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Abstract— This paper designs decentralized controllers for
energy storage systems (ESSs) to provide active power control
for frequency regulation. We propose a novel safety filter
design to gracefully enforce the satisfaction of the limits on
the state of charge during transients. Our technical analysis
identifies conditions on the proposed design that guarantee the
asymptotic stability of the closed-loop system with respect to
the desired equilibria. We leverage these results to provide a
controller parameterization in terms of a single-hidden-layer
neural network that automatically satisfies the conditions. We
then employ a reinforcement learning approach to train the
controller to optimize transient performance in terms of the
maximum frequency deviation and the control cost. Simulations
in an IEEE 39-bus network validate the significant transient
performance improvements of the proposed controller design.

I. INTRODUCTION

With the increasing penetration of renewable energy
sources such as wind turbines and photovoltaics in power
systems, the frequency may fluctuate rapidly in an extensive
range, which can lead to abnormal operation of electrical
appliances and increase the risk of large-scale power outages.
The intrinsic volatility and uncertainty of renewable genera-
tion require sufficient backup resources, which motivates the
proliferation of energy storage systems (ESSs) in modern
power grids [1]. This paper is motivated by the aim of
facilitating the use of ESSs to maintain frequency stability
and enhance transient performance after disturbances.

Literature Review: A lot of recent attention has been
devoted to optimal frequency control, which combines fre-
quency control with optimal dispatch of power systems to
achieve simultaneously stable and economic operation [2]–
[5]. In this context, distributed load frequency control has
been widely investigated [6]–[10]. In [6], a primary fre-
quency control problem is formulated and optimal decen-
tralized controllers for responsive loads are derived from
a partial primal-dual gradient algorithm. This framework is
extended in [7] to secondary frequency control to recover the
nominal frequency accounting for line congestion. Further
extensions for optimal distributed frequency control include
nonlinear power flow and higher-order generator models [8],
variations in renewable generation [9], and nonsmooth cost
functions [10].

These studies focus on asymptotic stability and optimality
of the steady state post-disturbance, but do not examine the
safety and optimality of the transient. In recent research
efforts, [11] proposes a reinforcement learning framework to
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develop primary frequency control with stability guarantees
and transient performance enhancement. This idea is revis-
ited in [12] by relaxing the stability conditions, incorporating
safety considerations, and is further extended to secondary
frequency control in [13] and adaptive control handling time-
varying load with frequency restoration [14]. However, these
works only consider controllable generators or loads with no
restriction on the delivered/absorbed energy over time and
are therefore not applicable to ESSs, hence not realizing their
potential for frequency regulation.

Statement of Contributions: ESSs have the capability to
improve transient frequency performance due to its fast
speed of charging and discharging. However, its restricted
state of charge (SOC), i.e., the limited amount of energy
to be charged or discharged, adds a critical challenge to
the controller design. This paper tackles this challenge by
studying the participation of ESSs in frequency control. We
make the following contributions. First, with a novel safety
filter design, we propose a class of controllers that satisfy the
SOC restriction of ESS automatically. We identify conditions
on this controller design that ensure closed-loop stability.
Then, we construct neural networks to parameterize the
proposed controllers which satisfy the identified conditions
by design. Leveraging a reinforcement learning framework
based on recurrent neural networks, we train the controller to
optimize the transient performance of frequency control after
disturbances, specifically to reduce the maximum frequency
deviation and the cost of control.

II. SYSTEM MODEL

Here, we introduce the dynamical model1. We model the
power network as a graph G = (N , E), where N and
E are the set of buses and lines, resp. Each line has an
arbitrarily assigned reference direction and is denoted as
an ordered pair, e.g., (i, j) ∈ E pointing from i to j; the
actual power flow may be opposite to the reference direction
by taking a negative value. Without loss of generality, we
assume each bus aggregates four power injections: a thermal
generator, an uncontrolled net load that equals load power
consumption minus undispatchable (renewable) generation,
a fast responsive load or generator, and an energy storage
system (ESS). As a basis of the dynamical model we will
introduce, the power network is initially working at a steady

1We use R to denote the set of real numbers. We use (·)† and (·)⊤ to
represent the pseudo-inverse and transpose, resp. 1 and 0 are vectors of
all ones and zeros of appropriate dimensions, resp. With a slight abuse of
notation, we use | · | to denote the absolute value for real-valued arguments,
and the cardinality when the argument is a set. A continuous function α :
R → R is of (extended) class-K if it is strictly increasing and α(0) = 0, and
is K∞ if it is of class-K and limr→+∞ α(r) = +∞, limr→−∞ α(r) =
−∞. Finally, ∥ · ∥ and ∥ · ∥∞ denote the Euclidean and infinity norm, resp.



