
IEEE CONTROL SYSTEMS LETTERS 1

Constraints on OPF Surrogates for Learning Stable

Local Volt/Var Controllers

Zhenyi Yuan Guido Cavraro Jorge Cortés

Abstract—We consider the problem of learning local Volt/Var
controllers in distribution grids (DGs). Our approach starts from
learning separable surrogates that take both local voltages and
reactive powers as arguments and predict the reactive power
setpoints that approximate optimal power flow (OPF) solutions.
We propose an incremental control algorithm and identify two
different sets of slope conditions on the local surrogates such that
the network is collectively steered toward desired configurations
asymptotically. Our results reveal the trade-offs between each
set of conditions, with coupled voltage-power slope constraints
allowing an arbitrary shape of surrogate functions but risking
limitations on exploiting generation capabilities, and reactive
power slope constraints taking full advantage of generation
capabilities but constraining the shape of surrogate functions.
AC power flow simulations on the IEEE 37-bus feeder illustrate
their guaranteed stability properties and respective advantages
in two DG scenarios.

Index Terms—Local Volt/Var control, asymptotic stability.

I. INTRODUCTION

The massive deployment of distributed energy resources

(DERs) in DGs represents an opportunity to improve the

performance of the power grid and reduce greenhouse gas

emissions. Nevertheless, if not properly regulated, DERs’

power injections can pose challenges to system operations

and stability. For instance, the intermittence of renewable

energy sources can cause large voltage variations [1]. Volt/Var

control strategies aim to keep voltages within safe preassigned

limits by commanding DERs’ reactive power injections. Here,

we propose to learn local Volt/Var controllers with improved

optimality and rigorous performance guarantees.

Literature Review: Generator reactive power outputs are

classically computed in an open-loop fashion as the solution of

an OPF problem, see e.g., [2]. Learning-based approaches have

recently been proposed to predict OPF solutions targeting sce-

narios of high DERs penetration and increased load variability,

aiming to solve numerous OPF problem instances within a

limited timeframe [3], [4]. Nevertheless, the aforesaid methods

require complete information, namely, power demands from

loads and generation limits from generators must be exactly
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known. This is not possible in most of the actual DGs,

e.g., because individual loads are unlikely to announce their

demand profiles in advance, and the evolving availability of

small-size generators is hard to predict.

This has motivated the development of closed-loop strate-

gies, which compensate for the lack of information with mea-

surements retrieved from the field. Given the massive number

of controllable devices hosted in future DGs, decentralized

approaches are often advocated for practical applications.

There are two notable classes of decentralized algorithms.

First, we have distributed algorithms where agents cooperate

with peers. The literature has seen the recent development

of distributed optimization-based feedback controllers, which

steer the network towards OPF solutions by means of the

cyclic repetition of sensing, communication of key variables

with peers, computation of power setpoints, and their applica-

tion, see e.g., [5]–[7]. Nevertheless, distributed strategies need

a reliable real-time communication infrastructure, which is

rarely present in actual DGs. Second, we have local strategies,

in which each agent makes decisions based only on informa-

tion available locally, see e.g., the IEEE standard 1547 [8]

and [9]. Local schemes have intrinsic performance limita-

tions and in general lack of optimality considerations [10].

To enhance the performance of local control schemes and

reduce the performance gap with distributed optimization-

based strategies, recent research efforts develop learning-

based control frameworks for devising local Volt/Var strategies

from data retrieved from DGs [11]–[14]. Although providing

interesting insights on learning Volt/Var rules, most of the

existing works [15]–[17] do not assess the system stability and

hence are not suitable for practical applications. Also, in these

methods, the local surrogates learned to predict OPF solutions

only consider voltage magnitudes, which limits performance

as, from a local perspective, the same voltage magnitude might

correspond to multiple OPF solutions [14].

