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Abstract— This paper designs decentralized controllers
for energy storage systems (ESSs) to provide active power
control for frequency regulation. We propose a novel safety
filter design to gracefully enforce the satisfaction of the
limits on the state of charge during transients. Our tech-
nical analysis identifies conditions on the proposed design
that guarantee the asymptotic stability of the closed-loop
system with respect to the desired equilibria. We leverage
these results to provide a controller parameterization in
terms of a single-hidden-layer neural network that automat-
ically satisfies the conditions. We then employ a reinforce-
ment learning approach to train the controller to optimize
transient performance in terms of the maximum frequency
deviation and the control cost. Simulations in an IEEE 39-
bus network validate the significant transient performance
improvements of the proposed controller design.

Index Terms— Power systems, frequency control, energy
storage systems, reinforcement learning

[. INTRODUCTION

With the increasing penetration of renewable energy sources
such as wind turbines and photovoltaics in power systems, the
frequency may fluctuate rapidly in an extensive range, which
can lead to abnormal operation of electrical appliances and
increase the risk of large-scale power outages. The intrinsic
volatility and uncertainty of renewable generation require
sufficient backup resources, which motivates the proliferation
of energy storage systems (ESSs) in modern power grids [1].
This paper is motivated by the aim of facilitating the use of
ESSs to maintain frequency stability and enhance transient
performance after disturbances.

Literature Review: A lot of recent attention has been de-
voted to optimal frequency control, which combines frequency
control with optimal dispatch of power systems to achieve
simultaneously stable and economic operation [2]—[5]. In this
context, distributed load frequency control has been widely
investigated [6]-[10]. In [6], a primary frequency control
problem is formulated and optimal decentralized controllers
for responsive loads are derived from a partial primal-dual
gradient algorithm. This framework is extended in [7] to
secondary frequency control to recover the nominal frequency
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accounting for line congestion. Further extensions for optimal
distributed frequency control include nonlinear power flow
and higher-order generator models [8], variations in renewable
generation [9], and nonsmooth cost functions [10].

These studies focus on asymptotic stability and optimality
of the steady state post-disturbance, but do not examine the
safety and optimality of the transient. In recent research
efforts, [11] proposes a reinforcement learning framework to
develop primary frequency control with stability guarantees
and transient performance enhancement. This idea is revisited
in [12] by relaxing the stability conditions, incorporating safety
considerations, and is further extended to secondary frequency
control in [13] and adaptive control handling time-varying load
with frequency restoration [14]. However, these works only
consider controllable generators or loads with no restriction
on the delivered/absorbed energy over time and are therefore
not applicable to ESSs, hence not realizing their potential for
frequency regulation.

Statement of Contributions: ESSs have the capability to
improve transient frequency performance due to its fast speed
of charging and discharging. However, its restricted state
of charge (SOC), i.e., the limited amount of energy to be
charged or discharged, adds a critical challenge to the con-
troller design. This paper tackles this challenge by studying
the participation of ESSs in frequency control. We make
the following contributions. First, with a novel safety filter
design, we propose a class of controllers that satisfy the SOC
restriction of ESS automatically. We identify conditions on
this controller design that ensure closed-loop stability. Then,
we construct neural networks to parameterize the proposed
controllers which satisfy the identified conditions by design.
Leveraging a reinforcement learning framework based on re-
current neural networks, we train the controller to optimize the
transient performance of frequency control after disturbances,
specifically to reduce the maximum frequency deviation and
the cost of control.

I[l. SYSTEM MODEL

Here, we introduce the power network dynamical model we
use!. We model the power network as a graph G = (N, &),
where A and £ are the set of buses and lines, resp. Each line

'We use R to denote the set of real numbers. We use ()T and ()T to
represent the pseudo-inverse and transpose, resp. 1 and O are vectors of
all ones and zeros of appropriate dimensions, resp. With a slight abuse of
notation, we use |-| to denote the absolute value for real-valued arguments, and
the cardinality when the argument is a set. A continuous function o : R — R
is of (extended) class-KC if it is strictly increasing and «(0) = 0, and is Koo
if it is of class-K and lim, oo a(r) = 400, lim,—,_ oo a(r) = —o0.
Finally, || - || and || - ||oc denote the Euclidean and infinity norm, resp.



has an arbitrarily assigned reference direction and is denoted as
an ordered pair, e.g., (¢,7) € £ pointing from 4 to j; the actual
power flow may be opposite to the reference direction by
taking a negative value. Without loss of generality, we assume
each bus aggregates four power injections: a thermal generator,
an uncontrolled net load that equals load power consumption
minus undispatchable (renewable) generation, a fast responsive
load or generator, and an energy storage system (ESS).

