
Robinson’s Counterexample and Regularity Properties of
Optimization-Based Controllers

Pol Mestresa,∗, Ahmed Allibhoya, Jorge Cortésa

aDepartment of Mechanical and Aerospace Engineering, University of California, San Diego, 9500 Gilman Dr, La
Jolla, CA 92093

Abstract

Robinson’s counterexample shows that, even for relatively well-behaved parametric optimization problems,
the corresponding optimizer might not be locally Lipschitz with respect to the parameter. In this brief
note, we revisit this counterexample here motivated by the use of optimization-based controllers in closed-
loop systems, where the parameter is the system state and the optimization variable is the input to the
system. We show that controllers obtained from optimization problems whose objective and constraints
have the same properties as those in Robinson’s counterexample enjoy regularity properties that guarantee
the existence (and in some cases, uniqueness) of solutions of the corresponding closed-loop system.

Keywords: Parametric optimization, optimization-based control, existence and uniqueness of solutions

1. Robinson’s Counterexample

In [1], Robinson introduces the following para-
metric optimization problem: for x = (x1, x2) ∈
R2, consider

min
u∈R4

1

2
uTu (1a)

s.t. A(x)u ≥ b(x) (1b)

where

A(x) =


0 −1 1 0,
0 1 1 0,
−1 0 1 0,
1 0 1 x1

 , b(x) =


1
1
1

1 + x2

 .

Problem (1) is a quadratic program with strongly
convex objective function, smooth objective func-
tion and constraints, and for which Slater’s con-
dition [2, Section 5.2.3] holds for every value of
the parameter (this can be shown by noting that
û = (0, 0, 2+|x2|, 0) satisfies all constraints strictly).
Despite these nice properties, the parametric solu-
tion of (1) is not locally Lipschitz at (x1, x2) =
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(0, 0). Indeed, let u∗ : R2 → R4 be the parametric
solution of (1) and u∗

4 : R2 → R denote its fourth
component, which is given by

u∗
4(x1, x2) =


0 if x2 ≤ 0,
x2

x1
if x2 ≥ 0, x1 ̸= 0,

x2
1

2 ≥ x2,
x1(x2+1)

x2
1+2

otherwise.

The other components of u∗ are continuously differ-
entiable and therefore locally Lipschitz. However,
if px1

= (x1,
1
2x

2
1) and qx1

= (x1, 0), we have

∥u∗
4(px1)− u∗

4(qx1)∥
∥px1

− qx1
∥

=
1

x1
.

Since x1 can be taken to be arbitrarily small, this
shows that u∗ is not locally Lipschitz at the origin.

2. Parametric Optimization and
Optimization-Based Controllers

The theory of parametric optimization [3, 4, 5]
considers optimization problems that depend on
a parameter and studies the regularity proper-
ties of the minimizers with respect to the pa-
rameter. Parametric optimization problems arise
naturally in systems and control when designing
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optimization-based controllers, which are ubiqui-
tous in numerous areas including safety-critical con-
trol [6], model predictive control [7, 8], and online
feedback optimization [9, 10].

Given a system with state x ∈ Rn, optimization-
based controllers are feedback laws obtained by
solving a problem of the form

argmin
u∈Rm

f(x, u) (2a)

s.t. g(x, u) ≤ 0 (2b)

with f : Rn×Rm → R and g : Rn×Rm → Rp. Note
that the system state x acts as a parameter in (2).
Assuming that the optimizer of (2) is unique for ev-
ery x ∈ Rn, this defines a function u∗ : Rn → Rm,
mapping each state to the optimizer of (2). The
flexibility of this approach allows to encode desir-
able goals for controller synthesis both in the cost
function f (e.g., minimum control effort) and in the
constraints g (e.g., prescribed decrease of a control
Lyapunov function [11] or forward invariance of a
set through a control barrier function [6]). Once
synthesized, the controller u∗ can be used to close
the loop on the control system ẋ = F (x, u) (here,
F : Rn ×Rm → Rn is locally Lipschitz). Given the
definition (2), the theory of parametric optimiza-
tion can be brought to bear to characterize the reg-
ularity properties of u∗. These properties can then
be used to certify existence and uniqueness of solu-
tions of the closed-loop system

ẋ = F (x, u∗(x)). (3)

For instance, if u∗ is locally Lipschitz, then the
right-hand side of (3) is locally Lipschitz too, and
then the Picard-Lindelöf theorem [12, Theorem 2.2]
guarantees existence and uniqueness of solutions.
It is in this context that Robinson’s counterex-
ample is problematic, because it shows that, even
for optimization problems defined by well-behaved
data (including the widespread quadratic programs
employed in the design of safe [6] and stabiliz-
ing [11] controllers), the resulting controller might
not be locally Lipschitz. This has motivated the
study [13, 14, 15] of additional conditions (which
we make precise later) on the data of the optimiza-
tion problem that guarantee local Lipschitzness and
even stronger regularity properties of optimization-
based controllers.