state:

ω0
i = ωs, (1a)

Pm0
i +P c0

i −P l0
i −

∑
(i,j)∈E

Bij sin(θ
0
i −θ0j )=0, (1b)

for all i ∈ N , where ωs is the nominal frequency, e.g., 50 or
60 Hz, and θ0i is the corresponding bus voltage phase angle.
P l0
i , P c0

i , and Pm0
i are resp. the initial uncontrollable net

load, initial power output of the fast responsive resource, and
initial thermal generator power output. The constant Bij > 0
is the absolute value of susceptance of line (i, j) ∈ E .

At the initial steady state: (1a) means that all buses are at
the nominal frequency; (1b) means that the thermal generator
power output Pm0

i and the power output of fast responsive
resource P c0

i are balanced with the uncontrolled net load P l0
i

and the total power flow out of each bus i.
The state of charge (SOC) of ESS at each bus i does not

appear in (1). For convenience, we shift the SOC so that the
feasible range is [Ei, Ei], with Ei = −Ei. At the initial
steady state, SOC E0

i ∈ [Ei, Ei] and the ESS net charging
power (which indicates discharge if it is negative) is P e

i = 0.
We consider a change that occurs from the steady state

above at time t = 0: the uncontrolled net loads P l0
i are

disturbed by a step change P l
i at (a subset of) buses in N ,

triggering power imbalance and frequency variation. Accord-
ing to the classic model of power network dynamics [15],
and omitting the time index t for brevity, we consider

θ̇i = ωi, (2a)

Miω̇i = −Diωi −
∑

(i,j)∈E

Bij sin(θi + θ0i − θj − θ0j )

+
∑

(i,j)∈E

Bij sin(θ
0
i − θ0j ) + Pm

i + P c
i − P l

i − P e
i , (2b)

Tm
i Ṗm

i = −Pm
i − ωi

Ri
, (2c)

Ṗ c
i = − ωi

Ki
, (2d)

Ėi = P e
i , (2e)

for all i ∈ N , where (θi, ωi, P
m
i , P c

i ) are deviations from
their initial states. In (2b), Mi > 0 and Di > 0 are the
inertial and damping constants, resp. Equation (2c) is a
simplified model of generator dynamics, with time constant
Tm
i > 0 characterizing the delay effect of the slowest

component in the generator, typically the turbine. We assume
the generator power setpoint does not change, and the change
of Pm

i is driven by a droop controller with factor Ri > 0.
The change of power P c

i of the fast responsive resource is
controlled by an integrator with Ki > 0 in (2d), which
aims to achieve frequency restoration. Approximating the
ESS charge/discharge efficiencies at 100%, the change Ei in
SOC can be calculated by integrating the charge/discharge
power P e

i as Ei(t) = E0
i +

∫ t

0
P e
i (τ)dτ , for all i ∈ N and

all t ≥ 0, which leads to (2e).

III. PROBLEM FORMULATION AND DESIGN

Here, we formulate the problem of interest and propose a
novel controller design with safety filter to satisfy the SOC
constraint of the ESS.

A. Problem Formulation
We are interested in studying the participation of the

ESS for frequency regulation of the power network (2), and
particularly for enhancing its transient performance while
guaranteeing closed-loop stability. Most existing works focus
on the frequency regulation problem without the ESS, e.g.
[6], [11] for primary frequency control and [7], [8], [13] for
secondary frequency control. Specifically, we aim to design
decentralized ESS controllers {P e

i }i∈N so that:
• System (2) converges to an equilibrium which has

frequency at the nominal value;
• The ESS charge/discharge power satisfies:

P e
i ≤ P e

i (t) ≤ P
e

i , ∀i ∈ N , ∀t ≥ 0, (3)

where P e
i < 0 and P

e

i > 0 are given rate limits for
discharge and charge, resp.;

• The SOC of each ESS is restricted as:

Ei ≤ Ei(t) ≤ Ei, ∀i ∈ N , ∀t ≥ 0; (4)

• The transient cost is minimized.
The control objectives above are formalized by:

min
{P e

i }i∈N

∑
i∈N

(
∥ωi∥∞ +

ρ

T

∫ T

0

gi (P
e
i (t)) dt

)
(5a)

s.t. (2), (3), (4) (5b)
lim
t→∞

ωi(t) = 0,∀i ∈ N , (5c)

where T is the time horizon of interest and gi is a control
cost function of the ESS operator’s interest. The two terms
in objective (5a) are respectively to minimize the maximum
frequency deviation and the average accumulative cost of
control during the transient. ρ is a weighting factor to trade-
off these two objectives.