As a basis of the dynamical model we will introduce, the
power network is initially working at a steady state:

0_ s
w; =w”,

POy ped_ plo *Z(i 1yeeBii sin(69 —69) =0,

(1a)
(1b)

for all 7 € A/, where w?® is the nominal frequency, e.g., 50 or
60 Hz, and 69 is the corresponding bus voltage phase angle.
PO, PO and P are the initial uncontrollable net load,
initial power output of the fast responsive resource, and initial
thermal generator power output, resp. The constant B;; > 0
is the absolute value of susceptance of line (¢,5) € €.

At the initial steady state: (la) means that all buses are at
the nominal frequency; (1b) means that the thermal generator
power output P/™° and the power output of fast responsive
resource P0 are balanced with the uncontrolled net load P!°
and the total power flow out of each bus .

The state of charge (SOC) of ESS at each bus ¢ does not
appear in (1). For convenience, we shift the SOC so that the
feasible range is [E;, F;], with E;, = —F;. At the initial steady
state, SOC E? € [E,, F;] and the ESS net charging power
(which indicates discharge if it is negative) is P = 0.

We consider a change that occurs from the steady state
above at time ¢t = 0: the uncontrolled net loads P/° are
disturbed by a step change P} at (a subset of) buses in N,
triggering power imbalance and frequency variation. Accord-
ing to the classic model of power network dynamics [15], and

omitting the time index t for brevity, we consider

0; = w, (2a)
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for all i € N, where (0;,w;, P/, P?) are deviations from their
initial states. In (2b), M; > 0 and D; > 0 are the inertial and
damping constants, resp. Equation (2c) is a simplified model of
generator dynamics, with time constant 7;™ > 0 characterizing
the delay effect of the slowest component in the generator,
typically the turbine. We assume the generator power setpoint
does not change, and the change of P;" is driven by a droop
controller with factor R; > 0. The change of power P of the
fast responsive resource is controlled by an integrator with
K, > 0 in (2d), which aims to achieve frequency restoration.
Approximating the ESS charge/discharge efficiencies at 100%,

the change E; in SOC can be calculated by integrating the

charge/discharge power P} as:

t
Ei(t) :E?+/ PS(r)dr, Yie N, Vt >0,
0

which leads to (2e).

[1l. PROBLEM FORMULATION AND DESIGN

Here, we formulate the problem of interest and propose a
novel controller design with safety filter to satisfy the SOC
constraint of the ESS.

A. Problem Formulation

We are interested in studying the participation of the ESS for
frequency regulation of the power network (2), and particularly
for enhancing its transient performance while guaranteeing
closed-loop stability. Most existing works focus on the fre-
quency regulation problem without the ESS, e.g. [6], [11] for
primary frequency control and [7], [8], [13] for secondary
frequency control. Specifically, we aim to design decentralized
ESS controllers {Pf};cps so that:

e System (2) converges to an equilibrium which has fre-

quency at the nominal value;

e The ESS charge/discharge power satisfies:

PE<PE(t) < P;, VieN, Vvt >0, 3)

where P¢ < 0 and P; > 0 are given rate limits for
discharge and charge, resp.;
e The SOC of each ESS is restricted as:

E; < Ei(t) < E;, Yi e N, ¥t > 0; 4)

o The transient cost is minimized.
The control objectives above are formalized by:

T
. . r (pe
s.t. (2),(3),(4) (5b)
Jim wi(t) =0,Vi e NV, (5¢)

where T is the time horizon of interest and g; is a control
cost function of the ESS operator’s interest. The two terms
in objective (5a) are respectively to minimize the maximum
frequency deviation and the average accumulative cost of
control during the transient. p is a weighting factor to trade-off
these two objectives.

The optimization problem (5) is non-convex and infinite-
dimensional given that the decision variables are trajectories.
Reinforcement learning (RL) offers an attractive solution
approach to tackle this complexity. In RL [16], agents are
free to interact with the environment and explore behaviors
towards reward maximization to learn an optimal control
policy. Existing RL approaches, e.g. [17], [18], neglect the
hard constraints (3), (4) and the asymptotic constraint (5c),
and instead consider soft penalization on these objectives.
This does not guarantee system stability and safety, and
might result in control policies that are not transferable to
real implementations. Similar to recent works [11], [12], this
motivates us to identify specific controller forms that meet
these constraints by design, and then optimize the control
policy using RL over this reduced class.



