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Abstract— This paper presents a novel event-triggered
boundary control technique named performance-barrier-based
event-triggered control for a class of reaction-diffusion PDEs
under Neumann actuation of a Robin boundary condition. At
its core, rather than insisting on a strictly monotonic decrease of
the Lyapunov function of the closed-loop system, we allow it to
increase as long as it remains within an established performance
barrier. This approach integrates a performance residual—the
difference between the performance barrier and the Lyapunov
function—into the triggering mechanism. This integration pro-
vides the system’s Lyapunov function with enhanced flexibility,
thereby allowing for longer dwell-times compared to “regular”
strategies demanding a monotonic decrease of the Lyapunov
function. Notably, while adhering to the performance barrier,
the closed-loop system globally exponentially converges to zero
in the spatial L2 norm without encountering Zeno phenomenon.
We provide numerical simulations to illustrate the proposed
technique and to compare it with the regular event-triggered
control design, the latter being associated with strictly decreas-
ing Lyapunov functions.

I. INTRODUCTION

Event-triggered control offers an alternative to standard
sampled-data control by updating the control input only
after specific events, rather than on a fixed schedule. These
events are determined by a specialized triggering mechanism
that is influenced by the system’s states. This method can
be viewed as an advanced form of sampled-data control
that adeptly merges feedback into both communication and
control update procedures. By harnessing feedback, event-
triggered control ensures that control input updates are made
only when essential, reducing the frequency of updates while
still maintaining satisfactory closed-loop system functional-
ity [10].

At its core, event-triggered control consists of two main
components: a feedback control law that guarantees the
desired closed-loop functionality, and an event-triggering
mechanism that specifies when to update the control input.
For this system to operate effectively, it must avoid the
phenomenon known as Zeno behavior, where an infinite
number of control updates happen in a finite time frame.
This challenge is typically addressed by carefully crafting
the event triggering mechanism, ensuring the existence of
a minimum dwell-time, i.e., a positive lower bound for the
period of time between successive events. Recently, there
have been notable advancements in event-triggered control
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for systems steered by both linear and nonlinear ordinary
differential equations [4], [8]–[10], [14], [15], [24], [25].
This progress has ignited interest in event-triggered control
methods for systems characterized by partial differential
equations (PDEs) [3], [5]–[7], [12], [17], [19]–[23], [26],
[27]. Especially pertinent to this discussion are studies [21]
and [22] that delve into event-triggered boundary control
techniques for a class of reaction-diffusion PDEs, using
dynamic event-triggers under anti-collocated and collocated
boundary sensing and actuation.

In this study, we introduce an enhanced event-triggered
boundary control method termed performance-barrier-based
event-triggered control (P-ETC) for a class of reaction-
diffusion PDEs. The underlying boundary control approach
we employ is the infinite-dimensional backstepping boundary
control. The proposed novel event-triggered boundary control
approach offers significantly longer dwell-times between
events in comparison to the recently devised dynamic event-
triggered boundary control method for the identical class
of reaction-diffusion PDEs [21], [22]. Longer dwell times
lead to sparser control updates, which in turn results in sav-
ing communication bandwidth, using fewer computational
resources for computing control inputs, and reducing actu-
ator wear, among other desirable outcomes. Before delving
into the specifics, it is essential to clarify the terminology,
particularly the term performance-barrier which forms the
crux of our novel approach.

The term performance-barrier is inspired by the safety-
critical control literature [1], [2], [13], [25], although our
context does not directly deal with safety. In our study,
performance refers to the nominal decrease of the Lyapunov
function, which serves as a measure of system convergence.
On the other hand, barrier alludes to a boundary or thresh-
old that the system should ideally not cross. Together, the
performance-barrier terminology encapsulates the idea of
comparing the Lyapunov function’s behavior in relation to
a predefined nominal decrease, treating it as a boundary that
should not be violated.