The optimization problem (5) is non-convex and infinite-
dimensional given that the decision variables are trajectories.
Reinforcement learning (RL) offers an attractive solution
approach to tackle this complexity. In RL [16], agents are
free to interact with the environment and explore behaviors
towards reward maximization to learn an optimal control
policy. Existing RL approaches, e.g. [17], [18], neglect the
hard constraints (3), (4) and the asymptotic constraint (5c),
and instead consider soft penalization on these objectives.
This does not guarantee system stability and safety, and
might result in control policies that are not transferable to
real implementations. Similar to recent works [11], [12], this
motivates us to identify specific controller forms that meet
these constraints by design, and then optimize the control
policy using RL over this reduced class.

B. Decentralized ESS Controller with Safety Filter
We propose the following decentralized ESS controller:

P e
i = Fi(ωi, Ei), ∀i ∈ N , (6)

where Fi(ωi, Ei), i ∈ N , is of the form:
max

{
αi(Ei−Ei)

αi(E
th
i −Ei)

fi(ωi), fi(ωi)
}
, Ei ≤ Eth

i ,

fi(ωi), Eth
i < Ei < E

th

i ,

min
{

αi(Ei−Ei)

αi(Ei−E
th
i )

fi(ωi), fi(ωi)
}
, Ei ≥ E

th

i

(7)



where Ei < Eth
i < E

th

i < Ei and fi : R → R is a Lipschitz
continuous function that satisfies P e

i ≤ fi(ωi) ≤ P
e

i for all
ωi ∈ R. A salient feature of our design (7) is the safety
filter specified by K∞ functions αi(·), αi(·), activated at the
thresholds Eth

i , E
th

i . The safety filter plays a critical role
in preventing the violation of the SOC limits, as we discuss
below. The controller (7) is a continuous function of ωi ∈ R,
particularly at the breaking points Eth

i , E
th

i .
We explain the rationale behind our design (6), (7). Most

existing primary frequency controllers are functions of the
frequency deviation ωi only, assuming that the controlled
resources can change their active power output as needed for
stabilizing the frequency excursion. However, this is not the
case here, because an ESS can only operate within its SOC
limits, beyond which it cannot deliver or absorb active power
anymore. This motivates us the addition of Ei as another
input of the control function Fi to decide the control action
according to the SOC in real time.

The terms related to Ei, which we call safety filter, take ef-
fect only when needed and in a desired manner. For instance,
in case that Ei ≤ Eth

i , i.e., the SOC plunges below the
threshold Eth

i to approach its lower limit Ei, it is preferable
to charge than discharge. If fi(ωi) > 0, then the ESS is
charged at power P e

i = max{ α(Ei−Ei)

α(Eth
i −Ei)

fi(ωi), fi(ωi)} =

fi(ωi), in which case the safety filter does not intervene. In
contrast, if fi(ωi) < 0, then P e

i =
α(Ei−Ei)

α(Eth
i −Ei)

fi(ωi), i.e., the
ESS is discharged at a power that is smaller than |fi(ωi)|,
until the discharge power diminishes to zero as the lower
SOC limit Ei = Ei is reached. A similar argument applies
to the case Ei ≥ E

th

i . Overall, the proposed safety filter in
(7) strictly guarantees the satisfaction of the SOC limits at
every time instant during the transient.

The design of fi(·) can be flexible as long as it is Lipschitz
continuous and its range is within [P e

i , P
e

i ]. In particular,
fi(·) can be a nonlinear mapping obtained by means of a
learning method as we will elaborate. This shall make it more
capable than classic linear controllers in improving transient
performance, such as the maximum frequency deviation and
integrated control cost.

IV. CLOSED-LOOP SYSTEM PERFORMANCE

In this section, we identify conditions on the ESS con-
troller design so that the closed-loop system (2), (6) admits
desired configurations as equilibria and they are asymptoti-
cally stable.

