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Abstract

This paper studies the problem of safe stabilization of control-affine systems under uncertainty. Our starting point is the
availability of worst-case or probabilistic error descriptions for the dynamics, a control barrier function (CBF) and a control
Lyapunov function (CLF). These descriptions give rise to second-order cone constraints (SOCCs) whose simultaneous satisfac-
tion guarantees safe stabilization. We study the feasibility of such SOCCs and the regularity properties of various controllers

satisfying them.
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1 Introduction

The last years have seen a dramatic increase in the de-
ployment of robotic systems in diverse areas like home
automation and autonomous driving. In these applica-
tions, it is critical that robots satisfy simultaneously
safety and performance specifications in the presence of
model uncertainty. Controllers that achieve these goals
are usually defined using tools from stability analysis and
Lyapunov theory. However, this raises several challenges.
Among them, we highlight understanding the level of
uncertainty about the model that can be tolerated while
still being able to meet safety and stability requirements,
the characterization of the regularity properties of the
controller, and the identification of suitable conditions to
ensure them in order to be implementable in real-world
scenarios.

Literature Review: Control Lyapunov functions (CLFs) [Art-

stein, 1983] are a well-established tool for designing
stabilizing controllers for nonlinear systems. More re-
cently, control barrier functions (CBFs) [Ames et al.,
2019, Wieland and Allgéwer, 2007] have been intro-
duced as a tool to render a certain predefined set safe.
If the system is control affine, the CLF and CBF con-
ditions can be incorporated in a quadratic program
(QP) [Ames et al., 2017] that can be efficiently solved
online. works [Cortez and Dimarogonas, 2021, Mestres
and Cortés, 2023, Ong and Cortés, 2019, Reis et al.,
2021] study the feasibility of such CLF-CBF QP, as
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well as different explicit control designs based on it.
However, this design assumes complete knowledge of
the dynamics and safe set. Several recent papers have
proposed alternative formulations of the CLF-CBF QP
for systems with uncertainty or learned dynamics. For a
particular class of uncertainties, Jankovic [2018] shows
that the robust control design problem can still be posed
as a QP. However, imperfect knowledge of the system
dynamics or safety constraints often transforms the
affine-in-the-input inequalities arising from CBFs and
CLFs into second-order cone constraints (SOCCs). The
papers [Castanieda et al., 2021a,b, Li and Sun, 2023]
leverage Gaussian Processes (GPs) to learn the system
dynamics from data and show that the mean and vari-
ance of the estimated GP can be used to formulate two
SOCCs whose pointwise satisfaction implies safe stabi-
lization of the true system with a prescribed probability.
However, during the control design stage, the SOCC
associated to stability is often relaxed and hence the re-
sulting controller does not have stability guarantees. In
the case where worst-case error bounds for the dynam-
ics and the CBF are known, [Long et al., 2021, 2022]
show how the satisfaction of two SOCCs can yield a
safe stabilizing controller valid for all models consistent
with these error bounds. [Long et al., 2023a] use the
framework of distributionally robust optimization to
formulate a second-order convex program that achieves
safe stabilization for systems with parametric uncer-
tainty with a finite number of samples. Critically, as
opposed to the uncertainty-free case, where conditions
for the simultaneous satisfaction of the CLF and CBF
conditions are available, cf. [Mestres and Cortés, 2023],
these works lack guarantees on the simultaneous feasi-
bility of these SOCCs and the regularity of controllers
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satisfying them. As a result, the proposed controllers
might be undefined in practice, resulting in deadlock
or unsafe, unstable, or discontinuous system behaviors.
The identification of conditions under which feasibility
guarantees hold is precisely the main subject of this pa-
per. Finally, the papers [Castafieda et al., 2022, Dhiman
et al., 2023] utilize online data to improve the estimates
of the dynamics and synthesize (also via SOCCs) less
conservative controllers.

Statement of Contributions: We study the problem of
safe stabilization of control-affine systems under uncer-
tainty. We consider two scenarios for the estimates of the
dynamics and safe set: either worst-case error bounds or
probabilistic descriptions in the form of Gaussian Pro-
cesses (GPs) are available. In both cases, the problem
of designing a safe stabilizing controller can be reduced
to satisfying two SOCCs at every point in the safe set.
Our first contribution consists of giving conditions for
the feasibility of each pair of SOCCs. The first result
is a sufficient condition that requires a bound on the
norm of a safe and stabilizing controller and quantifies
what model errors are tolerable while still being able to
find a controller that guarantees safe stabilization. Our
second result is a sufficient condition that does not re-
quire knowledge of such bound and consists of finding
a root of a scalar nonlinear equation. Our third contri-
bution consists in giving different regularity properties
for controllers satisfying a set of SOCCs. First we show
that if each pair of SOCCs is feasible, then there ex-
ists a smooth safe stabilizing controller. Second, we show
that the minimum-norm controller satisfying each pair of
SOCC:s is point-Lipschitz. Third, we provide a universal
formula for satisfying a single SOCC and hence achiev-
ing either safety or stability. We illustrate our results in
the safe stabilization of a planar system.

2 Preliminaries

This section presents preliminaries on control Lyapunov
and barrier functions, and safe stabilization using worst-
case and probabilistic estimates of the dynamics.