In [21] and [22], the triggering mechanism imposes a
monotonic decrease on the Lyapunov function of the closed-
loop system. This is achieved by ensuring the time derivative
of the Lyapunov function remains strictly negative. In terms
of performance, this guarantees that the Lyapunov function
decreases faster than a specific exponentially decaying sig-
nal, which incorporates the initial data. We refer to this
signal as the performance-barrier. We posit that allowing
the Lyapunov function to deviate from monotonically de-
creasing, while adhering to the performance barrier, could



lead to an elongation in the dwell-times between events.
This concept was influenced by the work of Ong et al.
[16], in which the authors suggest combining derivative-
based and function-based event-triggered designs. Their ap-
proach integrates both the time derivative and the value
of the Lyapunov function into the triggering criterion. We
introduce the concept of a performance residual, which
is the difference between the performance barrier and the
Lyapunov function. By incorporating this into the triggering
mechanism, we allow for greater flexibility in the behavior of
the Lyapunov function. Consequently, the Lyapunov function
is not required to decrease monotonically at all times. By
design, the performance-barrier-based approach provides a
longer dwell-time at any given state compared to the previous
regular method that forces the Lyapunov function to strictly
decrease. Importantly, this is achieved while excluding Zeno
behavior from the closed-loop system and still maintaining
adherence to the performance barrier which leads to the
global exponential convergence of the closed-loop system
to zero in L2-sense. The well-posedness of the closed-loop
system is assured for the proposed performance-barrier-based
boundary control method.

The rest of the paper is organized as follows. In Sec-
tion II, we summarize the results of regular event-triggered
control (R-ETC). Section III presents performance-barrier-
based event-triggered control (P-ETC). A numerical example
is provided in Section IV to illustrate the results, and the
conclusion is provided in Section V.

Notation: R+ is the nonnegative real line whereas N is the
set of natural numbers including zero. By C0(A; Ω), the class
of continuous functions on A ⊆ Rn is denoted, which takes
values in Ω ⊆ R. By Ck(A; Ω), where k ≥ 1, the class of
continuous functions on A, which takes values in Ω and has
continuous derivatives of order k, is denoted. L2(0, 1) stands
for the equivalence class of Lebesgue measurable functions
f : [0, 1] → R such that ∥f∥ =

( ∫ 1

0
|f(x)|2

)1/2
< ∞. Let

u : [0, 1] × R+ → R be given. u[t] represents the profile of
u at certain t ≥ 0, i.e.,

(
u[t]

)
(x) = u(x, t), for all x ∈ [0, 1].

For an interval J ⊆ R+, the space C0
(
J ;L2(0, 1)

)
is the

space of continuous mappings J ∋ t → u[t] ∈ L2(0, 1).
Im(·) and Jm(·) with m being an integer respectively denote
the modified Bessel and (nonmodified) Bessel functions of
the first kind.

II. REGULAR EVENT-TRIGGERED CONTROL (R-ETC)

Let us consider the following 1-D reaction-diffusion PDE
under sampled-data boundary control:

ut(x, t) = εuxx(x, t) + λu(x, t), (1)
ux(0, t) = 0, (2)

ux(1, t) + qu(1, t) = Ur
j , (3)

where ε, λ > 0, for t ∈ [trj , t
r
j+1) with {trj}j∈N being an

increasing sequence generated by a suitable event-trigger
and the initial condition u[0] ∈ L2(0, 1). Here, Ur

j is the
event-triggered boundary control input held constant for
t ∈ [trj , t

r
j+1), j ∈ N.

The well-posedness of the boundary controlled plant (1)-
(3) with piecewise constant inputs in between two sampling
instants is presented in the following proposition.

Proposition 1. For every u[trj ] ∈ L2(0, 1), there exists a
unique solution u : [trj , t

r
j+1]× [0, 1] → R between two time

instants trj and trj+1 such that u ∈ C0
(
[trj , t

r
j+1];L

2(0, 1)
)
∩

C1
(
(trj , t

r
j+1)× [0, 1]

)
with u[t] ∈ C2([0, 1]) which satisfies

(2),(3) for t ∈ (trj , t
r
j+1] and (1) for t ∈ (trj , t

r
j+1], x ∈ (0, 1).

This result is a straightforward application of Theorem
4.11 in [11].