Statement of Contributions: This paper proposes1 a frame-

work for devising local Volt/Var control schemes acting as

local surrogates of OPF solvers. Desirable network config-

1Throughout the paper, R and C denote the set of real and complex
numbers, respectively. Upper and lower case boldface letters denote matrices
and column vectors, respectively. Calligraphic symbols denote sets. Given a
vector a (resp., diagonal matrix A), its n-th (diagonal) entry is denoted by
an (An). A ≻ (º) 0 denotes that matrix A is positive (semi-) definite, and
A ≺ (¹) 0 denotes that matrix A is negative (semi-) definite. The symbol
(·)⊤ stands for transposition, and 1,0, I denote vectors of all ones and zeros
and identity matrix with appropriate dimensions, respectively. Operators ℜ(·)
and ℑ(·) extract the real and imaginary parts of a complex-valued argument,
and act element-wise. With a slight abuse of notation, we use | · | to denote
the absolute value for real-valued arguments and the cardinality when the
argument is a set. ‖ · ‖ represents the Euclidean norm. Given a matrix with
real eigenvalues, λmax(·) and λmin(·) respectively represent its largest and
smallest eigenvalue. An eigenvalue λ and its associated eigenvector ξ form
the eigenpair (λ, ξ). The range of φ is the set of its possible output values.
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urations are described by equilibrium functions, which map

local information to an approximation of the optimal generator

reactive power output. An incremental control algorithm then

steers the network toward the equilibria identified by the

equilibrium functions. Compared to our previous works [13],

[14], here the equilibrium functions depend not only on voltage

magnitudes but also on reactive power injections, which has

a significant impact in reducing the optimality gap of the

proposed local strategies. Two different sets of conditions

ensuring the asymptotic stability of equilibrium points for the

incremental rule are provided. One requires coupling slope

constraints on the functions of voltages and functions of

reactive powers (referred to as CVP-SC), and another requires

only slope constraints on the functions of reactive powers and

decreasing functions of voltages (referred to as RP-SC). Our

results reveal the trade-offs between each set of conditions

regarding the optimality gap; in particular the CVP-SC looks

more suitable in DGs with relatively small-size generators, and

the RP-SC looks more suitable in DGs with relatively large-

size generators.

II. DG MODELING AND PROBLEM FORMULATION

A radial single-phase (or a balanced three-phase) DG having

N + 1 buses can be modeled by a tree graph G = (N ,L)
rooted at the substation. The nodes in N := {0, . . . , N} are

associated with grid buses, and the edges in L with lines.

Let (m,n) be an edge in L; y(m,n) ∈ C is its admittance.

Neglecting the shunt admittances, the bus admittance matrix

Ỹ ∈ C
(N+1)×(N+1) is defined as

(Ỹ)mn =











−y(m,n) if (m,n) ∈ E ,m 6= n,

0 if (m,n) /∈ E ,m 6= n,
∑

k 6=n y(k,n) if m = n.

Note that Ỹ is symmetric and satisfies Ỹ1 = 0. Also, by

separating the components associated with the substation and

the ones associated with the other nodes, Ỹ is partitioned as

Ỹ =

[

y0 y⊤
0

y0 Y

]

,

with y0 ∈ C, y0 ∈ C
N , and Y ∈ C

N×N ; Y is invertible when

the network is connected [18], and we denote R̃ := ℜ(Y−1)
and X̃ := ℑ(Y−1) ∈ R

N×N .

The voltage magnitude at bus n ∈ N is denoted as vn ∈ R.

The substation node, labeled as 0, behaves as an ideal voltage

source imposing the nominal voltage of 1 p.u. The active and

reactive power injections at bus n ∈ N are pn, qn ∈ R, respec-

tively. Powers take positive (negative) values, i.e., pn, qn ≥ 0
(pn, qn ≤ 0), when they are injected into (absorbed from) the

grid. The vectors v,p,q ∈ R
N collect the voltage magnitudes,

active and reactive power injections for buses 1, 2, . . . N .

Voltages and powers are related by the nonlinear power flow

equations but here we consider the linearization [5], [7], [19]

v = R̃p+ X̃q+ 1, (1)

because it will be useful to prove the stability properties of

the proposed control algorithms. Nevertheless, the devised

algorithms are tested on an exact AC power flow solver in

Section IV. Using (1), power losses can be approximated as

q⊤R̃q+ p⊤R̃p.

Assume a subset C ⊆ N of buses host DERs, with |C| = C.