2.1 Notation

We use the following notation. We denote by Z~ o, R, and
R>¢ the set of positive integers, real, and nonnegative
real numbers, resp. We denote by 0,, the n-dimensional
zero vector, and by I, the m x m identity matrix. We
write int(S) and OS for the interior and the boundary
of the set S, resp. Given & € R"™, ||z|| denotes the Eu-
clidean norm of . Given f : R™ — R" g : R® — R"*™
and a smooth function W : R" = R, LyW : R* — R
(resp. LyW : R™ — R™) denotes the Lie derivative of
W with respect to f (resp. g), that is L;W = VWT f
(resp. VWTg). We use GP(u(x), K(x,2')) to denote a
Gaussian Process distribution with mean function p(x)
and covariance function K (z,z’). We denote by C!(A)
the set of [-times continuously differentiable functions
on an open set A C R". A function 8 : R>¢g — R is of

class KC if 8(0) = 0 and S is strictly increasing. If more-
over lim;_,o B(t) = oo, then 8 is of class K. A func-
tion V' : R™ — R is positive definite if V' (0) = 0 and
V(z) > 0 for all z # 0. V is proper in a set I if the set
{r € T : V(x) < ¢} is compact for any ¢ > 0. A set
C C R” is forward invariant under the dynamical sys-
tem & = f(z) if any trajectory with initial condition in
C at time ¢t = 0 remains in C for all positive times. A
set C is safe for & = f(x,u) if there exists a locally Lip-
schitz control k£ : R™ — R™ such that C is forward in-
variant for & = f(z,k(x)). Given m x n matrix A and
two integers 7, j such that 1 <14 < j < n, A;; denotes
the m x (j — 4 + 1) matrix obtained by selecting the
columus from ¢ to j of A, and oymax(A) denotes the max-
imum singular value of A. The image of A is defined as
Im(A) ={y e R™ : F2 € R" s.t. y = Az}. We denote
by B.(p) = {y € R" : |ly — p|| < r}. Given A € R?*",
be R ceR" de R, the inequality | Az +b|| < Tz +d
is a second-order cone constraint (SOCC) in the variable
x € R™. A function f : R” — R is point-Lipschitz at a
point xg € R™ if there exists a neighborhood V of 2y and
a constant L > 0 such that || f(x) — f(zo)| < L||x — xo||
for all x € V.

2.2 Control Lyapunov and Barrier Functions

Consider the control-affine system
i = f(2) + g(0)u, (1)

where f : R™ — R"™ and g : R® — R™ ™ are locally
Lipschitz functions, with x € R™ the state and u € R™
the input. We assume without loss of generality that
f (On) =0y

Definition 2.1 (Control Lyapunov Function [Sontag,
1998]): Given a set ' C R™, with 0,, € T, a continu-
ously differentiable function V : R™ — R is a CLF on T’
for the system (1) if it is proper in T, positive definite,
and there exists a continuous positive definite function
W : R™ — R such that, for each x € T\{0,}, there exists
a control u € R™ satisfying

LiV(z)+ LV (x)u < =W (x). (2)

A Lipschitz controller k£ : R™ — R™ such that u = k(x)
satisfies (2) for all z € T'\{0,} makes the origin of the
closed-loop system asymptotically stable [Sontag, 1998].
Hence, CLFs enable to guarantee asymptotic stability.

Definition 2.2 (Robust Control Barrier Function [Jankovic,

2018, Definition 6]): Let C C R™ and h : R™ — R be a
continuously differentiable function such that

C={reR": h(z) >0}, (3a)
0C ={x €eR" : h(z) =0}

Givenn > 0, h is an n-robust CBF if there exists a class
K« function a such that for allz € C, there existsu € R™



with

Lih(z) + Loh(z)u+ a(h(x)) > n. (4)

When 1 = 0, this definition reduces to the notion of
CBF [Ames et al., 2019, Definition 2], and the inequality
reduces to

Lyh(z) + Lgh(z)u+ a(h(z)) > 0. (5)

Note that all robust CBFs are CBFs. A Lipschitz con-
troller k : R™ — R™ such that u = k(x) satisfies (5) for
all z € C makes C forward invariant [Ames et al., 2019,
Theorem 2]. Hence, CBFs enable to guarantee safety.

Remark 2.3 ( Alternative CLF and CBF conditions ):
Without loss of generality, if V' is a CLF on an open set
I', we can assume that there exists a positive definite
function S such that, for all x € T, there is u € R™ with

LiV(z)+ LyV(zx)u+W(z) < —S(x). (6)

This is because if (2) holds, we can always define
W(z) = 3W(x) and let W play the role of W in (6)
and take S(z) := 1W (). Similarly, if h is an n-robust
CBF, then there exists a class K, function ¢ such that
for all x € C, there is u € R™ with

Lgh(x) + Lgh(z)u+ a(h(z)) = n+((h(z)). o (7)

2.8 Robust and Probabilistic Safe Stabilization

We are interested in the design of controllers that ensure
stability and safety in the presence of uncertainty. We
assume that the maps f, g in (1) and the CBF h and its
gradient Vh are unknown. We also assume that a CLF V
for the true system is unknown. Instead,/e\stimates oiji,
g, h, Vh, V, and VV (denoted f, g, h, Vh, V, and VV
resp.) are available.

Remark 2.4 (Lyapunov function search under uncer-
tainty): We assume that f, g and h are only approxi-
mately known because, in practice, the dynamic model
and safety constraints are often obtained using noisy
sensor data and simplified models, which leads to es-
timation errors. The construction of CLFs for these
approximations in turn leads to approximations of the
CLF for the true system. However, there are techniques
to find CLFs for uncertain systems including sum-of-
squares [Ahmadi and Majumdar, 2016], which is lim-
ited to polynomial systems but provides known error
bounds, [Taylor et al., 2019], which describes a method
that only requires knowledge of the degree of actuation,
and [Long et al., 2023b], which uses ideas from distri-
butionally robust optimization. All these works seek to
find a CLF that is valid for all systems compatible with
the given uncertainty. In our treatment, we only require

V and ﬁ/ to be within some error bounds of a true

CLF and its gradient, respectively, but if a true CLF
is known (by using for instance the techniques in the
given references), these error bounds can be taken as
identically zero. °

We consider two types of models for the errors between
the estimates and the true quantities. First, for x € R",
consider worst-case error bounds as follows:

1f (@) = f(@)]| < ef(@), llg(x ) —9(@)] < eg(2),
|h(z) = h(z)] < en(@), [Vh(z) = VA(@)| < evn(z),
V(z) = V(2)| < ev (@), [IVV(2) = VV(2)] < evv(2).