Assumption 1. The parameters q, λ, and ε satisfy the
following relation:

q >
λ

2ε
+

1

2
. (4)

Remark 1. Under infinite-dimensional backstepping bound-
ary control approach, Assumption 1 is pivotal in ensuring the
stability of the target system. This is because we intentionally
avoid using the signal u(1, t) in the nominal control law.
Such avoidance is crucial for event-triggered control design
due to the challenges associated with obtaining a meaningful
bound on the rate of change of u(1, t). Furthermore, it is
worth mentioning that an eigenfunction expansion of the
solution of (1)-(3) with U(t) = 0 (zero input) shows that
the system is unstable when λ > επ2/4, no matter what
q > 0 (see Remark 1 in [21]). □

Consider the backstepping transformation defined as

w(x, t) = u(x, t)−
∫ x

0

K(x, y)u(y, t)dy, (5)

where K(x, y) given by

K(x, y) = −λ

ε
x
I1
(√

λ(x2 − y2)/ε
)√

λ(x2 − y2)/ε
, (6)

for 0 ≤ y ≤ x ≤ 1. The control input is selected as

Ur
j =

∫ 1

0

k(y)u(y, trj)dy, (7)

for all t ∈ [trj , t
r
j+1), j ∈ N, where

k(y) = ℘K(1, y) +Kx(1, y), (8)

with
℘ = q − λ

2ε
. (9)

Applying the transformation (5) and the control input (7) to
the system (1)-(3) in t ∈ [rrj , t

r
j+1), j ∈ N results in the

following target PDE:

wt(x, t) = εwxx(x, t), (10)
wx(0, t) = 0, (11)
wx(1, t) = −℘w(1, t) + d(t), (12)

where

d(t) :=

∫ 1

0

k(y)
(
u(y, trj)− u(y, t)

)
dy, (13)



for all t ∈ [trj , t
r
j+1), j ∈ N. This target PDE is used in

the Lyapunov analysis to establish the relevant convergence
properties. The inverse transformation of (5) is given by

u(x, t) = w(x, t) +

∫ x

0

L(x, y)w(y, t)dy, (14)

where L(x, y) is given by

L(x, y) = −λ

ε
x
J1

(√
λ(x2 − y2)/ε

)√
λ(x2 − y2)/ε

, (15)

for 0 ≤ y ≤ x ≤ 1.
In [21], the authors introduce an observer-based R-ETC

method that guarantees the global exponential convergence
of the combined system, encompassing both the plant and the
observer, towards the equilibrium. In our study, we examine
the equivalent full-state feedback scenario. Given that the
findings from the observer-based approach are applicable
to the full-state feedback scenario with the sole exception
of eliminating observer-induced effects, we present the out-
comes for the R-ETC in the full-state feedback context as
summarized in [18] without delving into proofs.

The R-ETC strategy [21] consists of two components:
1) An event-triggered boundary control input Ur

j (7)-(9)
based on the infinite-dimensional backstepping tech-
nique,

2) An event-trigger determining event-times

trj+1 = inf
{
t ∈ R+|t > trj ,Γ

r(t) > 0, j ∈ N
}
, (16)

with tr0 = 0 where

Γr
(
d(t),mr(t)

)
:= Γr(t) = d2(t)− γmr(t), (17)

and γ > 0 is an event-trigger design parameter. Here,
mr(t) satisfies the ODE

ṁr(t) =− ηmr(t)− ρd2(t) + β1∥u[t]∥2 + β2|u(1, t)|2,
(18)

for all t ∈ (trj , t
r
j+1), j ∈ N with mr(t0) = mr(0) > 0,

mr(tr−j ) = mr(trj) = mr(tr+j ), and η, ρ, β1, β2 > 0
being event-trigger parameters to be chosen.

Next, we present conditions on the selection of event-
trigger parameters γ, η, β1, β2, ρ > 0 that ensure Zeno-
free behavior and the global exponential convergence of
the closed-loop system (1)-(3),(6)-(9),(16)-(18) to zero in
the spatial L2 norm. The arguments for parameter selection
closely follow those in [21], and hence, we state the con-
ditions on parameters in the following assumption without
further details as summarized in [18].