Every DER corresponds to a smart agent provided with some

computational and sensing capabilities, i.e., it can measure

its voltage magnitude. The remaining nodes constitute the set

L = N \ C and are referred to as loads. For convenience, we

partition reactive powers and voltage magnitudes by grouping

together the nodes belonging to the load and generation sets,

q =
[

q⊤
C q⊤

L

]⊤
, v =

[

v⊤
C v⊤

L

]⊤
.

The matrices R̃ and X̃ can be partitioned as well, yielding

R̃ =

[

R RL

R⊤
L RLL

]

, X̃ =

[

X XL

X⊤
L XLL

]

,

with R,X ≻ 0, cf. [19]. Fixing the uncontrollable variables

p,qL, and using (1), voltage magnitudes become functions

exclusively of qC ,

v(qC) =

[

X

X⊤
L

]

qC + v̂, (2)

where

v̂ =

[

v̂C

v̂L

]

=

[

XL

XLL

]

qL+R̃p+1.

A distribution system operator seeks the generator reactive

power injections to be optimal, i.e., to implement the solution

of an optimal reactive power flow (ORPF) problem. Here,

we consider the following ORPF problem formulation, though

other versions could be considered as well [14]

q⋆
C(p,qL) := argmin

qC

q⊤R̃q+ p⊤R̃p (3a)

s.t. (2)

vmin ≤ v(qC) ≤ vmax (3b)

qn ∈ Qn, n ∈ C (3c)

where vmin,vmax ∈ R
N are desired bus voltage limits. The

reactive power injections of bus n must be within the feasible

limits described by the set Qn = {qn : qmin,n ≤ qn ≤ qmax,n}
with qmin,qmax ∈ R

C being the minimum and maximum

DERs’ reactive power injection vectors. The cost encodes the

goal of minimizing line losses. Solving (3) inevitably requires

knowledge of the network-wide quantities (p,qL), making

purely local control strategies in general unsuccessful.

To address this, we propose to obtain local surrogates of q⋆
C

by learning, for each agent n ∈ C, a function hn,

hn : Qn × R → Qn, (qn, vn) 7→ hn(qn, vn) (4)

that takes as input the current local voltage vn and reactive

power qn, and gives as output an approximation of the reactive

power that the DER at node n would inject to steer the network

to the solution of (3). Note that each function hn only depends

on local variables. Concurrently, we design local control rules

whose equilibrium satisfies

qn = hn(qn, vn) (5)
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and steer the network toward desired configuration described

by {hn}n∈C . For this reason, we refer to {hn}n∈C as equilib-

rium functions. Throughout the paper, we consider equilibrium

functions that meet the following assumption.

Assumption II.1. (Separable and differentiable equilibrium

functions): The equilibrium functions have the form

hn(qn, vn) = ψn(qn) + φn(vn), n ∈ C (6)

where φn and ψn are functions solely of the local voltage

and reactive power, respectively. Moreover, φn and ψn are

continuously differentiable.

Let Lφn
and Lψn

represent the Lipschitz constants of

φn and ψn, respectively. For convenience, denote Lφ :=
maxn∈C Lφn

, Lψ := maxn∈C Lψn
.

Remark II.2. (Comparison to existing forms of equilibrium

function): In most of the existing local Volt/Var control

schemes of the literature [9], [13], the equilibrium functions

are a special case of Assumption II.1, as they only depend

on the local voltages (i.e., ψn = 0). Also, hn could further

be generalized as a function that takes all local information

vn, qn, pn as arguments. Since the inclusion of pn does not

affect the following closed-loop stability analysis, here we

consider hn’s functions of qn and vn. •

III. LEARNING STABLE LOCAL VOLT/VAR CONTROLLERS

In this section, we propose a framework for learning local

Volt/Var controllers with closed-loop stability guarantees.

A. Local Volt/Var Controllers Design

Here, we propose a local control scheme to steer the system

toward configurations meeting (5) and provide conditions on

the equilibrium functions that ensure asymptotic convergence.

The control algorithm is an incremental rule of the form

qn(t+ 1) = qn(t) + ǫ(hn(qn(t), vn(t))− qn(t)), n ∈ C, (7)

with 0 ≤ ǫ ≤ 1. Note that the set Qn is forward invariant

under (7), i.e., if qn(t) ∈ Qn, we also have qn(t+1) ∈ Qn. Let

Q = ×n∈CQn and build the functions h, φ, and ψ collecting

all the functions hn, φn, and ψn, respectively. Then (4) implies

that h : Q× R
C → Q, and that (6) yields

h(qC ,vC) = ψ(qC) + φ(vC).