B. Decentralized ESS Controller with Safety Filter

We propose the following decentralized ESS controller:

Pf = Fi(wi, Ei),

K3

Vie N, (6)

where F;(w;, E;), i € N, is of the form:

maX{j Em fl(wl) fl(wz)}a E; < Egha

fl(wz)a E;;h < Ei < E:h’ (7)
: a;(E;— i

min { ZEBLfi(w) filw) ). B2 P,

where B, < E < Ezh < Ejand f; : R =
Lipschitz continuous function that satisfies P; < f;(w;
for all w; € R. A salient feature of our design (7) is the
safety filter specified by Ko functions o,(-), @;(-), activated
at the thresholds Egh, Ezh. The safety filter plays a critical role
in preventing the violation of the SOC limits, as we discuss
below. The controller (7) is a continuous function of w; € R,
particularly at the breaking points Eﬁh, Ezh.

We explain the rationale behind our design (6), (7). Most
existing primary frequency controllers are functions of the
frequency deviation w; only, assuming that the controlled
resources can change their active power output as needed for
stabilizing the frequency excursion. However, this is not the
case here, because an ESS can only operate within its SOC
limits, beyond which it cannot deliver or absorb active power
anymore. This motivates us the addition of E; as another
input of the control function F; to decide the control action
according to the SOC in real time.

The terms related to E;, which we call safety filter, take
effect only when needed and in a desired manner. For instance,
in case that F; < E‘;h, i.e., the SOC plunges below the
threshold EZ to approach its lower limit £, it is preferable to
charge than discharge. If f; (wl) > 0, then the ESS is charged
at power Pf = max{ a((E”‘ = )fl(wl) filw)} = fi(w;), in
which case the safety filter does not intervene. In contrast,
if fi(w;) < 0O, then Pf = 5((511 Ii: fi(w;), ie., the ESS is
discharged at a power that is smaller than | f; (wz)| until the
discharge power diminishes to zero as the lower SOC limit
E, =FE, 1s reached. A similar argument applies to the case

E; > E . Overall, the proposed safety filter in (7) strictly
guarantees the satisfaction of the SOC limits at every time
instant during the transient.

The design of f;(-) can be flexible as long as it is Lipschitz
continuous and its range is within [P¢, P;]. In particular,
fi(-) can be a nonlinear mapping obtained by means of a
learning method as we will elaborate. This shall make it more
capable than classic linear controllers in improving transient
performance, such as the maximum frequency deviation and
integrated control cost.

R1sa
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IV. CLOSED-LOOP SYSTEM PERFORMANCE

In this section, we identify conditions on the ESS controller
design so that the closed-loop system (2), (6) admits desired
configurations as equilibria and they are asymptotically stable.

A. Equilibrium Set of the Closed-loop System

Let 0, w, P™, P€, and E be stacked vectors of 8;, w;, P,

P¢, and E; for all i € N, resp. Define § := CT6 € RI€l,

where the incidence matrix C' € RWIXIEl has its i-th row,
k-th column element defined as:

1, if line k € &£ starts from bus 4,
—1, if line k € £ ends at bus 1,
0, otherwise.

Cir =

We rewrite system (2) with the feedback control (6) in the
following compact form

§=C"Tw, (8a)

M = —Dw—CP"(8)+P™+P°—P'— F(w, E), (8b)
T"P™ =—-P" - R 'w (8¢)
PC=_—K lw, (8d)

E = F(w,E), (8e)

where D, R and K are resp. diag(D1,..., Dzr),
diag(R1, ..., Rjn)), and diag(K1, ..., K|n), F(w, E) € RV

collects F;(w;, B;) for all ¢+ € A, and the changes in line

power flows are
P"(8) := Bsin(6° + &) — Bsin(8?).

Here B € RI€IXI®] is the diagonal matrix collecting B;; for

all (¢,7) € &, and the vector-valued expression sin(d) takes

the scalar sin(-) of each element of input §. We assume the

angle differences & is within the following region®

A= {seRFI| [ +a] < T, vhee) O

The next result identifies the equilibrium set of (8).

Proposition 1. (Equilibria of the closed-loop system): The
closed-loop system (8) admits the following set of equilibria:
S ={(6*w", P, P E*) |w" =0, P =0,
= CP"(6*)+ P!, F(0,E*) =0}.