Assumption 2 (Event-trigger parameter choice). The pa-
rameters γ, η > 0 are arbitrary design parameters, and
β1, β2 > 0 are chosen such that

β1 =
α1

γ(1− σ)
, β2 =

α2

γ(1− σ)
, (19)

where σ ∈ (0, 1) and

α1 = 3

∫ 1

0

(
εk′′(y) + εk(1)k(y) + λk(y)

)2

dy, (20)

α2 = 3
(
εqk(1) + εk′(1)

)2
, (21)

with k(y) given by (8). Subject to Assumption 1, the param-
eter ρ > 0 is chosen as

ρ =
εκB

2
, (22)

for B, κ > 0 chosen such that

B

(
εmin

{
℘− 1

2
,
1

2

}
− ε

2κ

)
− 2β1L̃

2 − 2β2

− 4β2

∫ 1

0

L2(1, y)dy > 0.

(23)

Note from Assumption 1 that ℘ > 1/2, where ℘ is given by
(9). In the inequality above,

L̃ = 1 +
(∫ 1

0

∫ x

0

L2(x, y)dydx
)1/2

, (24)

with L(x, y) given by (15). □

We will summarize the main results of [21] in the follow-
ing theorem.

Theorem 1 ( [21]). Consider the R-ETC approach (7),(16)-
(18) under Assumption 1, which generates a set of event-
times Ir = {trj}j∈N with tr0 = 0. It holds that

Γr(t) ≤ 0 for all t ∈ [0, sup (Ir)). (25)

Consequently, given appropriate choices for the event-trigger
parameters γ,η,β1,β2, ρ > 0, the following results hold:
R1: The set of event-times {trj}j∈N with tr0 = 0 generates an

increasing sequence for any η, γ, ρ > 0 and β1, β2 > 0
satisfying (19) in Assumption 2. Specifically, it holds
that trj+1 − trj ≥ τ > 0 where

τ =
1

a
ln

(
1 +

σa

(1− σ)(a+ γρ)

)
. (26)

Here σ ∈ (0, 1) appears in the relation (19) and

a = 1 + ρ1 + η > 0, (27)

where
ρ1 = 3ε2k2(1), (28)

with k(y) given by (8). As j → ∞, it follows that trj →
∞, thereby excluding Zeno behavior.

R2: For every u[0] ∈ L2(0, 1), there exists a unique solution
u : R+ × [0, 1] → R such that u ∈ C0(R+;L

2(0, 1) ∩
C1(Jr × [0, 1]) with u[t] ∈ C2([0, 1]) which satisfies
(2),(3),(7) for all t > 0 and (1) for all t > 0, x ∈ (0, 1),
where Jr = R+\Ir.

R3: The dynamic variable mr(t) governed by (18) with
mr(0) > 0 satisfies mr(t) > 0 for all t > 0.

R4: Consider the Lyapunov candidate given by

V r(t) =
B

2
∥w[t]∥2 +mr(t), (29)

where B > 0 satisfies (23) and w is the target system
state governed by (10)-(12). Under Assumption 2, it
holds that

V r(t) ≤ e−b∗tV0, (30)



where V0 = V r(0) and

b∗ = min
{2b

B
, η
}
> 0, (31)

with b > 0 given by

b =
εB

4
− β1L̃

2 − 2β2

∫ 1

0

L2(1, y)dy. (32)

Here, L(x, y) and L̃ are given by (15) and (24),
respectively. Note from (23) that b > 0.

R5: Subject to Assumption 2, the closed-loop system (1)-
(3),(6)-(9),(16)-(18) globally exponentially converges to
zero in L2-sense satisfying the following estimate

∥u[t]∥ ≤ Me−
b
2
∗
t
√
∥u[0]∥2 +mr(0), (33)

where b∗ is given by (31) and

M =

√
2L̃2

B
max

{BK̃2

2
, 1
}
. (34)

Here, K̃ = 1 +
( ∫ 1

0

∫ x

0
K2(x, y)dydx

)1/2

where
K(x, y) is given by (6).