The power network evolution can then be described by

qC(t+ 1) = (1− ǫ)qC(t) + ǫh(qC(t),vC(t)), (8a)

vC(t+ 1) = XqC(t+ 1) + v̂C . (8b)

Plugging (8b) into (8a), we obtain the operator g : Q → Q in

terms of the reactive power

g(qC) := qC+ǫ(ψ(qC)+φ(XqC+v̂C)− qC).

Note that the iteration qC(t + 1) = g(qC(t)) precisely

corresponds to the control rule (7). Since Q is convex, compact

and g is continuous, it follows from the Brouwer’s fixed-

point theorem [20] that g has a fixed point. In other words,

system (8) admits an equilibrium. Note that any equilibrium

(q♯
C ,v

♯
C) of (8) satisfies by definition

q
♯
C = h(q♯

C ,v
♯
C), (9a)

v
♯
C = Xq

♯
C + v̂C . (9b)

That is, any equilibrium of (8) satisfies (5). The next result

provides conditions on the equilibrium functions that guaran-

tee the uniqueness and asymptotic stability of the equilibrium.

Theorem III.1. (Uniqueness and asymptotic stability of the

equilibrium): Under Assumption II.1, the system (8) has an

unique equilibrium point which is asymptotically stable if

Lψ + Lφ‖X‖ < 1. (C1)

Proof. For all qC ,q
′
C ∈ Q, note that

g(qC)− g(q′
C) = (1− ǫ)(qC − q′

C) + ǫ(ψ(qC)−ψ(q′
C))

+ ǫ(φ(XqC + v̂C)− φ(Xq′
C + v̂C))

= ((1− ǫ)I+ ǫΨ+ ǫΦX)(qC − q′
C),

where Ψ and Φ are diagonal matrices with diagonal elements

Ψn :=

{

ψn(qn)−ψn(q
′

n
)

qn−q′
n

qn 6= q′n,

0 qn = q′n,

Φn :=

{

φn(vn)−φn(v
′

n
)

vn−v′
n

vn 6= v′n,

0 vn = v′n.

Note that

‖g(qC)− g(q′
C)‖ ≤ ‖(1− ǫ)I+ ǫΨ+ ǫΦX‖‖qC − q′

C‖

≤ (1− ǫ+ ǫ(Lψ + Lφ‖X‖))‖qC − q′
C‖.

From (C1), it follows that 0 < 1− ǫ+ ǫ(Lψ + Lφ‖X‖) < 1,

i.e., g is a contraction. Invoking the Banach’s fixed-point

theorem [20], we conclude that system (8) has an unique

equilibrium which is asymptotic stable.

Condition (C1) allows the equilibrium functions to have

arbitrary shapes, unlike the classic monotone piecewise linear

form employed in the literature, see e.g., [8], [9]. However,

condition (C1) constrains both the slope of the functions

{φn, ψn}n∈C , i.e., Lφ < 1/‖X‖ and Lψ < 1. The drawback is

that the range of hn might be a strict subset of Qn, especially

when qmax,n is large, meaning that the corresponding DER n
can not fully exploit its generation capabilities.

This limitation can be addressed by relaxing the slope

constraints on the functions {φn}n∈C at the cost of requiring

them to be decreasing, as in e.g., [9], [13], [14] (these

works, however, consider equilibrium functions of the form

hn = φn, i.e., only depending on local voltage magnitudes).

The next result provides another set of conditions ensuring the

uniqueness and asymptotic stability of the equilibrium of (8)

for equilibrium functions of the form (6). To begin with, we

first give a result bounds the eigenvalues of a normal matrix

with perturbation that will be used next.

Lemma III.2. (Bauer and Fike Theorem [21, Corollary

6.3.4]): Let A,E ∈ R
n×n and suppose that A is normal.

If λ̂ is an eigenvalue of A+E, then there is an eigenvalue λ
of A such that |λ̂− λ| ≤ ‖E‖.
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Now we are ready to give conditions that ensure asymptotic

stability of the closed-loop system.