Proof. 1t is straightforward by (8c) and (8d) that an equilib-
rium (6*, w*, P™*, P E*) of (8) must satisfy w* = 0 and
P™ = 0. By (8¢), we have F(w*,E*) = F(0,E*) = 0.
Then (8b) implies P¢* = CP?(§*) + P'. O

Given our safety filter-based controller design in Section III-
B,E,<E; < E; is strictly guaranteed. Together with (9), it
follows that S is compact. Moreover, from (7), if f;(0) = 0,
then 7;(0, E}) = 0 for all Ef € R. Using this observation,
we prove next the asymptotic stability of S.

2We allow each bus angle 6; to change on R, not restricting it in, e.g.,
[0, 27); however, all angle differences across lines, e.g., (69 +6; 760 0;),
are shifted by approprlate multlples of 27 to get minimum absolute values
Furthermore, let P! = {P! : ||[LT (Pm0 4 pe0 — pI0 — pl) || < 1},
where ||yl|e,co := max(; jyeg lyi — y;| and L := CBC'T is the Laplacian
matrix. According to [19], [20], if P! € P!, then (9) holds.



B. Convergence to the Equilibrium Set

Let z := (0,w,P™,P° E). Given z* € S, define the
deviation  := x—xz*, and similarly for its individual elements.
Following [8], we construct the following energy function,

1
V(#) =0 Mo+

L(pm\" grmpm o L (pe) kpe
2 ﬂ ) +ﬂ )

+ Z Bk/ sin(8p+65+0) — sin(6)+6;)] do,

where T := diag(T7", ..., T|};) collects the generator time
constants. Given (9), note that V' is positive definite with
respect to the origin. The time derivative of V' along any
trajectory Z(t), V¢t > 0 of the closed-loop system (8) is:
. . ~ T * ~ N\ T =z
V(z) = o M+ (Pm) RT™P™ + (PC> KP*
+ Y By, [sin(df +0%) — sin(0R+05)] o
ke&
vl [Pm + P°— F(&,E) — D& — CPb}
~ T ~\NT
+(P) R(-P"-R72) - (P7) @
NT
+(P) e
ieN

where P® := P(§) — PY(6*) and F(&, E) == F(w, E) —
F(w*, E'). The next result establishes the asymptotic stability
of the equilibrium set.

[Rl- (P;n)QfDiwf — & T (@, E)] (10)

Theorem 2. (Global asymptotic stability of the equilibrium
set): Suppose f; in the ESS controller (7) is Lipschitz and
non-decreasing, and f;(0) = 0 for all i € N. Then, under (9),
S is globally asymptotically stable and the convergence of
trajectories is pointwise. In particular, tiigrnoow(t) =w*=0.
Proof. From (7), whatever value E; takes, it has F;(w}, E;) =
0, and therefore F;(w;, E;) = Fi(ws, By) — Fi(wi, E;) =
Filws, B;) = pi(E;) fi(wi) = pi(E;) fi(@;), where the state-
dependent factor u;(E;) belongs to [0,1] for all : € V. Since
fi(+) is non-decreasing and satisfies f;(0) = 0, it follows that

i Fi(@i, Bi) = pi(E;)@i fi(@i) > 0,

which guarantees that (10) is non-positive, and hence V' is
a Lyapunov function. It implies that every equilibrium in S
is stable. Let X := {z | w = 0, P™ = 0} be the set where
V = 0. By noting that F(0, E) = 0 no matter what value E
takes, cf. (7), and in combination with (8b), it is easy to see
that the largest invariant set contained in X is S. By LaSalle’s
invariance principle [21, Thm. 4.4], we conclude that S is
globally asymptotically stable under (9) and the convergence
of any trajectory of (8) is to a point in S, cf. [22, Cor. 5.2]. O

V. LEARNING TO OPTIMIZE THE TRANSIENT

Having identified conditions on the controller design (7) to
ensure closed-loop system stability, we perform RL to find

—th o .
{f;, E"® 'E."};cnr optimizing transient performance. Note

that in principle, the K. functions q,,o; can also be
trained by RL, see e.g. [12]. Here, we focus on optimizing
{ fi,Eﬁh,EEh}ieN as they have a more significant impact
on transient performance. Specifically, our target optimization
problem (5) becomes:

> (il t T/Tgi(Pf(t))dt) (112)

min
{fi, EPEP Vien ieN
s.t. (7), (8), (11b)
E,<EM<E"<FE, VieN, (o
P{ < () <P, VieN, (11d)
{fi }ienr are non-decreasing, (11e)
£:(0) =0, Vi e N. (11f)