Remark 2. Selecting the event-trigger parameters β1, β2 > 0
as per (19) ensures that the set of event-times {trj}j∈N
with tr0 = 0, forms an increasing sequence. This remains
true irrespective of the values chosen for the parameters
η, γ, ρ > 0. However, for the closed-loop system to converge
globally and exponentially to zero in L2-sense satisfying
(33),(34),(31),(32), the event-trigger parameter ρ > 0 has to
be selected as in (22). The parameters η, γ > 0 can be chosen
freely. The parameter γ can be chosen to scale the values
of β1, β2 given by (19). The parameter η characterizes the
decay rate of mr(t) governed by (18). Thus, η may be used
to adjust the speed at which events are generated. A smaller η
can often result in less frequent events and, consequently, less
frequent control updates, as noted [21]. The P-ETC approach,
to be introduced in Section III, produces even sparser control
updates than the R-ETC for any given set of event-trigger
parameters. □

Remark 3. By differentiating (29) in t ∈ (trj , t
r
j+1), j ∈ N

along the solutions of (10)-(13), and subject to Assumption
1 along with the event-trigger parameters chosen in Assump-
tion 2, we can obtain that

V̇ r(t) ≤ −b∗V r(t), (35)

for t ∈ (trj , t
r
j+1), j ∈ N. The relation (35) indicates that the

R-ETC forces the Lyapunov function (29) to strictly decrease
along the system trajectories. This stringent condition may
limit our ability to harness the full potential of event-
triggered control for achieving sparse control updates. A
more flexible approach might involve a triggering mecha-
nism that permits the Lyapunov function to deviate from a
monotonic decrease, yet remain compliant with the R-ETC
performance barrier e−b∗tV0 in (30). Such flexibility could
potentially result in longer intervals between events, i.e., an
increase in dwell-times. In Section III, we introduce a design
that embodies this flexible approach. □

III. PERFORMANCE-BARRIER-BASED EVENT-TRIGGERED
CONTROL (P-ETC)

In this section, we discuss the design of P-ETC. We
introduce a performance residual, defined as the difference
between the performance barrier e−b∗tV0 and the Lyapunov
function, into the triggering mechanism. This inclusion is
made with the intention of imparting greater flexibility to
the behavior of the Lyapunov function, thereby permitting it
to deviate from a monotonic decrease while adhering to the
performance barrier.

Let Ip = {tp0, t
p
1, t

p
2, . . .} denote the sequence of

event-times associated with P-ETC. Let the parameters
η, γ, β1, β2, ρ > 0 be selected as outlined in Assumption
2, and let c > 0 be a design parameter. The proposed P-ETC
strategy consists of two components:

1) An event-triggered boundary control input Up
j

Up
j =

∫ 1

0

k(y, tpj )u(y, t
p
j )dy, (36)

for all t ∈ [tpj , t
p
j+1), j ∈ N. Accordingly, the boundary

condition (3) becomes

ux(1, t) + qu(1, t) = Up
j . (37)

2) An event-trigger determining the event-times

tpj+1 = inf
{
t ∈ R+|t > tpj ,Γ

p(t) > 0
}
, (38)

with tp0 = 0 and Γp(t) defined as

Γp(t) := d2(t)−γmp(t)− c

ρ

(
e−b∗tV0−V p(t)

)
. (39)

Here, mp(t) satisfies

ṁp(t) =− ηmp(t)− ρd2(t) + β1∥u[t]∥2 + β2u
2(1, t)

+ c
(
e−b∗tV0 − V p(t)

)
,

(40)

where mp(tp0) = mr(tr0) > 0, mp(tp−j ) = mp(tpj ) =

mp(tp+j ), b∗ > 0 is given by (31), d(t) is defined as
(13) for t ∈ [tpj , t

p
j+1), j ∈ N, and V p(t) is defined as

V p(t) =
B

2
∥w[t]∥2 +mp(t), (41)

with
V0 = V p(0) = V r(0), (42)

w satisfying the target PDE (10) for t ∈ [tpj , t
p
j+1), j ∈

N, and B > 0 chosen to satisfy (23).