Since the exact dynamics, the CBF and CLF are un-

known, one can not certify the inequalities (2) and (5)
directly. Instead, using the error bounds above, define

av (2) = evv (w)eg(2) + evv (@) ]|9(2)]] + |9V (@)lleg (@),

b(w) = Vh(z)T§(x), B
cn(z) = —€Vh/(\17)ef z) — evn(@)| f(@)] = [Vh(z)es (@)
+ Vh(2)" f(z) + a(h(z) — en()).

According to [Long et al., 2022, Proposition V.I], if the
two (state-dependent) SOCCs (in u):

ay (z)[[u] < by (z)u+cv(2), (8a)
an(z)|[ull < bp(x)u + cn(x), (8b)

are satisfied for all z € C, then (2) and (5) hold for all
x € C. This result provides a way of designing controllers
that simultaneously satisfy (2) and (5).

Second, suppose that GP estimates are available for the
following quantities [Castaneda et al., 2021a]:

Ay (z,u)

— LV (@) + LyV(2)u — YV (2)" (f( )+ (@),
Ap(z,u) Tf

= Lh(@) + Lyh(z)u + a(h(z)) = Vh(z)" f(2)
— Vh(@)"§(x)u — alh(z)).

We further assume that if A is the Reproducing Ker-
nel Hilbert Space (RKHS, [Srinivas et al., 2010, Section
2.1]) with respect to which the GP estimates of Ay and
Ap, have been derived, then Ay and Aj have bounded
RKHS norm with respect to H. Let puy (x, u) and 3, (x, u)
denote the mean and variance, resp., of the GP predic-
tion of Ay, which we assume affine and quadratic in wu,
resp. Therefore, there exist vy (z) : R* — R™*! and
Gy (z) € RUmHDx(m+1) guch that

v () = ()T H . svl(@w) = |Gy () H .



For the GP prediction of Ay, let y,(z), and Gp(z) be
defined analogously. Since the exact dynamics, the CBF
and CLF are unknown, one cannot certify the inequal-
ities (2) and (5). However, for § € (0, 1), and using the
GP predictions, define

Qv (z) = B(8)Gv,z:(m 1) (x) € ROFD=™,

ry(z) = B(8)Gy(x) € R

by (z) = —VV( ) () — 7V2(m+1)( z) € RV™,
ev(z) = —VV(2)" f(z) - W(z) — () €R,

and similarly Qp, rp, by and ¢, (the exact form of 3(9)
is given in [Castaneda et al., 2021b, Theorem 2]). Then,
according to [Castaneda et al., 2021a, Section IV], if the
two SOCCs

1Qv (2)u+ry (@) <bv(z)u+tcv(z), (%)
1@n (@) + ()] < bn2)u+ cn(2), (9b)

are satisfied for all € C, then (2) and (5) each hold for
all z € C with probability at least 1 — 4.

Remark 2.5 (General form of SOCCs): By taking

Qv (z) = av () (f}%) , TV (2) = Oy

in (9a), we obtain (8a). Hence, in the following, we derive
the results for SOCCs of the most general form (9). e

3 Problem Statement

We consider a control-affine system of the form (1) and a
safe set C of the form (3) with f, g, h, and VA unknown.
We assume that h is a CBF of C and %(:p) # 0 for all
x € OC. By [Ames et al., 2019, Theorem 2], this implies
that C is safe. However, since the true h is unknown, a safe
controller is not readily computable. We further assume
that V is an unknown CLF on an open set containing the
origin. We suppose that either worst-case or probabilistic
descriptions of the dynamics, the CBF and the CLF are
available, as described in Section 2.3.

Given this setup, our goals are to (i ) derive conditions
that ensure the feasibility of the pair of robust stabil-
ity (8a) and safety-(8b) (resp., probabilistic stability (9a)
and safety (9b)) inequalities and, building on this, (ii) de-
sign controllers that jointly satisfy the inequalities point-
wise in C and characterize their regularity properties.
The latter is motivated by both theoretical (guarantee
the existence and uniqueness of solutions to the closed-
loop system) and practical (ease of implementation of
feedback control on digital platforms and avoidance of
chattering behavior) considerations.

4 Compatibility of Pairs of Second-Order Cone
Constraints

In this section, we derive sufficient conditions that guar-
antee the feasibility of the pairs of inequalities in (8) and
in (9), resp. The next definition extends the notion of
compatibility given in [Mestres and Cortés, 2023, Defi-
nition 3] to any set of inequalities.

Definition 4.1 (Compatibility of a set of inequalities):
Given functions q¢; : R" x R™ — R fori € {1,...,p},
the inequalities q;(xz,u) < 0,4 € {1,...,p} are (strictly)
compatible at a point x € R™ if there exists a correspond-
ingu € R™ satisfying all inequalities (strictly). The same
inequalities are (strictly) compatible on a set G if they are
(strictly) compatible at every x € G.

As the estimation errors (resp. the variances) approach
zero, the inequalities in (8) (resp. (9)) approach (2)
and (5). If (6) and (7) are compatible, the next result
provides explicit bounds for the estimation errors such
that (8a)-(8b) and (9a)-(9b) are strictly compatible.

Proposition 4.2 ( Sufficient condition for compatibil-
ity given upper bound on the norm of a safe stabilizing
controller ): Let h be an n-robust CBF. Let C be a set con-

taining C such that (6) and (7) are compatible on C. Let
B :R™ — R be an upper bound on the norm of a control
satisfying both inequalities. Suppose o in (7) is Lipschitz
with constant K. Let x € C.

(i) If
IV (@) er(2) + g B(@)) + exv (@) (I1F@)]1+
es@) + (J9)] + eg(@)B@)) < 5S(), (10a)

(evn(@) + [[VR(x)[)(ef () + eg () B(x)) + Kaen(x)
+evn(@) (1 f@)] + 1§(2) | B(z)) < %(77+ C(h(z))),
(10b)

then (8a) and (8b) are strictly compatible in a neigh-
borhood of x;

(ii) If
S(x) .
O'max(GV(x)) < Qﬁ((S) 1 T B2(Z‘)7 (11 )
n+¢(h(x))
T (Gi(2)) < sy (D)

then (9a) and (9b) are strictly compatible in a neigh-
borhood of x with probability at least 1 — 24.