A. Equilibrium Set of the Closed-loop System

Let θ, ω, Pm, P c, and E be stacked vectors of θi, ωi, Pm
i ,

P c
i , and Ei for all i ∈ N , resp. Define δ := C⊤θ ∈ R|E|,

where the incidence matrix C ∈ R|N |×|E| has its i-th row,
k-th column element defined as:

Cik :=


1, if line k ∈ E starts from bus i,

−1, if line k ∈ E ends at bus i,

0, otherwise.

We rewrite system (2) with the feedback control (6) in the
following compact form

δ̇ = C⊤ω, (8a)

Mω̇ = −Dω−CP b(δ)+Pm+P c−P l−F(ω,E),
(8b)

TmṖm = −Pm −R−1ω, (8c)

Ṗ c = −K−1ω, (8d)

Ė = F(ω,E), (8e)

where D, R and K are resp. diag(D1, ..., D|N |),
diag(R1, ..., R|N |), and diag(K1, ...,K|N |), F(ω,E) ∈
R|N | collects Fi(ωi, Ei) for all i ∈ N , and the changes
in line power flows are

P b(δ) := B sin(δ0 + δ)−B sin(δ0).

Here B ∈ R|E|×|E| is the diagonal matrix collecting Bij for
all (i, j) ∈ E , and the vector-valued expression sin(δ) takes
the scalar sin(·) of each element of input δ. We assume the
angle differences δ is within the following region2

∆ :=
{
δ ∈ R|E|∣∣ ∣∣δ0k + δk

∣∣ < π

2
, ∀k ∈ E

}
. (9)

The next result identifies the equilibrium set of (8).

Proposition 1. (Equilibria of the closed-loop system): The
closed-loop system (8) admits the following set of equilibria:

S = {(δ∗, ω∗, Pm∗, P c∗, E∗) | ω∗ = 0, Pm∗ = 0,

P c∗ = CP b(δ∗) + P l, F(0, E∗) = 0
}
.

Proof. It is straightforward by (8c) and (8d) that an equilib-
rium (δ∗, ω∗, Pm∗, P c∗, E∗) of (8) must satisfy ω∗ = 0 and
Pm∗ = 0. By (8e), we have F(ω∗, E∗) = F(0, E∗) = 0.
Then (8b) implies P c∗ = CP b(δ∗) + P l.

Given our safety filter-based controller design in Sec-
tion III-B, Ei ≤ Ei ≤ Ei is strictly guaranteed. Together
with (9), it follows that S is compact. Moreover, from (7),
if fi(0) = 0, then Fi(0, E

∗
i ) = 0 for all E∗

i ∈ R. Using this
observation, we prove next the asymptotic stability of S .

B. Convergence to the Equilibrium Set

Let x := (δ, ω, Pm, P c, E). Given x∗ ∈ S, define the
deviation x̃ := x − x∗, and similarly for its individual
elements. Following [8], we construct the energy function,

V (x̃) :=
1

2
ω̃⊤Mω̃ +

1

2

(
P̃m

)⊤
RTmP̃m +

1

2

(
P̃ c

)⊤
KP̃ c

+
∑
k∈E

Bk

∫ δ̃k

0

[
sin(δ0k+δ∗k+ϱ)− sin(δ0k+δ∗k)

]
dϱ,

where Tm := diag(Tm
1 , ..., Tm

|N |) collects the generator time
constants. Given (9), note that V is positive definite with

2We allow each bus angle θi to change on R, not restricting it in, e.g.,
[0, 2π); however, all angle differences across lines, e.g., (θ0i+θi−θ0j−θj),
are shifted by appropriate multiples of 2π to get minimum absolute values.
Furthermore, let Pl = {P l : ∥L† (Pm0 + P c0 − P l0 − P l

)
∥E,∞ <

1}, where ∥y∥E,∞ := max(i,j)∈E |yi − yj | and L := CBC⊤ is the
Laplacian matrix. According to [19], [20], if P l ∈ Pl, then (9) holds.



respect to the origin. The time derivative of V along any
trajectory x̃(t), ∀t ≥ 0 of the closed-loop system (8) is:

V̇ (x̃) = ω̃⊤M ˙̃ω +
(
P̃m

)⊤
RTm ˙̃Pm +

(
P̃ c

)⊤
K ˙̃P c

+
∑
k∈E

Bk

[
sin(δ0k+δk)− sin(δ0k+δ∗k)

