
While Theorem 4.1 permits arbitrary inputs, in this example
we consider only homogeneous inputs of the form u = u17.
The synaptic weight matrix W is as follows:

W =



0 −0.349 −0.055 −0.434 −0.745 −0.053 −0.381
−2.907 0 −0.338 0 −0.376 −0.556 −0.558
−18.07 −2.981 0 −0.764 −0.043 −0.823 −0.807
−0.696 −0.03 −0.01 1.435 −0.166 −0.331 −0.179
−1.425 −2.664 −23.347 −0.20 0 −0.353 −0.958
−18.83 −1.866 −1.255 −0.517 −2.887 0 −0.06
−2.643 −1.84 −1.325 −0.138 −1.064 −16.64 0


With such inputs, and according to Theorem 4.1, oscillations

are possible when the network is subject to inputs in the
interval u ∈ (1.3914,1.9742). Figure 1 illustrates the network
behavior with different inputs, three inside the range and two
outside. For those inside, the same three nodes fall into limit
cycles and one node saturates, but the relative values of the
limit cycles vary significantly. For inputs outside the interval,
the dynamics settles to a stable equilibrium. •

V. CONCLUSIONS

We have studied linear-threshold and threshold-linear dy-
namics inspired by firing-rate models of neuron populations
in the brain. We have provided conditions characterizing the
existence of a stable equilibrium supported on an arbitrary
subset of nodes for linear-threshold networks. Using LoSE as
a proxy for the presence of oscillations, we have characterized
the emergence of oscillatory behavior in both linear-threshold
and threshold-linear competitive networks, where all interneu-
ron connections are inhibitory. Specifically, we have provided
conditions on the structure of the network and the inputs
such that the networks do not have stable equilibria. Future
work will further explore the physiological interpretation of the
conditions along with possible additional requirements to be
biologically plausible. We will also study dynamic attractors in
linear-threshold competitive networks, analyze the robustness
of oscillatory behavior to neuron addition and removal and its
connection with neurogenesis in brain networks.
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APPENDIX

Proof of Theorem 3.4: For TLN dynamics, the result
corresponds to [29, Theorem 1.2]. Hence, we focus on LTN
dynamics. First suppose that (−I+W)σm̊ is stable. Let x∗σ
be the vector with support σ such that x∗σm = mσm and
x∗σm̊

= αmσm̊ , where α ∈ (0,1) is arbitrary. Define uσm̊ =
α(I−W)σm̊mσm̊ . Choose uσ̄ such that uσ̄ < −Wσ̄σ x∗σ and
uσm such that uσm >−Wσmσ x∗σ +mσm . With this choice of u,
the vector x∗σ satisfies (I−W)σ x∗σ = uσ and is therefore an
equilibrium. We next prove it is stable.

To do so, consider the following change of variables. Define
(q,y,z) = x−x∗, with q = (x−x∗)σ̄ ∈R|σ̄ |, y = (x−x∗)σm ∈
R|σm| and z = (x− x∗)σm̊ ∈ R|σm̊|. These variables represent
the components of the dynamics corresponding to where the
equilibrium is equal to 0, are on the boundary m, and are in
the interior of [0,m], resp. This change of variables shifts the
equilibrium x∗ to the origin, and the system becomes

q̇ =−q+[Wσ̄ q+Wσ̄σm y+Wσ̄σm̊ z+(Wσ̄σ x∗σ +uσ̄ )]
mσ̄

0
(6a)

ẏ =−(y+mσm)+ [Wσmσ̄ q+Wσmy+Wσmσm̊z
+(Wσmσ x∗σ +uσm)]

mσm
0 (6b)

ż =−(z+x∗σm̊
)+ [Wσm̊σ̄ q+Wσm̊σm y+Wσm̊ z

+(Wσm̊σ x∗σ +uσm̊)]
mσm̊
0 . (6c)

Note that with our choice of u above, the constant terms sat-
isfy Wσ̄σ x∗σ +uσ̄ < 0, Wσmx∗σm +uσm > mσm and Wσm̊ x∗σm̊

+
uσm̊ ∈ (0,mσm̊). It follows that in a neighborhood of the origin,
the sign of the threshold terms are determined solely by the
sign of the constant term. The behavior of the system (6) is
determined by the linear system d

dt [q,y,z] =W[q,y,z]> where
W takes the form (3), and in particular is lower triangular
with diagonal elements −Iσ̄ ,−Iσm and (−I + W)σm̊ . Then,
since (−I+W)σm̊ is stable, the equilibrium point is stable,
and therefore the subset of nodes σ is non-trivially stable.