PROOF. (i)) Since the inequalities (10) are strict, there
exists a neighborhood W, of = such that (10) holds for
all points in W,.. The proof follows by applying the def-
inition of ey, eq, en, evh, eyy given in Section 2.3.



(ii)) First note that since the inequalities in (11) are
satisfied at x, there exists a neighborhood W, of x such
that (11) hold for all points in W,.. Note that (9a) can
be equivalently written as

BO)Gv(x) Lj lo < =YV (@)" f(@) = wale) - W(w)

—(VV ()"
and similarly for (9b). Now, note that —V'V ()T (f(z) +
§@)0) — W) — Vogmen @ = ~LeV(@) —

L,V (x)u+Avy(z,u)—yv,1(z) —7‘7,1’2:(771“) (x)u, and sim-
ilarly for the safety constraint. Define then the events

Ev ={lwy)" Lt — Ay (y,u)| < Bsv(y,u),

1
Vy € Wy, u € R™} and &, = {|yn(y)T l 1 —Ap(y,u)| <
u

B(O)sn(y,u),Vy € Wy,u € R™}. By [Srinivas et al.,
2010, Theorem 6], P(§y) > 1 —§ and P(&,) > 1 — 6.
Therefore, P(Ey NEL) =P(Ey) + P(E) —P(Ey UEL) >
1—26. Hence if for all y € W, we can find u € R™
satisfying

Lgh(y) + Loh(y)u + a(h(y)) = 26(8)sn(y, u), (12a)
—LV(y) = LV (y)u = W(y) = 25(8)sv (y,u), (12b)

then (9a), (9b) are compatible at W, with probability
at least 1 — 26. Let u*(x) be a control satisfying (6)-
(7) with ||u*(z)|]] < B(z). Let us show that u*(y)
satisfies (12) for all y € W,. By using the character-
ization of the matrix norm induced by the Euclidean
norm in [Horn and Johnson, 2012, Example 5.6.6], we

et |G
get G (y) L ”

similarly for the safety constraint. Using now (11), we
deduce that u*(y) satisfies (12) for ally € W,.. B

12 < Omax(Gv (y))y/1 + B%(y) and

Remark 4.3 (Tightness of conditions for SOCC com-
patibility): The assumption that h is an n-robust CBF
makes it possible for (10b) and (11b) to be satisfied
at OC. If the estimation errors (resp the variances s?,
s7) are zero, then (10) (resp. (11)) is trivially satisfied.
Larger values of § (x) and ¢(h(zx)), and smaller values of
B(z), lead to conditions that are easier to satisty. Closer
to the origin, S(z) becomes smaller, thus making (10a)
and (11a) harder to satisfy. In fact, (10a) and (11a) can
only be satisfied near the origin if knowledge of VV is
exact near it, cf. Remark 2.4. If ((h(z)) is unknown, a
known lower bound for it (e.g., 0) can be used at the
expense of more conservativeness. o

Remark 4.4 (Computation of upper bound of safe sta-
bilizing controller): One can obtain B in Proposition 4.2
by relying on the expression for a safe stabilizing con-
troller provided in [Mestres and Cortés, 2023], together

Q(x) + 7‘1;72:(m+1) (x))u,

with upper and lower bounds on the norms of f, g, h,
Vh, V,and VV. °

We next provide a sufficient condition for the compati-
bility of (9) which does not require knowledge of an up-
per bound on the norm of a safe stabilizing controller. To
do so, we first introduce some useful notation. Given (9),
define A : R — R™*™ B : R — R™ by (note we have
dropped the state-dependency in x for brevity)

AN :

Q(Qva — by bv) + 2M(Q% Qn — by br),
B(\) :=2

(QLry —bley) +2XQEry — bl cn),

and the set Fy := {\ € R : det(A(\)) # 0}. Let A :
Fo — R™*™ and d, ay,, ay : Fo — R be given by

AN = AN
d(X) = b A(N)by, by ANbY, — (b AN)bY)?,
ap(A) = bp (A)A( ) = Cn,
av()\) :b (/\ ( )—CV
Further let
Fri={AeR : det(A(\)) #0, d()\) # 0},
Fyi={AeR : det(A(N) #0, by A(\)DE # 0},
Fsz:={AeR : det(A(\)) #0, b AN)bL # 0},
and define Ao : R — R, {\o; : F; — R}, A\3p :
R — R, {Ns; : F — R}, and u} : F; — R™ for
i €{0,1,2,3} as follows:
0 ifi =0,
N a7tV A BT an(X) = blav (V) ifi =1,
24 0 if i =2,
an(V) i
B ACVET ifi=3,
0 if i =0,
2oy (Fbvan(N) + bray () AN if i =1,
)‘3,1'()‘) = ay () ifi=29
by AT -
0 ifi =3,

uf () = AN A2 (Wb, + Asa(Aby = B(V)).
We are now ready to state the result.

Proposition 4.5 (Sufficient condition for compatibility
without knowledge of upper bound on the norm of a safe
stabilizing controller): Let the functions gy, gv : R™ — R
be given by

gn(w)=u" (QF Qn—bj bn)u+2(rf Qn—bnen)u+|ral|* —ci
gv(u)=u" (QUQv —buby)u+2(rvQv —bvev)u+t|rv|* —cb,
and define the functions {n; : F; — R}?_; by n;(\) =
Agn(ul(N)). Further consider the constraints

—bhu — Cp, S 07

gn(u) <0, —byu—cy <0. (13)



Then, (9) are compatible if there is i € {0,1,2,3} such
that there exists a non-negative root \; € F; of n;
such that Ao ;(A}) > 0, Az;(Af) > 0, gv(uf(A))) <0,
gn(uf(AY)) <0, the constraints in (13) at uf(A}) are sat-
isfied, and the gradients of the active constraints in (13)
are linearly independent.

PROOF. Let
o := min gy (u) (14)
st.gn(u) <0, —bpu—cp <0, —byu—cy <0.