] ˙̃
δk

= ω̃⊤
[
P̃m + P̃ c −F(ω̃, E)−Dω̃ − CP̃ b

]
+
(
P̃m

)⊤
R
(
−P̃m −R−1ω̃

)
−
(
P̃ c

)⊤
ω̃

+
(
P̃ b

)⊤
C⊤ω̃

=
∑
i∈N

[
−Ri

(
P̃m
i

)2

−Diω̃
2
i − ω̃iFi(ω̃i, Ei)

]
, (10)

where P̃ b := P b(δ) − P b(δ∗) and F(ω̃, E) := F(ω,E) −
F(ω∗, E). The next result establishes the asymptotic stability
of the equilibrium set.

Theorem 2. (Global asymptotic stability of the equilibrium
set): Suppose fi in the ESS controller (7) is Lipschitz
and non-decreasing, and fi(0) = 0 for all i ∈ N .
Then, under (9), S is globally asymptotically stable and
the convergence of trajectories is pointwise. In particular,
lim

t→+∞
ω(t) = ω∗ = 0.

Proof. From (7), whatever value Ei takes, it has
Fi(ω

∗
i , Ei) = 0, and therefore Fi(ω̃i, Ei) = Fi(ωi, Ei) −

Fi(ω
∗
i , Ei) = Fi(ωi, Ei) = µi(Ei)fi(ωi) = µi(Ei)fi(ω̃i),

where the state-dependent factor µi(Ei) belongs to [0, 1]
for all i ∈ N . Since fi(·) is non-decreasing and satisfies
fi(0) = 0, it follows that

ω̃iFi(ω̃i, Ei) = µi(Ei)ω̃ifi(ω̃i) ≥ 0,

which guarantees that (10) is non-positive, and hence V is
a Lyapunov function. It implies that every equilibrium in S
is stable. Let X := {x | ω = 0, Pm = 0} be the set where
V̇ = 0. By noting that F(0, E) = 0 no matter what value
E takes, cf. (7), and in combination with (8b), it is easy to
see that the largest invariant set contained in X is S. By
LaSalle’s invariance principle [21, Thm. 4.4], we conclude
that S is globally asymptotically stable under (9) and the
convergence of any trajectory of (8) is to a point in S, cf. [22,
Cor. 5.2].

V. LEARNING TO OPTIMIZE THE TRANSIENT

Having identified conditions on the controller design (7)
to ensure closed-loop system stability, we perform RL to
find {fi, Eth

i , E
th

i }i∈N optimizing transient performance.
Note that in principle, the K∞ functions αi, αi can also be
trained by RL, see e.g. [12]. Here, we focus on optimizing
{fi, Eth

i , E
th

i }i∈N as they have a more significant impact on
transient performance. Specifically, our target optimization
problem (5) becomes:

min
{fi,Eth

i ,E
th
i }i∈N

∑
i∈N

(
∥ωi∥∞+

ρ

T

∫ T

0

gi (P
e
i (t)) dt

)
(11a)

s.t. (7), (8), (11b)

Ei < Eth
i < E

th

i < Ei, ∀i ∈ N , (11c)

P e
i ≤ fi(·) ≤ P

e

i , ∀i ∈ N , (11d)
{fi}i∈N are non-decreasing, (11e)
fi(0) = 0, ∀i ∈ N . (11f)

We use neural networks to parameterize {fi, Eth
i , E

th

i }i∈N
such that conditions (11c)–(11f) hold. Let

Eth
i =Ei+s(ei)(Ei−Ei), E

th

i =Ei+s(ei)(Ei−Ei) (12)

where s(x) = 1
1+e−x is the Sigmoid function and ei, ei ∈ R,

ei < ei are biases so that (11c) naturally holds. For fi, we
adopt the single-hidden-layer neural network design in [11],
[12] to perform the parameterization. Specifically, let σ rep-
resent the ReLU activation function, i.e., σ(x) = max{0, x}.
Each fi is parameterized using a single-hidden-layer neural
network Ni(x) with output projection to enforce (11d) as

fi(x) = P
e

i − σ(P
e

i −Ni(x)) + σ(P e
i −Ni(x)), (13a)

with

Ni(x) =

H∑
h=1

wi
hσ(x+ b

i

h) +

H∑
h=1

wi
hσ(−x+ bih), (13b)

where b
i

h, b
i
h ∈ R are biases and wi

h, w
i
h ∈ R are weights.