Now, suppose that (−I+W)σm̊ is not stable. We reason
by contradiction. Assume σ = (σm,σm̊) is a non-trivially
stable node set. This means that there exists an input u such
that x∗ is a stable equilibrium point with Wσ̄σ x∗σ +uσ̄ ≤ 0,
Wσm x∗σm +uσm ≥mσm and Wσm̊ x∗σm̊

+uσm̊ ∈ (0,mσm̊). Now,
since Wσm̊ x∗σm̊

+ uσm̊ ∈ (0,mσm̊), in a neighborhood of x∗,
the component of the dynamics z acts linearly as ż = −(I+
W)σm̊z+Wσm̊σ̄ q+Wσm̊σmy. Since (−I+W)σm̊ is not stable,
it then follows that x∗ is not a stable equilibrium, providing a
contradiction. This completes the proof.

Conditions 1) and 3) in Theorem 4.1 require checking the
instability of all 2×2 principal submatrices of a given matrix.
Therefore, it is desirable to have a simple condition to check
for instability of a 2×2 matrix. The determinant condition for
instability reads as follows: “given W ∈ R2×2, if Tr(W) ≤ 0,
W is unstable if and only if det(W) < 0; if Tr(W) > 0, then
W is unstable”. The next result details when the determinant
condition for instability holds in competitive networks.

Lemma 1.1: (Requirements for Determinant Condition for
Instability for Competitive Networks): Let W ∈ R2×2 be a
Z-matrix. The determinant condition for instability holds for
−I+W in the following cases:

1) If w11 = w22 = 0 and 1
|w12|

< |w21|;
2) If one or both of w12,w21 = 0, then either w11 or w22 > 1;
3) If neither of the preceding cases hold and Tr(−I+W)≤

0, then (−1+w11)(−1+w22)−w12w21 ≤ 0.
The proof follows directly from the equation for the deter-

minant of a 2×2-matrix. The next result is useful later in our
proof of Lemma 4.2.

Lemma 1.2: Let W ∈ Rn×n be a stable Z-matrix with two
or more negative diagonal elements wi1i1 < wi2i2 < 0 such that
2|wikik | > ρ(W) for k ∈ {1,2}. Then W has a stable 2× 2
principal submatrix.

Proof: As W is a Z-matrix, we can write it as W =
αI−P, where α = maxi{wii} and P is a non-negative matrix.
Since W is a stable Z-matrix, ρ(P)>α and ρ(W)= ρ(P)−α .

Without loss of generality, assume that the two smallest
diagonal elements are w11 < w22 < 0. We then claim the
submatrix W12 is stable. We can write this matrix to be

W12 =

[
w11 −w̄12
−w̄21 w22

]
= αI−P12,

where w̄12, w̄21 ≥ 0. Since P is a non-negative matrix, and P12
is a principal submatrix, we have ρ(P12)< ρ(P) [30, Corollary
8.1.20] and therefore ρ(W) > ρ(W12). On the other hand,
note that since W12 is a Z-matrix, for γ ≥ ρ(W12), we have
W12 + γI is a M-matrix. Since 2|w22| > ρ(W12), the matrix
B12 = W12 + γI with γ = 2|w22|, given as follows,

B12 =

[
w11 +2|w22| −w̄12
−w̄21 |w22|

]
,

is a M-matrix. Since w11 < w22, it follows that |w11|> w11 +
2|w22|. Therefore the matrix B̃12 defined by

B̃12 =

[
|w11| −w̄12
−w̄21 |w22|

]
,

satisfies B̃12 ≥ B12 and, by [31, Theorem 4.6], is a M-matrix.
Then since B̃12 ≥W12 and the diagonal elements of B̃12 are
equal to the absolute value of the diagonal elements of W12,
by [32, Section 2.5, Problem 34b)], the eigenvalues of W12
satisfy λ (W12)<−λmin(B̃12)< 0, proving W12 is stable.

Proof of Lemma 4.2: We recall from Theorem 3.4 that a
subset of nodes σ ⊆ {1, . . . ,N} supports a stable equilibrium
in the interior of the range [0,m] iff the matrix (−I+W)σ is
stable. Since all 2× 2 principal submatrices of −I+W are
unstable, it is immediate that there are no stable equilibria
supported on subsets of nodes σ with |σ |= 2 taking values in
the interior of [0,m]. It remains to be shown that this holds for
all subsets of nodes σ ⊆{1, . . . ,N} with |σ | ≥ 3. We reason by
contradiction. Suppose (−I+W)σ is stable. Then, since there
exist i1, i2 with wikik < 1 and 2|−1+wikik |> ρ(−I+W) for k∈
{1,2}, we can invoke Lemma 1.2 to ensure that −I+W has
exists a stable 2×2 principal submatrix. This contradicts our
assumption that all its 2×2 principal submatrices are unstable,
and therefore (−I+W)σ cannot be stable, implying that σ ,
with |σ | ≥ 3, does not support a stable equilibrium taking
values in the interior of [0,m].