By [Castafieda et al., 2021a], (9) are compatible if and
only if ¢ < 0. The result now follows by applying the
KKT conditions to Problem (14). The condition that
the gradients of the active constraints in (13) are lin-
early independent guarantees that Linear Independence
Constraint Qualification (cf. [Still, 2018, Definition
2.4]) holds at the optimizer of (14). Hence, the op-
timizer of (14) satisfies the KKT conditions of (14),
cf. [Andréasson et al., 2020, Theorem 5.33]. Let then
L(u, A, A2, A3) = gy (u) + Agn(u) + Aa(=bpu — cp) +
As(—byu — ¢y) be the Lagrangian of (14). The sta-
tionarity condition V., L(u, A1, A2, A\3) = 0 implies that
any solution u*, A7, A5, A5 of the KKT conditions with
Al € Fy satisfies

wt = AN (NSBE + A3bY — B(A})).

Now the four different cases in the statement arise by
applying the rest of the KKT conditions depending on
whether the constraints —bpu — ¢, < 0, —byu —cy <0
are active at the optimizer. The case ¢ = 0 corresponds
to both constraints being inactive, the case ¢ = 1 to
both constraints being active, the case ¢ = 2 to only the
constraint —byu—cy < 0 being active, and ¢ = 3 to only
the constraint —bpu — ¢ < 0 being active. B

Remark 4.6 (Applicability of Proposition 4.5): Al-
though the problem of knowing whether a nonlin-
ear equation has any roots is undecidable in general,
cf. [Wang, 1974], if a root satisfying either of the specific
conditions in Proposition 4.5 can be rapidly found, this
result provides a quick test for the compatibility of the
two SOCCs in (9). A simple setting in which this holds
is the following. Recall that n; is a function of x and sup-
pose that a root A} = of 11 has been found at a point z.
Moreover, suppose that the inequalities A2 1 (A% ) > 0,
As1(A%,) > 0, gv(ui(X,)) < 0 and gh(uf(As,)) < 0
are satisfied strictly. Then, under the assumptions of
the Implicit Function Theorem [Spivak, 1995, Theorem
2-12], there exists a neighborhood V of z( such that for
all z € V, there exists a root A} of 1; that is close to
A%, Therefore, we can limit the search of the root to a
neighborhood of A} =~ and we should expect to find a so-
lution satisfying the conditions in Proposition 4.5 fast.
Analogous observations are valid for ¢ € {0, 2, 3}. .

Remark 4.7 (Necessity of Proposition 4.5): Proposi-
tion 4.5 is close to being a necessary and sufficient con-

dition for compatibility. The gap arises from not includ-
ing the cases where \! ¢ F; for i € {0,1,2,3} or where
the gradients of the active constraints in (13) at the op-
timizer of (14) are linearly dependent. In these cases, a
condition that ensures compatibility of the SOCCs can
still be given on the basis of the KKT conditions of (14),
but its statement becomes quite involved and we have
not included it in Proposition 4.5 for simplicity. °

Remark 4.8 (Practical significance of sufficient condi-
tions): Propositions 4.2 and 4.5 are complementary to
each other. Proposition 4.2 requires the knowledge of the
upper bound B, but is computationally cheap. Proposi-
tion 4.5 requires less restrictive assumptions but involves
finding a root of a nonlinear scalar equation, which can
be more computationally expensive. Their practical us-
age is threefold, both in online and offline settings. First,
if they are not met (which does not mean that the cor-
responding pair of SOCCs is not compatible), this can
be taken as an indication that the estimates of the dy-
namics, CLF, and CBF need to be improved. Therefore,
in settings where data is gathered online and the uncer-
tainty models are updated on the fly, Propositions 4.2
and 4.5 pave the way for the design of active learning
strategies that leverage them to decide when more data
needs to be collected. Second, these sufficient conditions
can be used to identify the regions of the state space
where compatibility might fail, and design control strate-
gies that avoid them in order to guarantee recursive fea-
sibility. This is particularly relevant in settings where un-
certainty models are not updated online and plans that
avoid regions of high model uncertainty have to be de-
signed offline. Third, given that in general, state-of-the-
art SOCP solvers provide infeasibility and optimality
certificates with the same time complexity, cf. [Domahidi
et al., 2013, Section A}, our sufficient conditions can be
used before solving the SOCP to save computation time
in the case where the problem is unfeasible. This latter
point is illustrated in more detail in our simulations be-
low, cf. Section 6. °

5 Design and Regularity Analysis of Controllers
Satisfying SOCCs

In this section, we study the existence and regularity
properties of controllers satisfying sets of SOCCs. Our
first result establishes that, if a set of state-dependent
SOCCs are strictly compatible, then there exists a
smooth controller satisfying all of them simultaneously.

Proposition 5.1 (Existence of a smooth controller sat-
isfying a finite number of SOCCs): For ¢ € {1,...,p},
let Q; : R™ — RmFLxm po Rr 5 R™FLp,;
R* — R™,¢; : R* — R be continuous functions
on an open set G C R™. If the p SOCC inequalities
1Q:i(z)u + ri(z)|| < bi(x)u+ ¢, i € {1,...,p}, are
strictly compatible on G, then there exists a C*°(G) func-
tion k : G — R™ such that ||Q;(x)k(z) + ri(z)|| <
bi(x)k(z) 4+ ¢;i(x) foralli € {1,...,p} and allz € G.

This result is an extension of [Ong, 2022, Proposi-



tion 4.2.1] to a finite set of SOCCs. Since SOCCs define
convex sets, the proof follows an identical argument
and we omit it for space reasons. The combination of
Propositions 4.2 and 5.1 guarantees the smooth safe sta-
bilization of (1) under either worst-case or probabilistic
uncertainty.

Corollary 5.2 (Smooth safe stabilization under uncer-
tainty): Let C be a neighborhood of C, h be an 77—T~Obu5t
CBF, and assume (6) and (7) are compatible on C. Let

V be a neighborhood of the origin and V be the smallest
sublevel set of V' containing V.