3. Paper Contributions

The note seeks to characterize the regularity
properties enjoyed by the parametric optimizer of
problems defined by objective and constraints with
the same assumptions as in Robinson’s counterex-
ample. This is important as confusion may arise in
the literature due to the loose use of terminology.
Indeed, according to [4, Theorem 6.4], a paramet-
ric optimization problem whose data satisfies the
properties of Robinson’s counterexample has a lo-
cally Lipschitz minimizer! This apparent contradic-
tion is rooted in different notions of Lipschitzness,
which this note clarifies precisely. We show that,
under the conditions of Robinson’s counterexam-
ple, even though the parametric optimizer is not
necessarily locally Lipschitz, it enjoys other desir-
able regularity properties. Moreover, we also show
that under these regularity properties, the existence
(and in some cases, uniqueness) of solutions of the
closed-loop system obtained with the correspond-
ing optimization-based controller are guaranteed.
Finally, we conclude with an example that shows
that, in general, these conditions are not enough to
guarantee uniqueness of solutions of the closed-loop
system, and stronger conditions are required.

4. Notions of Regularity of Functions

Throughout the note, we make use of the follow-
ing notions of regularity of functions.

Definition 1. (Notions of Lipschitznes): A func-
tion f : Rn → Rq is

• point-Lipschitz at x0 ∈ Rn if there exists a
neighborhood U of x0 and a constant L > 0
such that

∥f(x)− f(x0)∥ ≤ L∥x− x0∥, ∀x ∈ U . (4)

• locally Lipschitz at x0 ∈ Rn if there exists a
neighborhood Ũ of x0 and a constant L̃ such
that

∥f(x)− f(y)∥ ≤ L̃∥x− y∥, ∀x, y ∈ Ũ . (5)

The notion of point-Lipschitzness is used, for in-
stance, in [4, Section 6.3] and called Lipschitz sta-
bility, without clearly acknowledging the difference
with the notion of locally Lipschitzness. Study-
ing point-Lipschitzness is natural in the context of
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parametric optimization, as one is normally inter-
ested in understanding the changes in the solution
with respect to a fixed value of the parameter. Lo-
cally Lipschitz functions are point-Lipschitz, but
the converse is not true. For instance, the function
f : R → R defined by f(x) = x sin( 1x ) is point-
Lipschitz but not locally Lipschitz at the origin.
Moreover, point-Lipschitz functions are continuous.

Definition 2. (Hölder property): A function f :
Rn → Rq has the Hölder property at x0 ∈ Rn if
there exists a neighborhood Û of x0 and constants
C > 0, α ∈ (0, 1] such that

∥f(x)− f(y)∥ ≤ C∥x− y∥α, ∀x, y ∈ Û . (6)

Note that if f is locally Lipschitz at x0 then it
also has the Hölder property at x0 but the converse
is not true.

Definition 3. (Directionally differentiable func-
tion): A function f : Rn → R is directionally dif-
ferentiable if for any vector v ∈ Rn, the limit

lim
h→0

f(x+ hv)− f(x)

h

exists. A vector-valued function is directionally dif-
ferentiable if each of its components is directionally
differentiable.

5. Regularity Properties of Parametric Op-
timizers under Assumptions of Robin-
son’s Counterexample

We consider parametric optimization problems
whose objective and constraints satisfy the same
conditions as in Robinson’s counterexample. The
following result characterizes the regularity proper-
ties of the corresponding parametric optimizers.

Proposition 4. (Regularity Properties of Para-
metric Optimizer): Suppose that f and g are twice
continuously differentiable in Rn×Rm. Further as-
sume that given x0 ∈ Rn, f(·, x0) is strongly convex,
g(·, x0) is convex and there exists û ∈ Rm such that
g(û, x0) < 0. Then,

(i) There exists a neighborhood Vx0
of x0 such that

u∗ is point-Lipschitz at y for all y ∈ Ṽx0
;

(ii) u∗ has the Hölder property at x0;

(iii) u∗ is directionally differentiable at x0.