Lemma 1. Under the P-ETC event-trigger (38)-(42), it
holds that d2(t) ≤ γmp(t) + c

ρ

(
e−b∗tV0 − V p(t)

)
, and

consequently mp(t) > 0, for t ∈ [0, sup(Ip)).
Proof. P-ETC events are triggered to guarantee Γp(t) ≤
0, i.e., d2(t) ≤ γmp(t) + c

ρ

(
e−b∗tV0 − V p(t)

)
for t ∈

[0, sup(Ip)). This inequality in combination with (40) yields:

ṁp(t) ≥− (η + γρ)mp(t) + β1∥u[t]∥2 + β2u
2(1, t)

≥− (η + γρ)mp(t),
(43)



for t ∈ (tpj , t
p
j+1), j ∈ N. Thus, considering the time-

continuity of mp(t), we can obtain the following estimate:

mp(t) ≥ mp(tpj )e
−(η+γρ)(t−tpj ), (44)

for t ∈ [tpj , t
p
j+1], j ∈ N. Recall that we have chosen

mp(t0) = mp(0) > 0. Therefore, it follows from (44) that
mp(t) > 0 for all t ∈ [0, tp1]. Again using (44) on [tp1, t

p
2],

we can show that mp(t) > 0 for all t ∈ [tp1, t
p
2]. Applying the

same reasoning successively to the future intervals, it can be
shown that mp(t) > 0 for t ∈ [0, sup(Ip)). □

Lemma 2. Assume that an event has occurred at t = t∗ ≥ 0
under P-ETC event-trigger (38)-(42). If the next event time
t = tp generated by P-ETC event-trigger (38)-(42) is finite,
then the next event time t = tr generated by R-ETC event-
trigger (16)-(18) is less than or equal to tp, i.e., tr ≤ tp,
provided that mr(t∗) = mp(t∗) > 0 and e−b∗tV0 ≥ V p(t)
for all t ∈ [t∗, tr]. The equality holds if e−b∗tV0 = V p(t)
for all t ∈ [t∗, tr = tp].
Proof. Consider the time period t ∈ [t∗,min{tr, tp}]. Then,
subtracting (18) from (40) and assuming e−b∗tV0 ≥ V p(t)
for t ∈ [t∗,min{tr, tp}], we can obtain that

ṁp − ṁr = −η
(
mp(t)−mr(t)

)
+ c

(
e−b∗tV0 − V p(t)

)
≥ −η

(
mp(t)−mr(t)

)
,

(45)

where the equality holds if e−b∗tV0 = V p(t) for all t ∈
[t∗,min{tr, tp}]. Application of the Comparsion Principle
on (45) between t ∈ [t∗,min{tr, tp}] leads to

mp(t)−mr(t) ≥ e−η(t−t∗)
(
mp(t∗)−mr(t∗)

)
= 0, (46)

as mp(t∗) = mr(t∗), and therefore,

mp(t) ≥ mr(t), t ∈ [t∗,min{tr, tp}], (47)

where the equality holds if e−b∗tV0 = V p(t) for all t ∈
[t∗,min{tr, tp}].

Assume that tr > tp. Then, we have from (47) that

mp(t) ≥ mr(t), [t∗, tp], (48)

and from (38),(39) that

d2(tp) = γmp(tp) +
c

ρ

(
e−b∗tpV0 − V p(tp)

)
, (49)

and from (16),(17) that

d2(tp) < γmr(tp). (50)

But (48)-(50) is a contradiction. Thus, tr ≤ tp, with the
equality being true if e−b∗tV0 = V p(t) for t ∈ [t∗, tr = tp].
This completes the proof. □

We use Lemma 1 and 2 to prove the following major
result.

Theorem 2. Consider the P-ETC approach (36)-(42) under
Assumption 1, which generates a set of event-times Ip =
{tpj}j∈N with tp0 = 0. It holds that

Γp(t) ≤ 0 for all t ∈ [0, sup (Ip)). (51)

Consequently, if the event-trigger parameters
γ,η,β1,β2, ρ > 0 are chosen as outlined in Assumption 2
and c > 0, the following results hold:
R1: The set of event-times Ip generates an increasing se-

quence. Specifically, it holds that tpj+1 − tpj ≥ τ > 0
where τ is given by (26). Thus tpj → ∞ as j → ∞,
excluding Zeno behavior.