We use neural networks to parameterize { fi,ﬂﬁh,Ezh}ie N
such that conditions (11¢)—(11f) hold. Let

E"—E,+s(c,)(Ei—E,), B} =E,+s(@)(Ei—E,) (12)

where s(z) = H% is the Sigmoid function and e;, €; € R,
e; < e; are biases so that (11c) naturally holds. For f;, we
adopt the single-hidden-layer neural network design in [11],
[12] to perform the parameterization. Specifically, let o rep-
resent the ReLU activation function, i.e., o(z) = max{0, z}.
Each f; is parameterized using a single-hidden-layer neural

network N;(z) with output projection to enforce (11d) as
filw) = P; — o(P; = Ni(2)) + o(E§ — Ni(2)), (13a)

with

—z+1bj,), (13b)

H
Z who J;—l—bh

where b,,b’ € R are biases and wh,wi € R are weights.
The next result provides the conditions on these parameters to
ensure the satisfaction of (11e)—(11f).

T
5

Proposition 3. (Single-hidden-layer neural network parame-
terization): For each i € N, let f; be parameterized by (13).
Ifby = 0, b, < by y (resp. b = 0, b, < b} ) for all
2 < h < H, and 22:1 E}; > 0 (resp. 22:1 Q}L < 0) for
all 1 < ¢ < H, then f;(0) = 0 and f; is non-decreasing.
Moreover, for any non-decreasing Lipschitz function g; : R —
R satisfying g;(0) = 0 and given any compact domain J C R
and ¢ > 0, there exists @272275;”52 and H such that
|fi(x) — gi(z)| < e for all x € J.

This result follows from [11, Thm. 2] and relies on the
definition of ReLU function and the universal approximation
property of ReLU networks.

Let ¢ := {&,¢;, {Wh, by, wl, bi YL Yicnr and denote by
F¥ the parameterized controller using . Performing a for-
ward Euler discretization with stepsize At and number of
timesteps L = %, we can rewrite (11) in the following
discrete-time parameterized form

min 3 (o, k)l Zgl F{ (), (7)) )
s.t. (5(7‘+1) = 5(T)+CTW(T)At



w(r+1)=(I-DM 'At)w(r)+ M~ (P™(1) + P*(1)
—P'— F?(w(r), E(T))—CPb(é(T))) At

P™(r4+1)=(I—(T™) *At)P™ (1) —(RT™) 'w(r)At

Pe(r+1)=P(1)— K tw(t)At

E(r+1)=E(1)+F?(w(r), E(T))At

(7, (12) — (13).

We employ the recurrent neural network (RNN)-based RL
framework in [11] to perform the training for solving the above
parametric optimization problem, where the parameters ¢ are
updated by gradient descent and converge to a local optimum.

Remark 4. (Regularization of steady-state SOC): In practice,
it would be preferable to have the steady-state SOC, i.e., B,
stay as close as possible to the median (zero in our case) of
its feasible range [E;, F;], so that the ESS is better prepared
to help regulate the next disturbance. To do this, one can
add a regularization term v ) . _ - | E;(L)| to the cost function
to penalize the deviation of FE;(L) from zero, at the cost of
potentially degrading the performance with regards to the other
terms in (5a). We illustrate the performance of this approach
in the simulations below. °

VI. NUMERICAL RESULTS

We conduct a case study to illustrate the performance of
the proposed ESS controller. We use the IEEE 39-bus power
network with 10 generators and perform Kron reduction [23]
to obtain its model as (2). The inertial constants );, damping
factors D;, and initial power injections P/* are selected the
same as [11]. We set uniform 7™ = 7 seconds, 1/R; = 10,
1/K; =3, P; = —P¢ = P and E; = —E; = 0.3; and
we set Koo functions @;(z) = o;(z) = z in (7), and cost
functions g;(z) = 22 in (5), for all i € V.

A. Training Setup and Comparison Baseline

We build the RL environment using TensorFlow 2.7.0 and
conduct the training process in Google Colab on a single
TPU with 32 GB memory. We consider the time horizon
of interest to be T" = 20 seconds. To facilitate the training
process, we only evaluate the first 5 seconds in training, with
the discretization stepsize At = 0.01 seconds, i.e., L = 500.
We set the balancing coefficient in the objective function as
p = 0.2, and the number of episodes, the batch size, and the
number of neurons as 100, 600, 50, resp., making the trainable
parameters ¢ of dimension 2020 in the learning process.
We use the Adam algorithm [24] to update the parameter ¢
in each episode, with a learning rate initialized as 0.1 and
decaying every 20 steps on a base of 0.7. In each batch, P}
is randomly generated in [—1,1] per unit (p.u.), and E? is
randomly generated in [0.5E;,0.5E;] p.u., for all i € NV.