Proof. First we note that since f(·, x0) is strongly
convex and g(·, x0) is convex for all x0, u∗(x0)
is unique and well-defined for all x0 ∈ Rn. To
prove (i) we use [4, Theorem 6.4]. The fact that
there exists û ∈ Rm such that g(û, x0) < 0 im-
plies that Slater’s Condition (SC) holds. Hence,
by [16, Prop. 5.39], since g(·, x0) is convex,
the Mangasarian-Fromovitz Constraint Qualifica-
tion (MFCQ) holds at (x0, u

∗(x0)). Furthermore,
since f(·, x0) is strongly convex and g(·, x0) is con-
vex, the second-order condition SOC2 [4, Definition
6.1] holds. All of this, together with the twice con-
tinuous differentiability of f and g imply, by [4,
Theorem 6.4], that u∗ is point-Lipschitz at x0.
Now, since g is continuous, there exists a neigh-
borhood Vx0

of x0 such that g(û, y) < 0 for all
y ∈ Vx0 . By repeating the same argument, u∗ is
point-Lipschitz at y for all y ∈ Vx0 . Now let us
prove (ii). We use [17, Theorem 2.1], which gives
a sufficient condition for the solution of a varia-
tional inequality to have the Hölder property. We
first note that a constrained optimization problem
of the form (2) can be posed as a variational in-
equality (cf. [18]). Since f is twice continuously
differentiable and strongly convex, conditions (2.1)
and (2.2) in [17, Theorem 2.1] hold. Moreover, since
MFCQ holds at (x0, u

∗(x0)) (because SC holds),
by [19, Remark 3.6] the constraint set is pseudo-
Lipschitzian [17, Definition 1.1]. All of this implies
by [17, Theorem 2.1] that u∗ has the Hölder prop-
erty at x0. Finally, (iii) follows from the fact that
SC implies MFCQ and [20, Theorem 1].

In Proposition 4, note that neither (i) implies (ii)
nor the converse. Even though the parametric op-
timizer in Robinson’s counterexample is not locally
Lipschitz, Proposition 4 shows that it enjoys other,
slightly weaker, regularity properties. In particular,
this result implies that u∗

4, the fourth component of
the parametric optimizer of Robinson’s counterex-
ample, is continuous, cf. Figure 1.

6. Existence and Uniqueness of Solutions
under Optimization-Based Controllers

Here, we leverage the regularity properties estab-
lished in Section 5 to study existence and unique-
ness of solutions for the closed-loop system under
the optimization-based controller. The following re-
sult establishes existence of solutions.

Proposition 5. (Existence of solutions for the
closed-loop system): Suppose that f and g are twice
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Figure 1: Numerical depiction of the fourth component of the
parametric optimizer of Robinson’s counterexample, cf. (1).
The plot shows that it is continuous at the origin, in agree-
ment with Proposition 4.

continuously differentiable in Rn×Rm. Further as-
sume that given x0 ∈ Rn, f(·, x0) is strongly convex,
g(·, x0) is convex and there exists û ∈ Rm such that
g(û, x0) < 0. Let F : Rn × Rm → Rn be locally
Lipschitz. Then, the differential equation

ẋ = F (x, u∗(x))

with initial condition x(0) = x0 has at least one
solution x : (−δ, δ) → Rn for some δ > 0.

Proof. By Proposition 4, u∗ has the Hölder prop-
erty at x0 and there exists a neighborhood Vx0

of x0

such that u∗ is point-Lipschitz at y for all y ∈ Vx0
.

Both of these properties imply that u∗ is continu-
ous in a neighborhood of x0. The result follows by
Peano’s existence theorem [21, Theorem 2.1].

Next, we study uniqueness of solutions. The
question we address is whether the assumptions of
Proposition 5 are sufficient to ensure this property.
We first note that the Hölder property does not
imply uniqueness, even in simple one-dimensional
examples. As an example, the differential equation
ẋ = x1/3 has the Hölder property at 0 but infinitely
many solutions starting from the origin. The next
example shows that, in general, point-Lipschitzness
does not imply uniqueness of solutions either.