(i) (Local smooth safe control): Suppose that (10)
(resp. (11)) holds at xg € C\V and (8) (resp. (9)) is
continuous at xo. Then, there exists a neighborhood
Wa, of ®o, a smooth controller ky, : Wy, — R™,
and a time ty, > 0 such that the flow map of
& = f(z) + g(x)ky, (x), denoted by Wi(x), is such
that Wy(zg) € C and LV (Vy(z0)) < 0 for all
t €[0,ty,) (resp. with probability at least 1 — 26 );

(ii) (Global smooth safe stabilization): Let C be open
with C € C C C. If (10) (resp. (11)) holds for all
z € C\V and (8) (resp. (9)) is continuous on C\V,
then there exists a smooth controller k : int(C\V) —
R™ such that all trajectories of & = f(x) + g(x)k(x)
starting at C remain in C and asymptotically con-
verge to V (resp. with probability at least 1 — 26 );

Remark 5.3 (Asymptotic stability): If conditions (10)
and (11) hold for all points in C\{0} (not only for all
points in C\V), then Corollary 5.2(ii) implies that the
origin is asymptotically stable. This can only be the
case if knowledge of VV near the origin is exact, cf. Re-
mark 2.4. °

Note that the set C is unknown and hence checking the
conditions (10) and (11) for all x € C\V may not be
practical. This is the reason why we introduce the set ¢
in Corollary 5.2(ii).

Corollary 5.2 establishes the existence of a smooth safe
stabilizing controller under uncertainty, but does not
provide an explicit closed-form design that can be used
for implementation. In what follows, we provide con-
troller designs that are explicit but have weaker regular-
ity properties. Let

* : 1
u' () = arg min S|lulf?, (15)

st ||Qi(x)u+ ()| < bi(x)u+ ¢i(x), i € {1,...,p}.

Note that this program can be written as a second-order
convex program (SOCP), as shown in [Alizadeh and
Goldfarb, 2003, Section 2.2]. If the constraints in (15)
are either (8) or (9), we refer to (15) as CLF-CBF-SOCP.
The following result establishes different conditions un-
der which u* is point-Lipschitz and locally Lipschitz.

Proposition 5.4 (Lipschitzness of SOCP solution): Let
{Qi,7i, bi,ei Yr_y be twice continuously differentiable at
a point x € R™ and assume the constraints in (15) are
strictly compatible at x. Then u* is point-Lipschitz at x.
Further, fori € {1,...,p}, let

gi(x,u) = [|Qi(x)u + ri(2)|| = bi(z)u — (=),

)

gia(z,u) = " (Qi(2)" Qi(x) — bi(x)bi(x) " )u +ri(2)?
+2(Qi(x) i) — ci()bi(2))Tu — ei(2)?,

giz2(w,u) = =bi(x) u — ¢i(x),

and define

A(z) :=={i € [p] : |Qi(x)u”(z) + ri(x)|| # 0, gi(z)=0},

Ai(z) :={i € [p] : [Qi(x)u”(z) +7ri(z)] =0, gia(z)=0

Az(z) :={i € [p] : [Qi(x)u”(x) +7ri(z)] =0, gi2(z)=0}.

Suppose that the vectors

{Vugi(@,u™(2)) biea@) U{Vugi1 (2, u" () bica, (2)
U{Vugiz(@,u" () }icas ) (16)
are linearly independent. Then, u* is locally Lipschitz
at x.

PROOF. First consider the points x € G where
|Qi(z)u*(x) + ri(x)]| # 0 for all i € [p]. At these points,
the constraints of (15) are twice continuously differen-
tiable in x and w in a neighborhood of the optimizer.
Moreover, since the constraints in (15) are strictly com-
patible, for any e > 0 there exists 47 satisfying them
strictly and such that ||u*(x) — 47| < e. Since none of the
constraints are active at 47, the Mangasarian-Fromovitz
Constraint Qualification (MFCQ) holds at 4. By [Still,
2018, Lemma 6.1] this implies that MFCQ also holds at
u*(x). Furthermore, since the objective function in (15)
is strongly convex and the constraints are convex, the
second-order condition (SOC2) [Still, 2018, Definition
6.1] holds and by [Still, 2018, Theorem 6.4], u* is point-
Lipschitz at x. Next, consider any point z € G where
T, = {i € {L....p} ¢ |Qie)u(x) + ri(@)l| = 0}
is nonempty. Since the constraint ||Q;(z)u + r;(x)] <
bi(x)u + ¢;(x) is not differentiable at those points, we
square the SOCCs in (15) associated to Z, to obtain the
equivalent formulation with twice-continuously differ-
entiable constraints:

Lo
. min L full?. 17
u*(x) = arg min - |ul (17)
st gia(zu) <0, gio(z,u) <0, i€y,

1Qi(x)u +ri(z)|| < bi(z)u+ci(x), 1 €{1,...,p}\ L,
Strict compatibility of the constraints in (15) implies the
strict compatibility of the constraints in (17) and, by
the same argument as before, MFCQ holds at the opti-
mizer. To show that SOC2 also holds for (17), note that
the constraints g; 1(z,u) < 0 for i € Z, cannot be ac-
tive at the optimizer (otherwise, that would imply that



bi(x)u*(x) + ¢;(x) = 0, implying that MFCQ is violated
at the optimizer, reaching a contradiction). Thus, by the
strict complementarity condition, the Lagrange multipli-
ers associated with the constraints g; 1(z,u),i € Z, are
zero and the Hessian of the Lagrangian £ of (17) at the
optimizer takes the form

1€ A(x)

where )\; is the Lagrange multiplier associated with the
constraint g;(xz,u) < 0 for ¢ ¢ Z,. Since ||Q;(z)u*(z) +
ri(z)|| # 0 for the active constraints, their Hessian is
well-defined and is positive semidefinite due to their
convexity, making V2L(u*,{\;}ics,)z positive defi-
nite. Hence, SOC2 holds for (17) at the optimizer and,
by [Still, 2018, Theorem 6.4], u* is point-Lipschitz at z.
Moreover, the assumption that the vectors in (16) are
linearly independent implies that the gradients of the
active constraints are linearly independent. By the same
argument used to show that the SOC2 condition holds,
the strong second-order sufficient condition also holds.
This shows by [Robinson, 1980, Theorem 4.1] that u* is
strongly reqular at x, which by [Robinson, 1980, Corol-
lary 2.1] implies that u* is locally Lipschitz at . B

Note that the reformulation (17) in the proof of Propo-
sition 5.4 by squaring the constraints is done purely for
analysis purposes and does not have to be done in prac-
tice when solving (15).