The next result provides the conditions on these parameters
to ensure the satisfaction of (11e)–(11f).

Proposition 3. (Single-hidden-layer neural network parame-
terization): For each i ∈ N , let fi be parameterized by (13).
If b

i

1 = 0, b
i

h ≤ b
i

h−1 (resp. bi1 = 0, bih ≤ bih−1) for all
2 ≤ h ≤ H , and

∑ℓ
h=1 w

i
h ≥ 0 (resp.

∑ℓ
h=1 w

i
h ≤ 0) for

all 1 ≤ ℓ ≤ H , then fi(0) = 0 and fi is non-decreasing.
Moreover, for any non-decreasing Lipschitz function gi :
R → R satisfying gi(0) = 0 and given any compact domain
J ⊂ R and ϵ > 0, there exists wi

h, w
i
h, b

i

h, b
i

h and H such
that |fi(x)− gi(x)| < ϵ for all x ∈ J .

This result follows from [11, Thm. 2] and relies on
the definition of ReLU function and the universal ap-
proximation property of ReLU networks. Let φ :=

{ei, ei, {wi
h, b

i

h, w
i
h, b

i
h}Hh=1}i∈N and denote by Fφ the pa-

rameterized controller using φ. Performing a forward Euler
discretization with stepsize ∆t and number of timesteps
L = T

∆t , we can rewrite (11) in the following discrete-time
parameterized form

min
φ

∑
i∈N

(
max

0≤τ≤L−1
|ωi(τ)|+

ρ

L

L−1∑
τ=0

gi (Fφ
i (ωi(τ), Ei(τ)))

)
s.t. δ(τ+1) = δ(τ)+C⊤ω(τ)∆t

ω(τ+1)=
(
I−DM−1∆t

)
ω(τ)+M−1 (Pm(τ) + P c(τ)

−P l−Fφ(ω(τ), E(τ))−CP b(δ(τ))
)
∆t

Pm(τ+1)=(I−(Tm)−1∆t)Pm(τ)−(RTm)−1ω(τ)∆t

P c(τ+1)=P c(τ)−K−1ω(τ)∆t

E(τ+1)=E(τ)+Fφ(ω(τ), E(τ))∆t



(7), (12) − (13).

We use the recurrent neural network (RNN)-based RL frame-
work in [11] to perform the training for solving the above
parametric optimization problem, where φ are updated by
gradient descent and converge to a local optimum.

Remark 4. (Regularization of steady-state SOC): In prac-
tice, it would be preferable to have the steady-state SOC,
i.e., E∗

i , stay as close as possible to the median (zero in our
case) of its feasible range [Ei, Ei], so that the ESS is better
prepared to help regulate the next disturbance. To do this,
one can add a regularization term γ

∑
i∈N |Ei(L)| to the cost

function to penalize the deviation of Ei(L) from zero, at the
cost of potentially degrading the performance with regards
to the other terms in (5a). We illustrate the performance of
this approach in the simulations below. •

VI. NUMERICAL RESULTS

We conduct a case study to illustrate the performance of
the proposed ESS controller. We use the IEEE 39-bus power
network with 10 generators and perform Kron reduction [23]
to obtain its model as (2). The inertial constants Mi, damping
factors Di, and initial power injections P l0

i are selected the
same as [11]. We set uniform Tm

i = 7 seconds, 1/Ri = 10,
1/Ki = 3, P

e

i = −P e
i = P l0

i , and Ei = −Ei = 0.3; and
we set K∞ functions αi(x) = αi(x) = x in (7), and cost
functions gi(x) = x2 in (5), for all i ∈ N .

A. Training Setup and Comparison Baseline

We build the RL environment using TensorFlow 2.7.0 and
conduct the training process in Google Colab on a single
TPU with 32 GB memory. We consider the time horizon
of interest to be T = 20 seconds. To facilitate the training
process, we only evaluate the first 5 seconds in training, with
the discretization stepsize ∆t = 0.01 seconds, i.e., L = 500.
We set the balancing coefficient in the objective function as
ρ = 0.2, and the number of episodes, the batch size, and
the number of neurons as 100, 600, 50, resp., making the
trainable parameters φ of dimension 2020 in the learning
process. We use the Adam algorithm [24] to update the
parameter φ in each episode, with a learning rate initialized
as 0.1 and decaying every 20 steps on a base of 0.7. In each
batch, P l

i is randomly generated in [−1, 1] per unit (p.u.), and
E0

i is randomly generated in
[
0.5Ei, 0.5Ei

]
p.u., ∀i ∈ N .