Theorem III.3. (Uniqueness and asymptotic stability of the

equilibrium): Under Assumptions II.1, the system (8) has an

unique equilibrium point if

{φn}n∈C are decreasing, Lψ < 1. (C2)

Further, the equilibrium point is asymptotically stable if

ǫ <
2

Lψ + Lφ‖X‖+ 1
. (10)

Proof. The uniqueness of the equilibrium can be proved by

contradiction. Assume that qC and q′
C are equilibrium points,

with qC 6= q′
C . Then,

qC − q′
C = φ(vC) +ψ(qC)− φ(v′

C)−ψ(q′
C).

It follows that

(I−Ψ)(qC − q′
C) = φ(vC)− φ(v′

C) = Φ(vC − v′
C),

and consequently

qC − q′
C = (I−Ψ)−1Φ(vC − v′

C). (11)

Note that condition (C2) and the fact that the {φn}n∈C

are decreasing yields I − Ψ ≻ 0 and Φ ≺ 0 and hence

(I−Ψ)−1Φ ≺ 0. On the other hand, (9b) yields qC − q′
C =

X−1(vC − v′
C), which contradicts (11) as X−1 ≻ 0.

Next, we establish asymptotic stability. The Jacobian of g is:

Jg := (1− ǫ)I+ ǫJψ + ǫJφX,

where the diagonal matrices Jφ and Jψ are the Jacobian ma-

trices of φ and ψ, respectively. Since {φn}n∈C are decreasing,

Jφ ≺ 0. Notice that Jg is similar to the matrix

Ĵg = (1− ǫ)I+ ǫJψ − ǫ(−Jφ)
1

2X(−Jφ)
1

2

= I+ ǫ(Jψ − I)− ǫ(−Jφ)
1

2X(−Jφ)
1

2 ,

which is symmetric and therefore its eigenvalues are all real.

Hence, Jg and Ĵg share the same real eigenvalues. We first

show λmax(Jg) < 1. Since Lψ < 1, we have Jψ − I ≺
0; combined with the fact that (−Jφ)

1

2X(−Jφ)
1

2 ≻ 0, we

conclude that λmax(Ĵg) < 1, and therefore λmax(Jg) < 1.

Next, we show that λmin(Jg) > −1. Since (1− ǫ)I+ ǫJψ

is symmetric, using Lemma III.2,

λmin(Jg) ≥ 1− ǫ+ λmin(ǫJψ)− ‖ǫJφX‖

≥ 1− ǫ− ǫλmax(−Jψ)− ǫ‖JφX‖

> 1−
2(‖Jψ‖+ ‖JφX‖+ 1)

Lψ + Lφ‖X‖+ 1
≥ −1.

This ensures the asymptotic stability of the equilibrium [22,

Theorem 3.3], completing the proof.

Remark III.4. (Trade-offs between coupled voltage-power

slope constraint and reactive power slope constraint): We

envision the coupled voltage-power slope constraint (CVP-

SC), cf. (C1), to provide meaningful designs for the case of a

DG with relatively small size generators, for which it does not

quite limit the generation usage, and the more flexible shape

of equilibrium functions could enhance optimality. Instead, we

believe the reactive power slope constraint (RP-SC), cf. (C2),

is more suitable for the case of a DG with relatively big

size generators, since the lack of slope limitations on the

functions {φn}n∈C could help the generators to make full

use of their reactive power compensation capabilities and thus

leads to better performance. We illustrate such trade-offs in

the simulations through two different DG cases. Finally, we

note that CVP-SC ensures global asymptotic stability, whereas

RP-SC ensures local asymptotic stability, as the latter relies

on the linearization of the operator g at equilibrium points.

Moreover, CVP-SC allows arbitrary ǫ ∈ [0, 1], while RP-SC

might be more restrictive on the selection of ǫ, cf. (10). •

B. Learning The Equilibrium Functions

The learning process consists of the following steps. First,

we build a set {(pk,qk
L,q

k
C)}

K
k=1 of K load-generation sce-

narios. One can obtain these scenarios via random sampling

from assumed probability distributions, historical data, or from

forecasted conditions for a look-ahead period. Second, we

solve the power flow equation (1) and ORPF problem (3) for

these K scenarios to obtain vk
C(p

k,qk
L,q

k
C) and q

⋆,k
C (pk,qk

L),
respectively. Finally, we build a dataset for each n ∈ C of the

form Dn = {(vkn, q
k
n, q

⋆,k
n )}Kk=1, and each equilibrium function

hn is then learned by solving

min
hn

K
∑

k=1

|q⋆,kn − hn(v
k
n, q

k
n)|

2 (12)

s.t. hn designed under CVP-SC or RP-SC.