Remark 5.5 (Not-locally Lipschitz example without
independence of gradients): Robinson [1982] introduces
an example of a parametric quadratic program with
strongly convex objective function, smooth objective
function and constraints, and for which Slater’s condi-
tion holds for all values of the parameter. Moreover, the
parametric optimizer of this problem is shown to be not
locally Lipschitz. Since the parametric QP presented by
Robinson is a particular case of (15), it also provides an
example as to why the extra condition on the set (16)
being linearly independent is necessary in order to guar-
antee local Lipschitzness of u*. Our recent note [Mestres
et al., 2024] explores in detail the regularity properties of
parametric optimization problems satisfying conditions
similar to those of Robinson’s counterexample and shows
that such conditions guarantee point-Lipschitzness of
the optimizer. This property ensures existence (but not
uniqueness) of solutions of the closed-loop system. .

Asa consequence of Propoatlon 5.4, we conclude that if

the estimates f . 0, h Vh V VV and worst-case error
bounds (resp. means and varlanceb) that appear in (8)
(resp. (9)) are twice continuously differentiable and the
conditions (10) (resp. (11)) hold, then the corresponding
CLF-CBF-SOCP controller is point-Lipschitz. We also
note that the condition that the vectors in (16) are lin-
early independent corresponds to the Linear Indepen-
dence Constraint Qualification (LICQ) [Still, 2018, Def-
inition 2.4] for problem (17).

Next we provide a formula, inspired by Sontag’s universal
formula [Sontag, 1989], for a smooth controller satisfying
a single SOCC defined by smooth functions.

Proposition 5.6 (Universal formula for a controller
satisfying one SOCC): Let | € Zso and assume
Q : R™ — RmADxm o Rn—y RMAL p: R™ — R™,
and ¢ : R™ — R are l-continuously differentiable
on an open set G C R™. Suppose that the SOCC
1Q(z)u + r(z)|| < b(x)u+ c(z) is strictly feasible on G

and Q( VI Q(x) is invertible for all x € G. Let E(x) =
b(x)(QT (2)Q(2))7'QT (x), &(x) = c(x) — bla)r(z),
b(z) = ([[b(x)[| = )[|b(x)]], and

ve(a) = {0 @<t o
s TR 0 if b)) > 1.

Further assume vs(z) — r(z) € Im(Q(z)) for all z €
G. Then

us(@) = (QT (2)Q()) ' QT (2) (vs(w) — r(x)),

is l-continuously differentiable for all x € G. Moreover,
1Q(x)us(x) + r(x)|| < b(x)us(x) + c(z) forallz € G.

PROOF. Let v = Q(z)u + r(z). Since QT (z)Q(z) is
invertible and ||Q(x)u + r(z)|| < b(z)u + c(x) is strictly
feasible on G, the resulting SOCC ||v|| < b(z)v + &(x) is
also strictly feasible on G. Moreover, v, satisfies it. In-
deed, if ||b(z)|| < 1, since the SOCC is feasible there ex-
ists v* such that ||v*|| < b(z)v* 4 &(z) and it follows that
&(z) > 0. The case ||b(z)|| > 1 follows from a direct cal-
culation. If ||b(z)|| # 1, vs is C' at 2 because b and ¢ are C!
at . If ||b(z)|| = 1, then &(z) # 0 (otherwise, if &(z) = 0,
since the SOCC ||v]| < b(z)v 4 &(z) is strictly compat-
ible, there would exist © such that ||8| < b(z)o < |9,

which is a contradiction). Now, from the proof of [Son-
tag, 1989, Theorem 1], the function

if a<0,

0
o(c, ) = {_cwam else,

is analytic at points of the form (¢, 0), with ¢ # 0, so v, is
C! for all z € G. Moreover, since vs(z) —7(x) € Im(Q(x))
for all z € G, it also follows that ||Q(z)us(x) + r(z)|| <
b(x)us(z)+c(z) forallz € Gand ug isCl forallz € G. B

From the proof of Proposition 5.6, we observe that in
the case where the SOCC takes the form (8), a simpler
expression is available for a controller satisfying it. As a
result of Proposition 5.6, the proposed formula can be
used to guarantee safety or stability under the worst-case
or probabilistic uncertainties described in Section 2.3.



Remark 5.7 (Using the universal formula to filter a
nominal controller): The universal formula in Proposi-
tion 5.6 can also be used to render an existing nominal
controller safe or stable. Indeed, let uyom : R™ — R™
be a nominal controller and define f : R — R” as
f(z) = f(x) + g(x)unom (z) and the modified dynamics

T = .f(m) + g(m)ﬂ, (19)

with & € R™. By leveraging the estimates of f, g, V', and
h either in the worst-case or probabilistic case, we can
formulate SOCCs similar to (8) and (9), respectively, for
the modified system (19). Depending on which SOCC
we choose, this allows us to use the universal formula
in Proposition 5.6 to obtain a safe or a stable controller
s : R™ — R™, which in turn results in ug pom(z) =
Unom () +Us(x) being a safe or a stable controller for (1).
We refer to this controller ug.nom as the filtered version
of the nominal controller u,,. This generalizes the safe
filtering of a nominal controller in the uncertainty-free
case, cf. Ames et al. [2019], Wang et al. [2017]. .

6 Simulations

In this section we illustrate our results in an example.
For simplicity, we focus on the case of worst-case error
estimates. Consider a control-affine planar system of the
form (1) with f(z,) = (~=, — (2 + 5)y) and g(z,y) =
(1,0.1). We consider the CBF h(z,y) = 22+ (y—4)? —4.