Similar to [11], [13], [14], we compare the proposed
controller, termed RL-ESS, with the Free-RL controller. The
latter is also parameterized by a single-hidden-layer ReLU
neural network, using the same hyperparameters as in RL-
ESS, but trained without the structural constraints (11e)-(11f)
or the safety filter design (7). Instead, the Free-RL controller
just disables any charging (discharging) action when the SOC
is at the upper (lower) bound. This simple approach ensures
satisfaction of the SOC limit, possibly with discontinuous
control actions.

B. Simulation Results

Fig. 1(a) plots the training loss curves for the proposed
RL-ESS and the Free-RL methods. The loss for RL-ESS is

(a) Training Loss (b) Learned control function f4

Fig. 1. RL training results: (a) training loss curves; (b) learned control
function fi(ωi) for i = 4.

TABLE I
COMPARISON OF TRANSIENT COSTS

Method
∑
i∈N

∥ωi∥∞ ρ
L′

∑
i∈N

L′−1∑
t=0

(P e
i (t))

2

No ESS 1.1573 -
Free-RL 0.8406 0.0073
RL-ESS 0.5944 0.0018

reduced by around 46% in 100 episodes. Compared to Free-
RL, the RL-ESS method has a warm start and achieves lower
training loss. We also illustrate the learned control function
fi(ωi) for generator bus i = 4 in Fig. 1(b).

Fig. 2 compares the system dynamics for the Free-RL
and RL-ESS methods under the same disturbances P l

i and
initial SOCs. Compared to Free-RL, the RL-ESS method sig-
nificantly enhances the transient performance with reduced
frequency and power oscillations, while strictly satisfying the
SOC and system stability requirements. We show in Table I
the transient costs for both methods and the case without any
ESS control where L′ = T/∆t = 2000 (note that RL-ESS
control achieves the lowest transient cost).

We next compare the RL-ESS with and without the
regularization for steady-state SOC described in Remark 4
under the same disturbances P l

i and initial SOCs. For the reg-
ularization, we set γ = 0.5. Fig. 3 shows the SOC dynamics
for the two cases, where one can see that the regularization
reduces the steady-state SOC deviation by 44.6%.

C. Discussion

From Fig. 1(a), one can see that the RL-ESS achieves
better training performance. We attribute this to the fact that
RL-ESS optimizes the control policy over a reduced con-
troller class leveraging model structure information, which
helps to find a better local optimum under the same training
setting. We also observe in Fig. 2 that Free-RL leads to
large oscillations of the system state. The reason is two-
fold. First, the Free-RL control lacks the safety filter design
and thus makes the control action suddenly jump when the
SOC reaches its boundary, causing the oscillations. Second,
without enforcing fi(0) = 0, cf. Fig. 1(b), the Free-RL
control does not guarantee the control action to vanish
at the equilibrium, leading to possible oscillations around
the equilibrium. This observation highlights the importance
of our safety filter design and stability condition for the
proposed ESS controller.



(a) Free-RL control

(b) RL-ESS control

Fig. 2. System dynamics under (a) Free-RL and (b) RL-ESS controls.

(a) Without regularization (b) With regularization

Fig. 3. SOC dynamics for RL-ESS control (a) without and (b) with regu-
larization. The value of the steady-state SOC deviation γ

∑
i∈N |Ei(L

′)|
is resp. (a) 0.6522 and (b) 0.3616.

VII. CONCLUSIONS

We have proposed a decentralized controller for energy
storage systems (ESS) to help stabilize frequency deviations
under disturbances. The proposed controller contains a novel
design of a safety filter to enforce the ESSs’ state of charge
constraint during the transient. We have identified conditions
on the controller design to guarantee that the closed-loop
system converges to a desired equilibrium with nominal fre-
quency. These conditions are then imposed in neural-network
training to synthesize decentralized controllers through re-
inforcement learning. Simulations show that the RL-based
ESS controller effectively reduces frequency oscillations
and transient control cost. Future work will consider more
realistic power network scenarions with pure load buses,
compare the proposed design to other ESS control strategies,
including standard ones, explore other forms of controller
design, study their corresponding stability conditions, and
leverage distributed communication among controllers.
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