Example 6. (Point-Lipschitz differential equation
with non-unique solutions): Let u∗ : R2 → R4 be
the parametric optimizer of Robinson’s counterex-
ample. Consider the dynamical system

ẋ1 =
1

2
, (7a)

ẋ2 = u∗
4(x1, x2), (7b)

with initial condition (x1(0), x2(0)) = (0, 0). Note
that, by Proposition 4, the vector field in (7) is
point-Lipschitz at the origin. Finally, note that (7)
admits the following two solutions starting from the
origin: y1(t) := ( 12 t, 0) and y2(t) := ( 12 t,

1
8 t

2), cf.
Figure 2. •

Figure 2: The blue arrows depict the vector field (7). The
dashed red and green curves depict the two solutions y1 and
y2 starting from the origin, where the vector field is point-
Lipschitz but not locally Lipschitz.

Interestingly, the next result shows that point-
Lipschitzness guarantees uniqueness of solutions
starting from equilibria.

Proposition 7. (Point-Lipschitzness and Unique-
ness): Let F̃ : Rn → Rn be point-Lipschitz at
x0 ∈ Rn and F (x0) = 0n. Then, there exists δ > 0
such that the differential equation ẋ = F̃ (x) with
initial condition x(0) = x0 has only one solution,
equal to x(t) = x0 for t ∈ [0, δ).

Proof. Let L be the point-Lipschitzness constant
of F̃ and take δ < 1

L . Suppose that there exists
another solution y : [0, δ) → Rn starting from x0.
Then, supt∈[0,δ)∥y(t)− x0∥ > 0. Moreover,

sup
t∈[0,δ)

∥y(t)− x0∥ = sup
t∈[0,δ)

∥
∫ t

0

F̃ (y(s))ds∥ =

sup
t∈[0,δ)

∥
∫ t

0

(
F̃ (y(s))− F̃ (x0)

)
ds∥ ≤

sup
t∈[0,δ)

∫ t

0

L∥y(s)− x0∥ds ≤ Lδ sup
t∈[0,δ)

sup
s∈[0,t]

∥y(s)− x0∥

= Lδ sup
t∈[0,δ]

∥y(t)− x0∥ < sup
t∈[0,δ]

∥y(t)− x0∥
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where in the last inequality we have used the fact
that sup

[0,δ)

∥y(t)− x0∥ > 0. We hence reach a contra-

diction, which means that the constant solution is
the only solution for t ∈ [0, δ).

This result implies that in one dimension point-
Lipschitz ODEs have unique solutions.

Corollary 8. (Point-Lipschitzness implies unique-
ness in one dimension): Let F̃ : R → R be continu-
ous in a neighborhood of x0 and point-Lipschitz at
x0. Then, the differential equation ẋ = F̃ (x) with
initial condition x(0) = x0 has a unique solution.

Proof. If F̃ (x0) ̸= 0, by [22, Theorem 1.2.7], the dif-
ferential equation has only one solution. If F̃ (x0) =
0, the result follows from Proposition 7.

Since in general the assumptions of Proposition 5
are not sufficient to ensure uniqueness of solutions
of the closed-loop system, additional assumptions
must be made. Indeed, this has been explored in
the literature [14] of optimization-based controllers.
Under the additional assumption of constant-rank
constraint qualification, the parametric solution u∗

is locally Lipschitz [23, Theorem 3.6] and the closed-
loop system has a unique solution. A similar result
holds under the slightly stronger assumption that
the gradients of the active constraints are linearly
independent [5, Theorem 4.1]. Moreover, under the
additional strict complementary slackness assump-
tion, [24, Theorem 2.1] shows that u∗ is continu-
ously differentiable and, therefore, the closed-loop
system also has unique solutions. This last point
was already noted in [14, Theorem 1].

7. Conclusions

This note has sought to clarify the regularity
properties enjoyed by parametric optimizers aris-
ing from optimization problems whose data satisfies
the same hypotheses as Robinson’s counterexample.
We have shown that, even though the parametric
optimizer in Robinson’s counterexample is not lo-
cally Lispchitz, it enjoys other important regular-
ity properties, like point-Lipschitzness. These are
enough to guarantee existence of solutions of dy-
namical systems driven by optimization-based con-
trollers but, in general, not uniqueness (for which
otherwise stronger constraint qualifications must be
satisfied), as we have illustrated with an example.
We have identified cases where point-Lipschitzness

is enough to guarantee uniqueness of solutions. The
results presented in this note open the possibil-
ity of studying weaker conditions on the optimiza-
tion problem that guarantee existence of solutions
of the closed-loop system, possibly also using no-
tions of solutions for discontinuous systems, like
Carathéodory or Krasovskii solutions.
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