From data to estimates and error bounds: We obtain here
worst-case error models, cf. Section 2.3, from data. For
simplicity, we assume that the CLF V (z,y) = (22 +y?)

is known, so that VV = VV and V = V. We also assume
that the obstacle is known to be a circle with center at
(0,4), but its radius is uncertain, so that h(z,y) = 2? +
(y—4)2—3.8,and Vh = Vh, e, = 0.4, ey, = 0. We have
access to an oracle that, given a query point (z,y) € C,
returns noiseless measurements (f(x,y), g(x,y)) of the
functions in (1) (the noisy case can be considered with-
out major modifications). Given a set of N measure-
ments D = {(z:,v:), f(®i,v:), 9(xi, ;) YL, obtained by
querying the oracle, we estimate f at (x,y) € R? as

f(x,y) = f(pa(z,y)), where pe(z,y) is the closest data-
point to (z,y). Prior knowledge of (not necessarily tight)
Lipschitz constants of f and g in a compact region con-
taining the origin, the initial conditions and {(z;,y;)} Y,
(K =28.0 and K, = 3.2 respectively) is also available.
We compute the corresponding worst-case error bounds
as ef(z,y) := Ky||(z,y) — pa(zx,y)|. We do similarly for
g and eg.

Performance dependency on error estimates: Here we il-
lustrate how smaller estimation errors lead to improved
performance. We use different datasets with different
number of data points N to generate f, g, ef, and eg.
We solve the resulting CLF-CBF-SOCP every 0.01s with
initial condition at (2.0,6.0) and plot the trajectories
until it becomes unfeasible. We compare the results for

different N in Figure 1. Larger datasets with data from
a neighborhood of the origin allow trajectories to con-
verge closer to the origin before the problem becomes
unfeasible. This illustrates one of the critical points of
the paper: optimization-based control formulations that
take uncertainty into account in order to ensure safety
or stability might be unfeasible depending on the spe-
cific system and the magnitude of the errors in the em-
ployed approximations. Our results here provide quan-
tifiable conditions to determine whether the accuracy of
the approximations is sufficient or, instead, they need to
be refined in order to guarantee feasibility. In the plot, we
observe that the sufficient conditions in Propositions 4.2
and 4.5 serve as a good indicator of when the SOCP ac-
tually becomes unfeasible, hence illustrating how they
can be used to infer when the available estimates are in-
sufficient to guarantee that the controller is well defined.

Online safe stabilization: We illustrate also the case
where data is collected online. We start from an initial
set of 150 measurements of f, g and h near the initial
condition obtained by querying the oracle. Given an
initial condition, at every 0.01s we check whether the
conditions in (10) hold. If this is the case, we find the
CLF-CBF-SOCP controller and execute it. If during the
execution the conditions in (10) stop being satisfied at
some point T, we query the oracle to obtain measure-
ments of f and g at & (making it feasible) and a small
neighborhood around it (for improved performance).
Figure 2 illustrates executions of this procedure for three
different initial conditions. As trajectories approach the
origin, more measurements need to be taken because
the conditions in (10) become harder to satisfy.

Time complexity: We show here the computational
savings of checking the sufficient conditions in Propo-
sitions 4.2 and 4.5 as compared to directly solving
the SOCP using the Embedded Conic Solver from the
Python library CVXPY. Figure 3 shows that the time
complexity of using the SOCP solver is higher than
the time complexity of checking the sufficient condition
in Proposition 4.5, which is in turn higher than the
time complexity of checking the sufficient condition of
Proposition 4.2. Since, in general, state-of-the-art SOCP
solvers provide infeasibility and optimality certificates
with the same time complexity, cf. [Domahidi et al.,
2013, Section A], our sufficient conditions can be used
to save computation time in the case where the problem
is unfeasible, cf. Remark 4.8.

7 Conclusions

We have studied conditions to ensure the safe stabi-
lization of a nonlinear affine control system under un-
certainty. Given either worst-case or probabilistic esti-
mates of the dynamics, CBF and CLF, SOCCs encode
the impact of uncertainty on the ability to guarantee sta-
bility and safety. We have provided conditions for the
compatibility of the relevant pairs of SOCCs and pro-
vided explicit bounds on the error estimates that ensure
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Fig. 1. Safe stabilization of a planar system with worst-case uncertainty error bounds. The green ball is the unsafe set and
black dots denote initial conditions. Dashed lines enclose the region where data is located for different N. Solid lines show
the evolution under the corresponding CLF-CBF-SOCP controller in (15). Black triangles indicate points where the sufficient
conditions for feasibility (10) in Proposition 4.2 do not hold. Purple squares denote points where the root-finding method
(fsolve from Python’s SCIPY library) did not return a solution satisfying the sufficient condition of Proposition 4.5.

Fig. 2. Safe stabilization of a planar system with worst-case
uncertainty error bounds. The green ball is the unsafe set
and black dots denote initial conditions. The solid lines dis-
play the evolution of the controller obtained by solving the
CLF-CBF-SOCP (15). Black stars denote points where mea-
surements have been taken. All trajectories asymptotically
converge to a ball around the origin of radius 0.01. For ref-
erence, the dashed lines display the evolution of a min-norm
controller with perfect knowledge of the dynamics, CBF and
CLF (CLF-CBF QP) [Ames et al., 2017], for which the tra-
jectories stay safe and asymptotically converge to the origin.

these SOCCs are compatible. We have built on these re-
sults to ensure the existence of a smooth safe stabiliz-
ing controller, to show the point-Lipschitz and locally
Lipschitz regularity of the min-norm CLF-CBF-SOCP-
based controller, and to prove the regularity of a uni-
versal controller for the satisfaction of a single SOCC.
Future work will characterize the conditions for compat-
ibility in terms of data, design online safe stabilization
mechanisms that balance computational effort, sampling
rate, and performance using resource-aware control, ex-
plore the design of universal formulas for more than one
SOCC, and implement our results on physical testbeds.
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