R2: For every u[0] ∈ L2(0, 1), there exists a unique solution
u : R+ × [0, 1] → R such that u ∈ C0(R+;L

2(0, 1) ∩
C1(Jp × [0, 1]) with u[t] ∈ C2([0, 1]) which satisfies
(2),(36),(37) for all t > 0 and (1) for all t > 0, x ∈
(0, 1), where Jp = R+\Ip.

R3: The dynamic variable mp(t) governed by (40)-(42) with
mp(0) = mr(0) > 0 satisfies mp(t) > 0 for all t > 0.

R4: The Lyapunov candidate V p(t) given by (41),(42) sat-
isfies

V p(t) ≤ e−b∗tV0, (52)

for all t > 0, where b∗ > 0 is given by (31).
R5: The closed-loop system (1),(2),(36)-(42) globally expo-

nentially converges to zero in L2-sense satisfying the
estimate (33),(34),(31),(32).

Proof. Under P-ETC, recall from Lemma 1 that it holds that
Γp(t) ≤ 0 and mp(t) > 0 for t ∈ [0, sup(Ip)). Consider the
time period t ∈ [0, sup(Ip)). If the event-trigger parameters
η, γ, β1, β2, ρ are selected as in Assumption 2, then we can
show that V̇ p satisfies

V̇ p ≤ −b∗V p + c
(
e−b∗tV0 − V p(t)

)
, (53)

for t ∈ (tpj , t
p
j+1) where V p and b∗ are given by (41) and

(31), respectively. Let

W p(t) := e−b∗tV0 − V p(t). (54)

Taking the time derivative of W p(t) and using (53), we can
show that

Ẇ p = −b∗e−b∗tV0 − V̇ p

≥ −(b∗ + c)W p,
(55)

for t ∈ (tpj , t
p
j+1). Then, noting that W p(t) is continuous and

W p(0) = 0, we can obtain that

W p(t) ≥ e−(b∗+c)(t−tpj )W p(tpj )

≥ e−(b∗+c))(t−tpj ) ×
i=j∏
i=1

e−(b∗+c)(tpi −tpi−1)W p(0)

≥ e−(b∗+c))tW p(0) = 0.
(56)

for all t ∈ [0, sup(Ip)), i.e., e−b∗tV0 ≥ V p(t) for all t ∈
[0, sup(Ip)). Thus, recalling Lemma 2 and R1 of Theorem
1, we can state that tpj+1 − tpj ≥ τ and tpj → ∞ as
j → ∞ excluding the Zeno behavior. The well-posedness
of the closed-loop system (1),(2),(36)-(42) in the sense of
R2 in Theorem 2 is a direct consequence of Proposition 1.
The solution is constructed iteratively between consecutive
triggering times. Since the system is Zeno-free, we can obtain



Fig. 1: Evolution of the Lyapunov function V p(t) and the
performance residual W p(t).

Fig. 2: Behavior of the Lyapunov function V p(t) under
different choices of c.

that mp(t) governed by (40) with mp(0) > 0 satisfies
mp(t) > 0 and W p(t) ≥ 0, i.e., e−b∗tV0 ≥ V p(t) for
all t > 0. Thus, following classical arguments involving
the bounded invertibility of the transformations (5),(6) and
(14),(15), we can obtain the global exponential convergence
of the closed-loop system (1),(2),(36)-(42) satisfying the
decay estimate (33),(34),(31),(32). □

Remark 4. Unlike R-ETC as discussed in Remark 3,
which mandates the Lyapunov function to strictly decrease,
P-ETC offers more flexibility to the Lyapunov function.
As observed from (53), we have V̇ p(t) ≤ −b∗V p(t) +
c
(
e−b∗tV0 − V p(t)

)
. This implies that the time derivative

of the Lyapunov function does not have to be negative
at all times. Specifically, when e−b∗tV0 − V p(t) is large,
meaning the Lyapunov function is significantly below the
performance barrier, V̇ p(t) can be positive, allowing V p(t)
to increase. Conversely, when e−b∗tV0 − V p(t) is getting
small, indicating the Lyapunov function is approaching the
performance barrier, V̇ p(t) is compelled to decrease, becom-
ing negative. If e−b∗tV0 = V p(t), then V̇ p(t) is definitely
negative, preventing the Lyapunov function from breaching
the performance barrier and ensuring it remains below this
threshold. Fig. 1 illustrates the evolution of V p(t) and the
residual W p(t) = e−b∗tV0−V p(t) in the simulation example
considered in Section IV.