Note that solving (12) requires parameterizing {φn}n∈C and

{ψn}n∈C either to be decreasing or slope-limited. We adopt

the single-hidden-layer neural network approximation method

in [14, Section IV], which provides convenient conditions on

the weights of neural networks to ensure monotonicity and

slope limitations. Then, (12) can be solved using suitable

renditions of (stochastic) gradient descent prevalent for neural

network training, e.g., the Adam algorithm [23].

IV. CASE STUDY

We validate our approach on a modified version of the

IEEE 37-bus feeder taken from [13], reported in Fig. 1. We

benchmark the resulting control rules against our previous

work [14], where the equilibrium functions solely depend on

local voltages, which showed significant enhancements in the

optimality gap with respect to (optimized) linear droop control.

Simulation Setup: We consider two cases. In Case-1, there

are 5 generators, placed at buses C1 = {27, 31, 32, 34, 35},

with generation capability qmax = 0.4×1 MVAR; in Case-2,

there are 10 generators, placed on buses C1 ∪ C2, where C2 =
{6, 18, 28, 29, 33}, with generation capability qmax = 0.2×1

MVAR. In both cases, qmin = −qmax, vmax = 1.05 × 1

p.u., and vmin = 0.95 × 1 p.u. Notice that in Case-2, we

have a bigger number of smaller generators than in Case-1.

For our experiments, we use the same minute-based load and

solar generation data of [14]. Moreover, we randomly generate

five reactive power injection qC from [qmin,qmax] for each

minute-based data, resulting in a total of K = 1440×5 = 7200
load-generation profiles. We use the CVX toolbox [24] to solve



YUAN et al.: CONSTRAINTS ON OPF SURROGATES FOR LEARNING STABLE LOCAL VOLT/VAR CONTROLLERS 5

0

2

3

4

5

6

7

8

9

10

11

12

13

14

1516

17

18

19

20

21 22

23

24

25

26

27

28

2930

31

32

33

34

35

1

Fig. 1. The modified IEEE 37-bus feeder. Blue nodes and red nodes represent
generators in C1 and C2, respectively.

TABLE I
AVERAGE TRAINING LOSS AND OPTIMALITY GAP DISTANCE BETWEEN

ACTUAL REACTIVE POWER SETPOINTS AND ORPF SOLUTIONS2

Training loss Average distance

Baseline Improvement Baseline Improvement

Case-1 6.3× 10−3 39.7% 0.1969 13.09%
Case-2 7.9× 10−4 14.0% 0.1235 39.41%

the power flow equation (1) as well as the ORPF problem (3)

for all load-generation profiles. We train the neural networks

to solve (12) using TensorFlow 2.7.0 in Google Colab with a

single TPU with 32 GB memory. The training hyperparameters

are the same with [14].

Learning Performance: The equilibrium functions are com-

puted by solving (12). Following our discussions in Re-

mark III.4, we use RP-SC in Case-1 since it is more

suitable for the case with relatively big size generators, and

use CVP-SC in Case-2 due to its advantages for the case

with relatively small-size generators. In all cases, we use [14]