Similar to [11], [13], [14], we compare the proposed con-
troller, termed RL-ESS, with the Free-RL controller. The latter
is also parameterized by a single-hidden-layer ReLU neural
network, using the same hyperparameters as in RL-ESS, but
trained without the structural constraints (11e)-(11f) or the
safety filter design (7). Instead, the Free-RL controller just
disables any charging (discharging) action when the SOC is
at the upper (lower) bound. This simple approach ensures
satisfaction of the SOC limit, possibly with discontinuous
control actions.

—— Free-RL 010
—— RL-ESS

£ !
< -
5 1007 3
&
0.751
-0.10

0 20 80 100

filw) (pu)
g

—— Free-RL
—— RL-ESS

-03 =02 =01 0.0 0.1 0.2 0.3

40 60
Episoide w; (Hz)

(a) Training Loss (b) Learned control function fy

Fig. 1. RL training results: (a) training loss curves; (b) learned control
function f; (w;) for i = 4.

TABLE |
COMPARISON OF TRANSIENT COSTS
L'—1
Method || 3 flwills | £ X X (PF(1)?
iEN ieN t=0
No ESS 1.1573 -
Free-RL 0.8406 0.0073
RL-ESS 0.5944 0.0018

B. Simulation Results

Fig. 1(a) plots the training loss curves for the proposed RL-
ESS and the Free-RL methods. The loss for RL-ESS is reduced
by around 46% in 100 episodes. Compared to Free-RL, the
RL-ESS method has a warm start and achieves lower training
loss. We also illustrate the learned control function f;(w;) for
generator bus ¢ = 4 in Fig. 1(b).

Fig. 2 compares the system dynamics for the Free-RL
and RL-ESS methods under the same disturbances P! and
initial SOCs. Compared to Free-RL, the RL-ESS method
significantly enhances the transient performance with reduced
frequency and power oscillations, while strictly satisfying the
SOC and system stability requirements. We show in Table I
the transient costs for both methods and the case without any
ESS control where L' = T/At = 2000 (note that RL-ESS
control achieves the lowest transient cost).

We next compare the RL-ESS with and without the regular-
ization for steady-state SOC described in Remark 4 under the
same disturbances Pil and initial SOCs. For the regularization,
we set v = 0.5. Fig. 3 shows the SOC dynamics for the two
cases, where one can see that the regularization reduces the
steady-state SOC deviation by 44.6%.

C. Discussion

From Fig. 1(a), one can see that the RL-ESS achieves better
training performance. We attribute this to the fact that RL-ESS
optimizes the control policy over a reduced controller class
leveraging model structure information, which helps to find a
better local optimum under the same training setting. We also
observe in Fig. 2 that Free-RL leads to large oscillations of the
system state. The reason is two-fold. First, the Free-RL control
lacks the safety filter design and thus makes the control action
suddenly jump when the SOC reaches its boundary, causing
the oscillations. Second, without enforcing f;(0) = 0, cf.
Fig. 1(b), the Free-RL control does not guarantee the control
action to vanish at the equilibrium, leading to possible oscilla-
tions around the equilibrium. This observation highlights the
importance of our safety filter design and stability condition
for the proposed ESS controller.
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Fig. 2. System dynamics under (a) Free-RL and (b) RL-ESS controls.
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Fig. 3. SOC dynamics for RL-ESS control (a) without and (b)
with regularization. The value of the steady-state SOC deviation
Y2 ien |Ei(L")] is resp. (a) 0.6522 and (b) 0.3616.

VIlI. CONCLUSIONS

We have proposed a decentralized controller for energy stor-
age systems (ESS) to help stabilize frequency deviations under
disturbances. The proposed controller contains a novel design
of a safety filter to enforce the ESSs’ state of charge constraint
during the transient. We have identified conditions on the
controller design to guarantee that the closed-loop system
converges to a desired equilibrium with nominal frequency.
These conditions are then imposed in neural-network training
to synthesize decentralized controllers through reinforcement
learning. Simulations show that the RL-based ESS controller
effectively reduces frequency oscillations and transient control
cost. Future work will consider more realistic power net-
work scenarions with pure load buses, compare the proposed
design to other ESS control strategies, including standard
ones, explore other forms of controller design, study their
corresponding stability conditions, and leverage distributed

communication among controllers.
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