Remark 5. The parameter c in the P-ETC event-trigger (38)-
(42) plays a pivotal role in shaping the behavior of the
Lyapunov function V p(t) given by (41). For any c such

Fig. 3: Evolution of ∥u[t]∥ under R-ETC and P-ETC.

Fig. 4: Dwell-times under R-ETC and P-ETC.

that 0 < c < ∞, it follows that V̇ p(t) ≤ −b∗V p(t) +
c
(
e−b∗tV0 − V p(t)

)
, for all t ∈ (tpj , t

p
j+1), j ∈ N, and

consequently, V p(t) ≤ e−b∗tV0, for all t > 0 (see Theorem 2
and its proof). As described earlier, this allows the Lyapunov
function to increase during certain periods as long as it
remains below the nominal performance-barrier. As c → ∞,
the Lyapunov function approaches the performance-barrier,
i.e., V p(t) → e−b∗tV0. Conversely, setting c = 0 results in
V̇ p(t) ≤ −b∗V p(t), reducing the P-ETC to the R-ETC. This
demands a strict decrease in the Lyapunov function while
ensuring V p(t) ≤ e−b∗tV0 for all t > 0. Fig. 2 illustrates the
behavior of the Lyapunov function for different choices of c
in the simulation example considered in Section IV.

IV. NUMERICAL SIMULATIONS

We consider a reaction-diffusion system with ε = 0.1, λ =
0.25, q = 2, and the initial conditions u[0] = 10x2(x− 1)2.
The parameters for the event-triggers are chosen as follows:
m(0) = 10−4, γ = 1, η = 0.0383, c = 1, and σ = 0.9. It can

Fig. 5: Control inputs under R-ETC and P-ETC.



be shown using (20),(21) that α1 = 0.3466, α2 = 0.5405.
Therefore, from (19), we can obtain β1 = 3.4665;β2 =
5.4055. Let us choose B and κ as B = 3308.7 and κ =
5 so that (23) is satisfied. Then, from (22), we can obtain
ρ = 827.1872. We use ∆t = 0.001s to time discretize the
plant dynamics using the implicit Euler scheme. Note that the
event-triggers are discretized at ∆t = 0.001s as well. Space
discretization is done using a step size of ∆x = 0.005.

Fig. 2 illustrates the evolution of the Lyapunov functions
under R-ETC and P-ETC. We can observe that V r(t) under
R-ETC monotonically decreases over time whereas V p(t)
is allowed to increase under P-ETC while respecting the
performance barrier e−b∗tV0. As evident in Fig. 3, ∥u[t]∥
under P-ETC takes longer to converge than R-ETC. This
is because the Lyapunov function in P-ETC is permitted to
deviate from a monotonically decreasing pattern. However,
as observed from Fig. 4, the dwell-times of P-ETC are
significantly larger than those of R-ETC, resulting in less
frequent control updates that compensate for the extended
convergence time. The control inputs for both R-ETC and
P-ETC are depicted in Fig. 5.

V. CONCLUSION

This paper has introduced a novel event-triggered bound-
ary control strategy for a class of reaction-diffusion PDEs,
termed performance-barrier-based event-triggered boundary
control. Unlike regular methods that impose a constant
decrease in the Lyapunov function, our approach permits de-
viations, as long as they remain within a defined performance
barrier. Central to this innovative design is the concept of
the performance residual, which represents the gap between
the barrier and the Lyapunov function. Incorporating this
idea allows for enhanced flexibility in the behavior of the
Lyapunov function while ensuring that the prescribed per-
formance is met, which leads to notably longer dwell-times
between events compared to regular event-triggered control.
Our strategy guarantees global exponential convergence of
the closed-loop system to zero in the spatial L2 norm and
ensures Zeno-free behavior. We have conducted a numerical
simulation that illustrates the effectiveness of the proposed
event-triggered boundary control approach.
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