as the baseline. Table I illustrates the learning performance

for the two test cases. In both, the algorithms developed

under CVP-SC in Theorem III.1 and RP-SC in Theorem III.3,

when compared with the one of [14], achieve lower training

loss, computed as 1
KC

∑

n∈C

∑K
k=1 |q

⋆,k
n −hn(v

k
n, q

k
n)|

2. This

shows that the inclusion of reactive power as argument of

the equilibrium function helps increase the prediction ac-

curacy. Figs. 2 and 3 plot the learned functions φ35 and

ψ35 for Case-1 and Case-2, respectively. In Case-1,

although CVP-SC allows the function φn to have arbitrary

shape, the learned function φ35 in Fig. 2 is decreasing. Thus,

the more restrictive slope limitations of CVP-SC make its

performance worse than RP-SC in approximating the ORPF

solutions, which explains CVP-SC yielding greater training

loss than RP-SC for Case-1 in Table I. Instead, in Case-2,

although CVP-SC has more restrictive slope limitations on the

functions {φn}n∈C , it does not affect much the performance

since the generation capability is relatively small. Instead, the

monotonicity requirement for the functions {φn}n∈C in RP-

SC degrades the prediction accuracy as one can see that the

learned function φ35 in Fig. 3 for CVP-SC is not always

decreasing. This is the reason that CVP-SC works better

for Case-2, as Table I suggests. These observations are

consistent with our discussion in Remark III.4.

(a) CVP-SC

(b) RP-SC

Fig. 2. Leaned functions φ35 and ψ35 of node 35 for Case-1 under (a)
CVP-SC and (b) RP-SC.

(a) CVP-SC

(b) RP-SC

Fig. 3. Leaned functions φ35 and ψ35 of node 35 for Case-2 under (a)
CVP-SC and (b) RP-SC.

Control Performance: We test the control performance of

the proposed methods under CVP-SC and RP-SC. Although

our stability analysis is done for the linearized power flow

model, here we employ MATPOWER [25] to solve the AC

power flow to run the simulations. Figs. 4 and 5 report the

evolution of the DERs’ reactive power injections for both

Case-1 and Case-2 to show the stability of the control

algorithms. Finally, we test the proposed methods in a scenario

where load-generation profiles are time-varying. Specifically,

we randomly perturb (5%) the consumption data from 15:00

to 17:00 to obtain the testing load-generation profiles. We set

ǫ = 0.1 and consider 120 iterations of (7) using the controllers

developed under CVP-SC and RP-SC. Table I summarizes the

2The method in our previous work [14] is a special case of RP-SC with
ψn = 0 for all n ∈ C.



6 IEEE CONTROL SYSTEMS LETTERS

average distances between the actual reactive power setpoints

and the ORPF solutions, i.e., ‖qC − q⋆
C‖. The performance

displayed here by CVP-SC and RP-SC illustrates their re-

spective advantages in different DG cases and their significant

improvement compared to the baseline [14]. Notably, we

observe that the performance improvement achieved by CVP-

SC in Case-2 is greater than that by RP-SC in Case-1.

This is because in Case-2 CVP-SC enjoys the performance

improvement from the inclusion of reactive power as an

argument of the equilibrium function as well as the more

flexible shape of equilibrium function. Instead, in Case-1, the

performance improvement achieved by RP-SC is only due to

the inclusion of reactive power as argument of the equilibrium

function.

(a) CVP-SC (b) RP-SC

Fig. 4. Evolution of reactive power setpoints for Case-1 with 30 iter-
ations of (7) using load-generation profiles of 1095-th minute. For CVP-
SC, ǫ is chosen as 1, and for RP-SC, ǫ is chosen as 0.79, which satisfies
ǫ < 2

Lψ+Lφ‖X‖+1
= 0.7916 in Theorem III.3.

(a) CVP-SC (b) RP-SC

Fig. 5. Evolution of reactive power setpoints for Case-2 with 30 iter-
ations of (7) using load-generation profiles of 1095-th minute. For CVP-
SC, ǫ is chosen as 1, and for RP-SC, ǫ is chosen as 0.64, which satisfies
ǫ < 2

Lψ+Lφ‖X‖+1
= 0.6471 in Theorem III.3.

V. CONCLUSIONS

We have developed a learning method for synthesizing

provably stable local Volt/Var controllers for efficient network

operation of distribution grids. We proposed an incremental

control algorithm steering the network towards configurations

defined by functions termed equilibrium functions, which

depend both on local voltages and local reactive powers.

We identified two sets of slope constraint conditions on the

equilibrium functions to ensure the stability of the algorithm.

The theoretical analysis and simulation results illustrate the

trade-offs between the two types of conditions, as the reactive

power slope constraint is better in DGs with relatively large-

size generators and coupled voltage-power slop constraint is

more suitable in DGs with relatively small-size generators.

Future work will explore more general forms of the equilib-

rium functions, relax the assumptions on its components, and

extend our analysis to Lipschitz equilibrium functions.
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